首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
We apply detrended fluctuation analysis (DFA) on fluxgate and search-coil data in ULF range (scales 10–90 s or 0.1–0.011 Hz) for the months January–April 2009 available from the South European GeoMagnetic Array stations: Castello Tesino (CST), Ranchio (RNC), and L’Aquila (AQU) in Italy; Nagycenk (NCK) in Hungary; and Panagyuriste (PAG) in Bulgaria. DFA is a data processing method that allows for the detection of scaling behaviors in observational time series even in the presence of non-stationarities. The H and Z magnetic field components at night hours (00-03 UT, 01–04 LT) and their variations at the stations CST, AQU, NCK, and PAG have been examined and their scaling characteristics are analyzed depending on geomagnetic and local conditions. As expected, the scaling exponents are found to increase when the K p index increases, indicating a good correlation with geomagnetic activity. The scaling exponent reveals also local changes (at L’Aquila), which include an increase for the Z (vertical) component, followed by a considerable decrease for the X (horizontal) component in the midst of February 2009. Attempts are made to explain this unique feature with artificial and/or natural sources including the enhanced earthquake activity in the months January–April 2009 at the L’Aquila district.  相似文献   

2.
In this work, we study groundwater system temporal scaling in relation to plant water use and near‐river‐stage fluctuations in riparian zones where phreatophytes exist. Using detrended fluctuation analysis (DFA), we investigate the influence of regular diurnal fluctuations due to phreatophyte water use on temporal scaling properties of groundwater level variations. We found that groundwater use by phreatophytes, at the field site on the Colorado River, USA, results in distinctive crossovers (slope changes when the plots are fitted with straight lines) in the logarithm plots of root‐mean‐square fluctuations of the detrended water level time series versus time scales of groundwater level dynamics. For groundwater levels monitored at wells close to the river, we identified one crossover at ~1 day in the scaling characteristics of groundwater level variations. When time scale exceeds 1 day, the scaling properties decrease from persistent to close to 1/f noise, where f is the frequency. For groundwater levels recorded at wells further away from the river, the slope of the straight line fit (i.e. scaling exponent) is smallest when the time scale is between 1 and 3 days. When the time scale is < 1 day, groundwater variations become persistent. When the time scale is between 1 and 3 days, the variations are close to white noise, but return to persistent when the time scale is > 3 days. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Detrending is a key step in the study of the scaling behaviors using Detrended Fluctuation Analysis (DFA) to explore the long‐range correlation of hydrological series. However, the irregular periodicity and various trends within hydrological series as a result of integrated influences of human activities such as construction of water reservoirs and human withdrawal of freshwater and climate changes such as alterations of precipitation changes in both space and time make difficult the selection of detrending methods. In this study, we attempt to address the detrending problem due to the important theoretical and practical merits of detrending in DFA‐based scaling analysis. In this case, with focus on the irregularity of the periodic trends, a modified DFA, varying parameter DFA (VPDFA), and its combination with adaptive detrending algorithm (ADA) are employed to eliminate the influences of irregular cycles on DFA‐based scaling results. The results indicate that, for streamflow series with no more than 20 cycles, VPDFA is recommended; otherwise, the combined method has to be employed. Comparison study indicates that the scaling behavior of the detrended observed streamflow series by average removed method, when compared to those by DFA, VPDFA, and ADA, is the one of the periodic residues around the averaged annual cycle for the entire series rather than that excluding all annual cycles. However, although the result by VPDFA for short observed streamflow record can well correspond to that for numerically simulated series, the scaling behavior obtained by combined method analyzing long record looks strange and is different from that by numerical analysis. We attribute this difference to the complicated hydrological structure and the possible hydrological alternation due to the increasing integrated impacts of human activities and human activities with the extending record. How to include the most of the important factors into the detrending procedure is still a challenging task for further study in the analysis of the scaling behavior of hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
日、月对地球表层海水的引潮力导致潮汐的周期性变化是一种成熟理论.地球除具有日、月、年潮汐规律外,还具有明显的准1800年、200年、50~70年、18.6年、9.3年和2.5~7年不同尺度的周期.本文通过将地球赤道半径和月球轨道半径投影到黄道面上,标定二者矢量半径之和的模的极值状态,创建了引潮力极大值和强潮汐的周期性指数KSEM.这对探讨和预测潮汐的时间分布和推断地球自转角速度变化规律提供了一种新途径.行星系统中木星和金星对地球的摄动影响最突出,但目前还没有一个行之有效的模型将日、地、月、木星、金星作为一个统一整体,对地球潮汐极值状态进行刻画.通过辨析这五大天体运动预设的位置关系的结构特征,进而考察KSEM指数与月球升交点和月球近地点会合周期的对应关系,以及对月球轨道运动不同的特征周期的叠加和定性分析,这对探讨强潮汐周期、厄尔尼诺现象和地震的时间分布规律提供了重要参考.  相似文献   

5.
大地震的18.6年周期   总被引:1,自引:0,他引:1       下载免费PDF全文
将全球分为15个研究区,用1900~2009年MW≥7.0地震目录,统计分析了各区大地震与月球交点运动周期的关系,得出15个研究区中有10个区,大地震存在统计意义上的18.6 a周期:活跃段为12.4 a,平静段为6.2 a;环太平洋地震带北、南、西、东4大区的大地震,不仅有这样的周期,而且其地震活跃段的时间存在一定规律.用第6个18.6 a(1991~2009年)期间的大地震,检验据前5个18.6 a(1900~1990年)地震目录所得18.6 a 周期的稳定性和实用性,发现有这种周期的地区多数的周期性是稳定的.大地震18.6 a周期的可能成因有: (1)18.6 a潮波通过调制日潮和半日潮调制大地震; (2)上地幔内流体的潮汐(地内潮)作用; (3)18.6 a潮波通过影响地球自转变化调制大地震.  相似文献   

6.
The series of observations conducted at the Baksan and Protvino deformation stations in the Northern Caucasus and the Central Russian Plain, respectively, and the length-of-day (LOD) data describing the variable rate of the Earth’s rotation are used to study the relation between the deformation processes in the lithosphere and the global geodynamics of the Earth over short time intervals. The methods applied are based on high-resolution spectral analysis, analysis of the coherence of the studied processes, and correlation analysis. A significant (95%) correlation is revealed between the local deformation fields at two remote observation stations, which proves the existence of a global component in the Earth’s deformation field that manifests itself at characteristic time intervals of up to 3–4 weeks. At the same level of significance, the correlation between the local deformation fields and variations in the rate of the Earth’s rotation has also been identified. It is shown that the found correlations in the tidal low-frequency range are caused by the direct impact of the long-period tidal loading (M f and M tm waves) on the lithosphere and the length-of-the-day (LOD). The global mechanisms giving rise to the correlation of these processes in the nontidal range require further study.  相似文献   

7.
The scaling properties of fracture and faulting of ice on Earth are reviewed.Numerous evidences for the scaling of fracture and faulting of ice are given,including self-affine fracture surfaces, fractal fracture networks at small(laboratory) and large (geophysical) scales, power law distributions of fracturelengths or of fragment sizes within fault gouges. These scaling laws are discussedin terms of the underlying mechanics. Scaling of the observables associated withfracture and faulting argues for the scale invariance of the fracture and faultingprocesses and indicates that small scales cannot be arbitrarily disconnected fromlarge scales. Consequently, quantitative links between scales cannot be performedthrough classical homogenization procedures. Scaling can also induce scale effectson different mechanical parameters such as fracture energy, strength or stiffness.Although scaling is ubiquitous for the fracture of ice on Earth, important exceptionsexist such as the nucleation of microcracks or the crevassing of glaciers. Theseexceptions are stressed and discussed.  相似文献   

8.
We investigate the time dynamics of monthly rainfall series intermittently recorded on seven climatic stations in northern Lebanon from 1939 to 2010 using the detrending fluctuation analysis (DFA) and the Fisher-Shannon (FS) method. The DFA is employed to study the scaling properties of the series, while the FS method to analyze their order/organization structure. The obtained results indicate that most all the stations show a significant persistent behavior, suggesting that the dynamics of the rainfall series is governed by positive feedback mechanisms. Furthermore, we found that the Fisher Information Measure (the Shannon entropy power) seems to decrease (increase) with the height of the rain gauge; this indicates that the rainfall series appear less organized and less regular for higher-located stations. Such findings could be useful for a better comprehension of the climatic regimes governing northern Lebanon.  相似文献   

9.
We overview studies of the natural variability of past climate, as seen from available proxy information, and its attribution to deterministic or stochastic controls. Furthermore, we characterize this variability over the widest possible range of scales that the available information allows, and we try to connect the deterministic Milankovitch cycles with the Hurst–Kolmogorov (HK) stochastic dynamics. To this aim, we analyse two instrumental series of global temperature and eight proxy series with varying lengths from 2 thousand to 500 million years. In our analysis, we use a simple tool, the climacogram, which is the logarithmic plot of standard deviation versus time scale, and its slope can be used to identify the presence of HK dynamics. By superimposing the climacograms of the different series, we obtain an impressive overview of the variability for time scales spanning almost nine orders of magnitude—from 1 month to 50 million years. An overall climacogram slope of ?0.08 supports the presence of HK dynamics with Hurst coefficient of at least 0.92. The orbital forcing (Milankovitch cycles) is also evident in the combined climacogram at time scales between 10 and 100 thousand years. While orbital forcing favours predictability at the scales it acts, the overview of climate variability at all scales suggests a big picture of irregular change and uncertainty of Earth’s climate.  相似文献   

10.
High temporal resolution solar observations in the decimetric range (1–3 GHz) can provide additional information on solar active regions dynamics and thus contribute to better understanding of solar geoeffective events as flares and coronal mass ejections. The June 6, 2000 flares are a set of remarkable geoeffective eruptive phenomena observed as solar radio bursts (SRB) by means of the 3 GHz Ondrejov Observatory radiometer. We have selected and analyzed, applying detrended fluctuation analysis (DFA), three decimetric bursts associated to X1.1, X1.2 and X2.3 flare-classes, respectively. The association with geomagnetic activity is also reported. DFA method is performed in the framework of a radio burst automatic monitoring system. Our results may characterize the SRB evolution, computing the DFA scaling exponent, scanning the SRB time series by a short windowing before the extreme event. For the first time, the importance of DFA in the context of SRB monitoring analysis is presented.  相似文献   

11.
Three groups of dynamic triaxial tests were performed for saturated Nanjing fine sand subjected to uniform cyclic loading. The tested curves of the excess pore water pressure (EPWP) ratio variation with the ratio of the number of cycles are provided. The concept of the EPWP increment ratio is introduced and two new concepts of the effective dynamic shear stress ratio and the log decrement of effective stress are defined. It is found that the development of the EPWP increment ratio can be divided into three stages: descending, stable and ascending. Furthermore, at the stable and ascending stages, a satisfactory linear relationship is obtained between the accumulative EPWP increment ratio and natural logarithm of the effective dynamic shear stress ratio. Accordingly, the EPWP increment ratio at the number of cycles N has been deduced that is proportional to the log decrement of effective stress at the cycle number N-1, but is independent of the cyclic stress amplitude. Based on the analysis, a new EPWP increment model for saturated Nanjing fine sand is developed from tested data fitting, which provides a better prediction of the curves of EPWP generation, the number of cycles required for initial liquefaction and the liquefaction resistance.  相似文献   

12.
Particle fluxes in the outer radiation belts can show substantial variation in time, over scales ranging from a few minutes, such as during the sudden commencement phase of geomagnetic storms, to the years-long variations associated with the progression of the solar cycle. As the energetic particles comprising these belts can pose a hazard to human activity in space, considerable effort has gone into understanding both the source of these particles and the physics governing their dynamical behavior. Computationally tracking individual test particles in a model magnetosphere represents a very direct, physically-based approach to modeling storm-time radiation belt dynamics. Using global magnetohydrodynamic models of the Earth–Sun system coupled with test particle simulations of the radiation belts, we show through two examples that such simulations are capable of capturing the outer zone radiation belt configuration at a variety of time scales and through all phases of a geomagnetic storm. Such simulations provide a physically-based method of investigating the dynamics of the outer radiation zone, and hold promise as a viable method of providing global nowcasts of the radiation environment during geomagnetically active periods.  相似文献   

13.
Evidence of the solar activity modulation of the Earth’s climate has been observed on several parameters, from decadal to millennial time scales. Several proxies have been used to reconstruct the paleoclimate as well as the solar activity. The paleoclimate reconstructions are based on direct and/or indirect effects of global and regional climate conditions. The solar activity reconstructions are based on the production of the 14C isotope due to the interaction of cosmic ray flux and the Earth’s atmosphere. Because trees respond to climate conditions and store 14C, they have been used as proxies for both for climate and solar activity reconstructions. The imprints of solar activity cycles dating back to 10,000 years ago have been observed on tree-ring samples using 14C data, and those dating back to 20 million years ago have been analyzed using fossil tree-growth rings. All this corresponds to the Cenozoic era. However, solar activity imprints on tree rings from earlier than that era have not been investigated yet. In this work, we showed that tree rings from the Mesozoic Era (of ~200 million years ago) recorded 11- and 22-year cycles, which may be related to solar activity cycles, and that were statistically significant at the 95 % confidence level. The fossil wood was collected in the southern region of Brazil. Our analysis of the fossils' tree-ring width series power spectra showed characteristics similar to the modern araucaria tree, with a noticeable decadal periodicity. Assuming that the Earth’s climate responds to solar variability and that responses did not vary significantly over the last ~200 million years, we conclude that the solar–climate connection was likely present during the Mesozoic era.  相似文献   

14.
The gravitational interaction in the Earth–Moon–Sun system is considered from the standpoint of influencing the formation of time variations in the geophysical fields and some natural processes. The analysis of the results of instrumental observations revealed the main periodicities and cycles in the time variations of subsoil radon volumetric activity with the same periods as the vertical component of the variations of the tidal force. The amplitude modulation of seismic noise by the lunar-solar tide is demonstrated. It is shown that the intensity of relaxation processes in the Earth’s crust has a near-diurnal periodicity, whereas the spectrum of groundwater level fluctuations includes clearly expressed tidal waves. Based on the data on the tilts of the Earth’s surface, the role of tidal deformation in the formation of the block motions in the Earth’s crust is analyzed. A new approach is suggested for identifying tidal waves in the atmosphere by analyzing micropulsations of the atmospheric pressure with the use of adaptive rejection filters.  相似文献   

15.
D. Markovic  M. Koch 《水文研究》2014,28(4):2202-2211
Long‐term variations and temporal scaling of mean monthly time series of river flow, precipitation, temperature, relative humidity, air pressure, duration of bright sunshine, degree of cloud cover, short wave radiation, wind speed and potential evaporation within or in vicinity of the German part of the Elbe River Basin are analyzed. Statistically significant correlations between the 2–15 year scale‐averaged wavelet spectra of the hydroclimatic variables and the North Atlantic Oscillation‐ and Arctic Oscillation index are found which suggests that such long‐term patterns in hydroclimatic time series are externally forced. The Hurst parameter estimates (H) based on the Detrended Fluctuation Analysis (DFA) indicate persistence for discharge, precipitation, wind speed, air pressure and the degree of cloud cover, all having an annual cycle and a broad low‐frequency distribution. Also, DFA H parameter estimates are higher for discharge than for precipitation. The major long‐term quasi‐periodic variability modes of precipitation detected using Singular Spectrum Analysis coincide with those detected in the discharge time series. Upon subtraction of these low‐frequency quasi‐periodic modes, the DFA H parameter estimates suggest absence of the persistence for both precipitation and discharge. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
赵晋明  胡毅力 《地震地质》1996,18(3):277-281
片麻岩在真三轴压缩至主破裂的孕育过程中,沿σ3方向(与主破裂面斜交)的弹性波有显著的特征变化;P波、S波的初至波走时变化呈现略高~平稳~高值~(回降)的形式,走时比呈现平稳~低值~回升的变化特征。振幅呈现低值~平稳高值~下降~(低值)变化形态,振幅比呈现相对稳定~甚高值~回降变化形态。波列振幅衰减系数呈现稳定值~低值~回升变化形态。微裂隙的开闭和P,S波的非同步变化及相对变化量的不同是上述特征变化的主要原因  相似文献   

17.
The performance and measurement accuracy of global navigation satellite system (GNSS) receivers is greatly affected by ionospheric scintillations. Rapid amplitude and phase variations in the received GPS signal, known as ionospheric scintillation, affects the tracking of signals by GNSS receivers. Hence, there is a need to investigate the monitoring of various activities of the ionosphere and to develop a novel approach for mitigation of ionospheric scintillation effects. A method based on Local Mean Decomposition (LMD)–Detrended Fluctuation Analysis (DFA) has been proposed. The GNSS data recorded at Koneru Lakshmaiah (K L) University, Guntur, India were considered for analysis. The carrier to noise ratio (C/N0) of GNSS satellite vehicles were decomposed into several product functions (PF) using LMD to extract the intrinsic features in the signal. Scintillation noise was removed by the DFA algorithm by selecting a suitable threshold. It was observed that the performance of the proposed LMD–DFA was better than that of empirical mode decomposition (EMD)–DFA.  相似文献   

18.
用去趋势涨落分析研究北京气候的长程变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
无标度性广泛存在于自然界系统包括气候系统中,其特征之一是可观测量存在幂函数关系,它揭示了气候系统的复杂性.为探索气候可预测性的客观基础,运用去趋势涨落分析(DFA)方法对北京1870~2003 年平均气温和1725~2003年降水序列进行了分析.结果表明,北京年平均气温和降水量均可划分为多个标度不变区域.在特定的标度域内,它们都表现出正长程相关的性质,为制作年际与年代际气候预测提供了理论基础.  相似文献   

19.
The relationships between different manifestations of solar and geomagnetic activity and the structural peculiarities of the dynamics of the pole wobble and irregularities in the Earth??s rotation are studied using singular spectrum analysis. There are two close major peaks and several lower ones in the same frequency range (1.1?C1.3 years) in the Chandler wobble (CW) spectrum. Components in the geomagnetic activity were distinguished in the same frequency band (by the Dst and Ap indices). Six- to seven-year oscillations in the Earth??s rotation rate with a complex dynamics of amplitude variations are shown in variations in geomagnetic activity. It is revealed that secular (decade) variations in the Earth??s rotation rate on average repeat global variations in the secular trend of the Earth??s geomagnetic field with a delay of eight years during the whole observation period.  相似文献   

20.
Based on the time series of observational variations of the length of day (LOD) and seismic data in the world, the relations of the decadal fluctuation and seasonal variation in the Earth’s rotation with global seismic activity are studied in this paper. The results suggest that there are overall correlations on temporal scale and regional discrepancy on spatial scale between global seismic activity and the Earth’s variable rotation, especially the seismic activity in the Eurasian seismic zone (not including southeast Asia) and the Lower California-Eastern Alaska seismic zone correlating well with the Earth’s variable rotation. According to the relations mentioned above, the observational data of the Earth’s rotation might provide a referential basis for monitoring global seismic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号