首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低温是影响青藏高原生态系统的重要限制因子。本研究基于青藏高原三个海拔(4300 m、4500 m、4700 m)上的模拟增温实验平台(开顶式增温箱,open top chambers,OTC),观测了2011年8–9月和2012年8月的高寒草甸生态系统的群落地上和地下碳氮计量学特征。结果表明:模拟增温显著增加了21.4%的2011年9月4500 m的群落地上氮含量,显著降低了3.9%的2012年8月4300 m的群落地上碳含量,而对其他情况下的群落碳氮计量学特征无显著影响;模拟增温显著增加了5.5%的2011年8月4500 m的群落地下碳含量,显著增加了28.0%的2011年9月4300 m的群落地下碳氮比,显著降低了15.7%的2011年9月4700 m的群落地下氮含量,显著降低了34.3%的2012年8月4700 m的群落地下碳含量,显著降低了37.9%的2012年8月4700m的群落地下碳氮比,而对其他情况下的群落碳氮计量学特征无显著影响。因此,模拟增温对不同海拔高度和不同月份的群落碳氮计量学的影响不一致,土壤铵态氮与硝态氮含量是影响植物群落碳氮计量学的主要因子。  相似文献   

2.
选取巴塘高寒草甸设置封育及自然放牧样地,通过野外实地监测及室内试验相结合的方法,分析封育措施对植被群落结构及土壤持水能力的影响。结果显示:1)封育措施显著提高了高寒草甸植被群落总盖度及平均高度(p0.05),增加了群落的物种丰富度、均匀度及复杂程度,植被群落中禾本科和豆科植物等优良牧草显著增加,菊科、莎草科以及有毒杂草类植物所占比重有所下降。2)封育措施丰富了高寒草甸植被群落垂直分层结构,退化草地垂直结构由一层增加至三层。3)封育措施降低了高寒草甸0~40 cm层面土壤容重,二者差异在10~20 cm层面最明显(p0.05)。4)尽管未达到显著水平(p0.05),封育样地0~40 cm层面土壤有机碳密度均高于自然放牧样地。5)封育措施明显改善了高寒草甸土壤持水能力。其中,封育样地0~10、10~20、20~40 cm深度土壤饱和持水量、毛管持水量及田间持水量均高于自然放牧样地,封育条件下0~40 cm整个土层土壤饱和持水量、毛管持水量及田间持水量增加速率分别为1.4、1.9、1.7 mm/a。封育措施有利于退化草地生态环境的恢复,是遏制和改善高寒草地退化的有效措施。  相似文献   

3.
川西高山-亚高山区域作为中国长江、黄河上游的重要生态屏障,拥有丰富的生物多样性。川西高山-亚高山草地生态系统对增温变化敏感,但对其草地生态系统群落及其稳定性对增温的响应研究仍存在不足。由于指标选取单一、研究尺度小等研究方法问题,已有研究结论的代表性不足。为了深入了解这一生态系统在不同海拔高度上对气候变暖的响应特征,本研究在贡嘎山东北坡雅家埂峡谷地带,沿海拔3000~4130 m设置4个高山-亚高山草地样地,采用两种常用的模拟增温模式(OTC增温和带草皮下移增温)模拟环境温度升高,研究2012—2017年期间,不同海拔梯度上草地物种丰富度、群落高度和盖度、地上净初级生产力对增温的响应特征,以及这些特征变化与群落生物量时间稳定性的关系。结果表明:(1)OTC增温仅在高海拔寒冷样地降低了物种丰富度,不影响中低海拔样地的物种丰富度;下移增温增加了高海拔寒冷样地的物种丰富度,却降低了低海拔温暖样地的物种丰富度;(2)OTC增温仅增加了高海拔寒冷样地的群落高度,下移增温显著增加了所有海拔梯度上的植被高度;(3)在两个中间海拔梯度样地,两种增温模式都降低了杂草类植物盖度,却增加了莎草与禾草的盖度;(...  相似文献   

4.
灌丛对川西北高寒草甸土壤资源的影响   总被引:7,自引:1,他引:7  
刘长秀  张宏  泽柏 《山地学报》2006,24(3):357-365
以川西北高原红原县为研究区,用方格取样法,在相邻的高寒灌丛草地和高寒草甸样地中分别随机取0~20 cm土样50个,并分析了这些土样的土壤性状。利用SPSS(11.0)软件对实验数据进行了统计、分析和比较,研究了两个样地的各种土壤养分的平均含量、空间异质性和相关关系。结果表明,草甸样地的粘粒含量、Ptotal、Ntotal、ORG、Pavail、Navail、Kavail的含量都高于灌丛样地,且两样地速效养分差异极显著,但草甸样地土壤的ORG、Navail、Kavail的变异系数(CV)却明显小于灌丛样地,特别是Kavail的CV值,灌丛样地比草甸样地高出了53.37%;相关分析还表明,相对于草甸,灌丛样地中各养分元素之间的相关性明显增强。说明灌丛对高寒草甸土壤资源的异质性有明显的影响,其存在降低了草甸土壤养分的均值含量并增强了土壤养分的变异性和侵蚀潜力,不利于高寒草甸土壤养分的保持。  相似文献   

5.
2009和2010年夏天沿藏北高原高寒草地样带调查了高寒草地生态系统(高寒草甸、高寒草原和荒漠草原)在围栏禁牧和自由放牧管理下的物种丰富度和多样性(Shannon-Wiener指数,Simpson优势度指数和Pielou均匀度指数)。研究结果显示:自2006年起藏北高原围栏禁牧在植被类型和区域尺度上没有显著改变物种丰富度和多样性。物种丰富度和多样性主要受生长季降水驱动,超过87%的变异可由生长季降水来解释。物种丰富度和多样性在自由放牧和围栏禁牧2类样地对生长季降水的响应方式一致。物种丰富度随降水呈指数型增长关系,多样性指数则呈现正线性关系。研究结果预示藏北高原地区生长季降水的变化对于物种丰富度和多样性管理至关重要,在未来高寒草地保护研究中应予以重视。  相似文献   

6.
高寒草甸土壤有机碳储量及其垂直分布特征   总被引:24,自引:0,他引:24  
青藏高原是全球变化的敏感区。高寒草甸草原是青藏高原上最主要的放牧利用草地资源之一。选择青藏高原东北隅海北站内具有代表性的高寒草甸土壤进行高分辨率采样,测定土壤根系和有机碳含量。研究得出,青藏高原高寒草甸土壤贮存有巨大的根系生物量 (23544.60 kg ha-1~27947 kg ha-1) 和土壤有机碳 (21.52 GtC);自然土壤表层 (0~10 cm) 储存了整个剖面土壤有机碳总量的30%左右。比较发现,高寒草甸土壤的有机碳平均贮存量 (23.17×104 kgCha-1) (0~60 cm) 较相应深度的热带森林土壤、灌丛土壤和草地土壤的有机碳贮存量高约1~5倍多。在全球碳预算研究中,青藏高原高寒草甸土壤有机碳库不可忽视。随着全球变暖,表层土壤有机碳分解释放的CO2将增加。为了减少高寒草甸生态系统的碳排放,应加强高寒草甸土壤地表覆被的保护,合理种植深根系植物。这对减缓全球大气CO2浓度升高的速率以及可持续开发高寒草甸的生态服务功能都具有重要意义。  相似文献   

7.
围栏封育是高寒草地最为常见的保育方式,不同类型草地的封育效应可能会存在差异。开展该方面的研究,可以评估围栏封育对草地恢复的效应,为藏北高原不同类型退化草地的恢复措施提供科学依据。本研究以藏北地区的高寒草甸、高寒草原和高寒荒漠3类草地为研究对象,采用单因素方差分析对生物量、叶片–土壤养分含量以及化学计量比进行差异性检验,探讨了围栏封育对这3类高寒草地植物和土壤养分的影响。结果表明,围栏封育能显著提高这3类草地群落的地上生物量,但仅提高了10–20 cm高寒荒漠的地下生物量;围栏封育显著提高了高寒荒漠优势植物叶片的养分含量和10–20 cm土壤中全氮、全钾、有机碳的含量,并显著改变了C、N、P之间的化学计量比;而在高寒草甸和高寒草原围栏封育仅仅显著增加了高寒草原中优势物种叶片的N含量,其他养分指标和化学计量比均没有表现出显著的差异。以上结果表明,从植物和土壤养分来看,围栏封育对高寒荒漠草地的保育作用最为显著。  相似文献   

8.
藏北典型高寒草原土壤微气候对增温的响应   总被引:2,自引:0,他引:2  
土壤微气候的改变会影响到一系列的生态系统过程,研究增温条件下土壤微气候变化特征将有助于了解气候变暖对草地生态系统水热条件的影响。利用开顶箱(open-top chamber,OTC)方法研究增温条件下藏北典型高寒草原土壤微气候变化特征。结果表明:藏北典型高寒草原土壤温度和土壤湿度存在明显的日变异和季节变异;增温使得空气年均温增加3.2℃,土壤年均温增加5.2℃,增温效果显著;增温可以显著提高土壤温度,值得注意的现象是非生长季的增加幅度大于生长季的增加幅度;增温对土壤湿度的影响具有明显的季节性,冬季增温会显著增加土壤湿度,而夏季增温会显著降低土壤湿度。研究结果可为变化气候条件下高寒地区水热状况研究提供依据。  相似文献   

9.
青藏高原退化高寒草甸生长季承载力   总被引:2,自引:0,他引:2  
近年来,在气候变化和人类活动的共同影响下,青藏高原部分地区草场退化严重。在青藏高原北麓河流域多年冻土区选取中度退化及未退化高寒草甸,用热红外辐射器模拟气候变暖,研究草地退化和气候变化对生长季草场数量和营养承载力(可消化蛋白承载力和代谢能承载力)的影响。结果表明:(1)退化后,莎草科植物在群落中的重要值降低,而禾本科和杂草类植物重要值逐渐增加;(2)退化对植被地上生物量无显著影响,但退化伴随着气候变暖使地上生物量在6月和9月分别显著降低了(87.17±6.93) g·m-2和(38.89±2.23) g·m-2;(3)退化在6月和9月使牧草粗蛋白含量分别显著降低了29.15%和33.74%,但使牧草中酸性洗涤纤维含量分别显著增加了11.68%和15.34%,牧草品质下降明显;(4)退化伴随着气候变暖使数量承载力和代谢能承载力在6月分别降低了(2.63±0.21)、(6.94±0.55)羊单位·hm-2,在9月分别降低了(1.17±0.07)、(3.1±0.17)羊单位·hm-2。研究区草场代谢能承载力>可消化蛋白承载力>数量承载力。研究区生长季牧草营养供给充足,适宜承载力为数量承载力  相似文献   

10.
对海北定位站分布的金露梅灌丛草甸、矮嵩草草甸、藏嵩草沼泽化草甸3种高寒植被类型群落结构、感热(H)和潜热(LE)通量比较观测表明,3种植被类型年地上净初级生产力表现出矮嵩草草甸(318.600g/m2)>藏嵩草沼泽化草甸(258.341g/m2)>金露梅灌丛草甸(217.695g/m2)。植物种类组成有矮嵩草草甸(54种)>金露梅灌丛草甸(47种)>沼泽草甸(24种)。3种植被类型区近地表大气能量交换过程中,LE和H的月际变化明显,而且随植被类型的不同月际变化差异显著。3种不同植被类型在年内均表现出H LE>0,表明在青海海北高寒草甸地区,太阳辐射强烈,近地层湍流输送明显,地表为一热源。3类型高寒草甸植被的年地上净生产量基本与波文比(β)呈现正效应,与LE H呈现明显的反效应。植物种类组成基本与LE H有反效应,与β呈明显的正效应。  相似文献   

11.
于2012年8月15~20日(植物生长季)和10月26~31日(非植物生长季),在青海湖国家级自然保护区湖滨带的高寒草原和三江源国家公园黄河源区湖滨带的高寒草甸中,分别设置了高寒草原禁牧、轮牧、持续放牧和高寒草甸轮牧、持续放牧采样地,采用Li-8100A自动土壤CO2观测系统,测量高寒草原和高寒草甸生态系统呼吸通量,同时测定了其地上生物量及土壤理化性质。研究结果表明,在8月采样日(植物生长季),轮牧、禁牧和持续放牧下高寒草原、轮牧和持续放牧下高寒草甸的平均生态系统呼吸通量分别为8.72μmol/(m~2·s)、6.42μmol/(m~2·s)、5.45μmol/(m~2·s)、3.10μmol/(m~2·s)和2.19μmol/(m~2·s),其平均温度敏感性分别为3.32、2.72、2.46、4.48和3.30。在不同放牧方式下,湖滨带高寒草原和高寒草甸生态系统呼吸通量和温度敏感性都差异显著(n=6,p0.05)。在轮牧方式下,高寒草原采样地中,0~10 cm、10~20 cm和20~30 cm深度土壤全碳含量分别为4.756 5%、4.435 8%和4.195 1%,全氮质量比分别为4.078 3 g/kg、3.695 0 g/kg和2.946 7 g/kg,显著高于其它放牧方式下的高寒草原和高寒草甸。相对于禁牧和持续放牧方式,轮牧方式能有效保持土壤肥力,并为生态系统呼吸提供基质,具有明显的生态效益。  相似文献   

12.
降雨的年际变化可导致碳通量显著变化。因此我们利用涡度相关(EC)技术观测西藏高原北部的一个高寒草甸连续2年(2005–2006)的CO2净生态系统交换(NEE),以分析不同降水年份下CO_2通量的差异和控制因素。2005和2006年的降水量分别为489.9 mm和241.1 mm,相比于476.0 mm的多年平均值,前者属于平水年,后者属于干旱年。2006年的NEE的年际累积表现为净排放量(87.70 g C m~(-2) yr~(-1)),而2005年则表现为非常微弱的吸收(-2.35 g C m~(-2) yr~(-1))。因此该高寒草甸在平水年是碳中性的,但在干旱年是碳源,这说明如果未来气候变暖继续恶化加剧土壤干旱的条件下,高寒草甸有可能成为一个CO_2释放源。在干旱年份,总初级生产力(GEE)、叶面积指数(LAI)以及生态系统碳吸收持续的时间都明显降低,由此引发干旱年份生长季旺盛时期每日NEE最大吸收速率、最大光合速率(Pmax)以及表观量子效率(α)只是平水年的30%–50%。在其他因子的调控方面,半小时尺度的GEE和NEE与光合有效辐射(PAR)密切相关,但这种响应会受空气温度(T_a),土壤水分含量(SWC)和水汽压亏缺(VPD)的影响。NEE的吸收速率会随着T_a和VPD的升高以及SWC的下降而减少。当PAR超过合适的范围值时,由于较高的辐射加剧了土壤干旱的情况,会减少白天NEE的吸收速率。NEE吸收速率的最适T_a和VPD值分别为12.7℃和0.42 KPa,而且NEE的吸收速率也会随着SWC的增加而增大。LAI的季节变异能够解释GEE和NEE变异的77%。半小时尺度上的生态系统呼吸(R_e)的变异主要依赖于土壤温度(T_s),但SWC会在一定程度上调控R_e对T_s的响应。  相似文献   

13.
以中亚热带杉木(Cunninghamia lanceolata)幼苗为研究对象,设置埋设电缆以加热土壤增温(+5℃)的实验,研究了土壤理化性质、土壤有效氮和土壤微生物群落结构等对模拟全球变暖的短期响应。结果表明:1)增温1年后土壤硝态氮含量显著提高1.6倍;p H值、土壤有机碳、总氮和有效磷略有降低,但差异未达显著水平;土壤水分在增温之后明显减少。2)增温导致革兰氏阳性细菌(Gram-positive bacteria,G+)、革兰氏阴性细菌(Gram-positive bacteria,G-)、真菌(Fungi)、放线菌(ACT)和丛枝菌根真菌(AMF)的磷脂脂肪酸(PLFA)生物量均显著减少,G+∶G-在增温之后显著提高,而真菌与细菌比(F∶B)显著降低。3)冗余分析(RDA)显示,温度(T)、土壤含水量(SMC)和硝态氮是决定土壤微生物群落结构变化最重要的环境因子。研究表明,短期增温促进了土壤有机氮矿化,改变了微生物群落结构,细菌中G+相对于G-优势明显。中亚热带杉木人工林土壤有效氮和微生物群落对模拟全球变暖的反应敏感,但长期实验后二者如何变化仍未可知。因此,该区域在未来全球变暖背景下微生物群落和土壤有效养分的响应值得长期而深入的探讨。  相似文献   

14.
高寒嵩草草甸的被动与主动退化分异特征及其发生机理   总被引:4,自引:1,他引:4  
高寒嵩草草甸是广布于青藏高原的地带性植被之一,自1980年代以来,发生退化,形成大面积的"黑土型"次生裸地。目前的研究普遍认为,高寒嵩草草甸的退化是由于过度放牧引起的植被演替和啮齿类动物对草场的破坏所致。而本研究认为,随着持续的超载放牧,高寒嵩草草甸的退化过程可以分为异针茅 羊茅-矮嵩草群落、矮嵩草群落、小嵩草群落和杂类草-黑土型次生裸地的四个演替阶段;其经历了异针茅 羊茅-矮嵩草群落向矮嵩草群落植被的被动退化过程和由小嵩草群落向杂类草-黑土型次生裸地的主动退化过程;其发生的动力分别为放牧作用和嵩草特殊的生物学特性(高地下/地上比)引起的草毡表层极度加厚作用。草毡表层的极度加厚,造成土壤水分渗透速率的降低和土壤-牧草之间水分、营养供求的失调,是导致高寒矮嵩草最终退化的根本原因。同时提出高寒嵩草草甸在被动退化阶段,通过降低放牧强度,灭鼠、封育是可以逆转的,而一旦进入主动退化阶段,草皮的塌陷、斑驳,最终形成"黑土滩"型退化草地,这是不可避免的也是不可逆转的。  相似文献   

15.
以青海省乱海子高寒湿地为研究区,沿湿地土壤水分梯度,设置了7处采样地,采集了0~20 cm深度的土壤样品和植物样品,研究了2014年8月中旬的植物群落结构特征空间分布特征,尤其注重高寒湿地中特有的冻胀丘形成对植物群落结构和生物量的影响。研究结果表明,(1)沼泽化草甸0~20 cm深度土壤含水量为122.7%~280.7%,1号~6号采样地土壤含水量都显著高于距乱海子湖泊最远的7号采样地,冻胀丘0~20 cm深度的土壤含水量为160.4%~203.4%,2号~6号采样地冻胀丘0~20 cm深度土壤含水量无明显差异,冻胀丘上土壤含水量显著低于其周边的沼泽化草甸;(2)在乱海子湿地中,共记录了40种维管束植物,其中,有莎草科植物7种,禾本科植物7种,其它双子叶植物26种,以莎草科植物占绝对优势,尤其在沼泽化草甸中,除了7号采样地,莎草科植物的重要值都大于97%;(3)冻胀丘上的物种丰富度、Pielou均匀度和Shannon-Wiener物种多样性指数都高于其周围的沼泽化草甸,尤其是物种丰富度,冻胀丘上的平均物种丰富度为11.8种,而其周围的沼泽化草甸的平均物种丰富度仅为6.57种,随着土壤水分含量减少,冻胀丘植物群落的Shannon-Wiener物种多样性指数变化很小,沼泽化草甸的则波动变化;(4)随着土壤水分含量的减少,冻胀丘和沼泽化草甸植物群落的地上部分生物量增大,冻胀丘植物群落根系生物量波动增加,而沼泽化草甸的则波动减小。  相似文献   

16.
高寒草甸草地退化对土壤水热性质的影响及其环境效应   总被引:2,自引:2,他引:0  
尤全刚  薛娴  彭飞  董斯扬 《中国沙漠》2015,35(5):1183-1192
青藏高原高寒草甸草地的大面积退化,将改变浅层土壤的水热性质,影响地表水热交换,甚至导致区域生态环境的变化。本文通过系统分析典型原生高寒草甸与中度退化高寒草甸的植物群落特征、地上地下生物量和土壤理化特征的差异,研究高寒草甸草地退化对土壤水热性质的影响及其环境效应。结果表明:随着高寒草甸草地退化,植被覆盖度显著降低(p<0.01),适应旱生、深根系的杂草侵入适应湿润生境、浅根系的以莎草科植物为主的原生植被,生物多样性显著增加(p<0.01);草毡表层(0~10 cm)地下生物量显著减少(p<0.01),30~50 cm地下生物量显著增加(p<0.01)。草毡表层变薄降低了土壤容重的垂向异质性,使表层土壤容重显著增加(p<0.01),土壤颗粒显著变粗(p<0.01)。受浅层土壤有机质降低和土壤容重增加的影响,中度退化高寒草甸土壤的持水量和饱和导水率降低,土壤导热率升高。高寒草甸草地植被退化,土壤持水量、饱和导水率降低和导热率增加将加速地表水热交换,对高寒草甸草地退化和下伏多年冻土消融都可能是正反馈。  相似文献   

17.
雅鲁藏布江源头区的植被及其地理分布特征   总被引:5,自引:1,他引:4  
雅鲁藏布江源头区是国家级重要生态功能区,该区域自然背景资料极为缺乏。2002—06和2002—11,结合遥感影像数据,对源头区主要河谷典型地理环境位点植被进行了2次地面踏勘。结果表明:源头区主要植被类型有高寒草原、高寒草甸、高寒灌丛以及高寒垫状植物和流石坡植物。高寒草原类型主要有紫花针茅(Stipa pur purea)草原、青藏苔草(Carex moorcroftii)草原、固沙草(Orinus thoroldii)草原、藏白蒿(Artemisia younghusbandii)草原、藏沙蒿(Artemisia weiibyi)草原。高寒草甸主要类型有高山嵩草(Kobresia pygmaea)草甸、藏北嵩草(Kobresia littledalei)、三角草(Trikeraia hookeri)草甸。高寒灌丛的主要建群种有小叶金露梅(Potentilla parvifolia)、金露梅(Potentilla fruticosa)和变色锦鸡儿(Caragana versicolor)。在雪线附近有由多种高寒植物组成的垫状植物群落和流石坡稀疏植物。对群落的物种组成,分布区的土壤、水分等生态要素以及植被地理格局进行了概括性描述。  相似文献   

18.
青藏高原东缘红原地区三种不同草甸土壤活性碳特征   总被引:2,自引:0,他引:2  
张伟  张宏 《山地学报》2008,26(2):205-211
采用野外调查和室内分析结合的方法研究了青藏高原东部高寒草甸土壤活性碳含量特征,结果表明,在选取的浅丘山地灌丛、浅丘山地草甸、以及丘前阶地草甸三块样地中,活性碳沿土壤剖面整体呈下降趋势,中间有不同程度的波动.浅丘山地草甸土壤活性碳含量变化于8.19~17.41 mg,/g,浅丘山地灌丛变化于8.66~17.62mg/,g,丘前阶地草甸变化于9.63~17.68 me/g,浅丘山地草甸变化幅度为52.96%>浅丘山地灌丛(50.85%)>丘前阶地草甸(45.53%),三者间差异不显著.有机碳活度最大值都不是出现在最表层,浅丘山地草甸最高值为,0.395,出现在10~15 cm;浅丘山地灌丛和丘前阶地草甸最高值分别为0.407和0.435,出现在25~30 cm.  相似文献   

19.
退牧还草工程是国家为改善草原生态环境和促进牧区经济持续发展而实行的一项战略性工程,禁牧和休牧措施是其主要措施。以藏北高寒草原申扎区域的退牧还草工程为研究对象,分别选取禁牧围栏样地、休牧围栏样地和围栏外的一块自由放牧样地,比较分析这三种人为干扰下的放牧样地的生物量及其碳氮磷含量的特征。结果表明:休牧样地地上和地下生物量分别为35.69 g/m2和237.11 g/m2,均显著高于禁牧样地(22.48 g/m2和151.22 g/m2)和自由放牧样地(25.27g/m2和96.37 g/m2)。植物中碳氮磷含量,地上部分禁牧样地含碳量最高,植物氮、磷含量自由放牧样地最高;地下部分碳、氮含量差异不明显,P含量自由放牧最高。说明植物生物量大小与植物体内碳氮磷元素含量大小无相关关系。对于禁牧样地,在长期围栏封育的同时,应适当的添加P元素或N、P元素;而休牧样地,在短期围栏封育时,可添加适当的N元素。  相似文献   

20.
放牧对高寒草甸地表特征和土壤物理性状的影响   总被引:10,自引:1,他引:10  
在中国科学院海北高寒草甸生态系统定位站地区,选择五种处于不同放牧强度的高寒草甸为研究对象,进行放牧对高寒草甸植被演替规律和土壤对放牧压力的响应过程研究,为合理利用和提高草地生产力提供科学依据。结果表明:随着放牧强度的增加,高寒草甸地上生物量呈急剧下降趋势,由禾草草甸的646.24 g/m2下降到小嵩草草甸的328.16 g/m2,容重逐渐减小;在小嵩草草甸阶段地表逐渐出现塌陷和裂缝,0~10 cm土层中根土体积比逐渐变大;土壤的质地类型发生变化,由禾草草甸粘壤土转变为壤质粘土;放牧强度对牧草返青开始时间和生长期都没有影响,但在重牧处理时,非生长季地温降低程度很明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号