首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
— The mechanical behaviour of Bentheim sandstone, a homogeneous quartz-rich sandstone with porosity of 22.8%, was investigated by triaxial compression tests conducted on dry samples. At confining pressures up to 35 MPa, the failure mode was characterized by a typical brittle deformation regime, as the samples showed dilatancy and failed by strain softening and brittle faulting. Previous studies have shown that the mechanical behaviour and failure mode of brittle porous granular rocks are governed by the time-dependent growth of microcracks. We analyse this process using the “Pore Crack Model” based on fracture mechanics analysis. It is consistent with the microstructure of porous granular rocks since it considers the growth of axial cracks from cylindrical holes in two dimensions. These cracks grow when their stress intensity factors reach the subcritical crack growth limit. Interaction between neighbouring cracks is introduced by calculating the stress intensity factor as the sum of two terms: a component for an isolated crack and an interaction term computed using the method of successive approximations. It depends on crack length, pore radius, pore density, and applied stresses. The simulation of crack growth from cylindrical holes, associated with a failure criterion based on the coalescence of interacting cracks, is used to compare the theoretical stress at the onset of dilatancy and at macroscopic rupture to the experimental determined values. Our approach gives theoretical results in good agreement with experimental data when microstructural parameters consistent with observations are introduced.  相似文献   

2.
Deformation of rock: A pressure-sensitive,dilatant material   总被引:5,自引:0,他引:5  
  相似文献   

3.
Analytical models are provided that describe how the elastic compliance, electrical conductivity, and fluid‐flow permeability of rocks depend on stress and fluid pressure. In order to explain published laboratory data on how seismic velocities and electrical conductivity vary in sandstones and granites, the models require a population of cracks to be present in a possibly porous host phase. The central objective is to obtain a consistent mean‐field analytical model that shows how each modeled rock property depends on the nature of the crack population. The crack populations are described by a crack density, a probability distribution for the crack apertures and radii, and the averaged orientation of the cracks. The possibly anisotropic nature of the elasticity, conductivity, and permeability tensors is allowed for; however, only the isotropic limit is used when comparing to laboratory data. For the transport properties of conductivity and permeability, the percolation effect of the crack population linking up to form a connected path across a sample is modeled. However, this effect is important only in crystalline rock where the host phase has very small conductivity and permeability. In general, the importance of the crack population to the transport properties increases as the host phase becomes less conductive and less permeable.  相似文献   

4.
中地壳断层带内发现的接近静岩压力的高压流体能够合理解释汶川MS8.0级地震断层的高角度逆冲滑动, 而高压流体的产生与断层带的微裂隙愈合紧密相关.利用熔融盐固体介质三轴高温高压实验系统,我们采用含水和烘干的Carrara大理岩样品开展了微裂隙愈合实验,研究中地壳断层带内高压流体的形成条件.实验分为三类:A类、A+B类和A+B+C类,其中A阶段实验在室温条件下将样品压裂,形成一系列共轭破裂面,B阶段实验在600℃、围压700 MPa和应变速率10-6s-1条件下愈合了A阶段破碎的样品,实验样品从以碎裂变形为主向以韧性变形为主转变,C阶段实验通过快速降低轴压模拟一个扩容过程,再以相同实验条件重新加载样品,通过比较实验样品强度来检验样品的愈合程度.样品显微结构和实验样品强度表明,动态重结晶作用能够愈合微裂隙和孔隙,水能促进矿物的动态重结晶作用,较高的水含量和较大的应变有利于微裂隙和孔隙的愈合,从而有利于高压流体的形成.  相似文献   

5.
— Pressure-induced variations in pore geometry were studied on dry- and fluid- saturated samples by means of electrical impedance spectroscopy and permeability measurements. Hydrostatic pressures (up to 120 MPa) and uniaxial pressures (up to failure) were applied. Hydrostatic pressures reduce the aspect ratio of cracks and thus cause a decrease of permeability and electrical bulk conductivity. The opposite was observed in uniaxial pressure experiments where new cracks were formed and consequently permeability and electrical conductivity were increased. More specific informations of these generated observations were derived from the interpretation of the frequency dispersion of the complex electrical conductivity. This least-squares-refinement considers electrochemical interactions between the fluid pore electrolyte and the inner surface of the sample, thus providing informations on the pore geometry and pressure-induced variations. Consequently changes in aspect ratio, size and geometry of the pore system can be detected by means of impedance spectroscopy.  相似文献   

6.
Electrical measurements are an important and integrated component of geophysical investigations connected with environmental problems. As a result of an analysis of the electrical conductivity, basic experiments on sandstones at frequencies below 10 kHz show that the complex behaviour of conductivity is caused exclusively by a complex interface conductivity. Its value is determined mainly by the internal rock interface to porosity ratio, the composition of the pore fluid and connected matrix-water interactions resulting in a specific microstructure of the interface. Therefore, it can be expected that the interface region of a soil or rock material is very sensitive to changes in composition caused by contamination. Contaminated sandstone and clay samples were investigated using a low-frequency measurement system. The investigations are directed at the influence of different contaminants and their concentration. Results show that the complex electrical conductivity (real and imaginary parts) is influenced by properties of the pore-filling contaminant. This influence results in a change of the level of both parts and the shape of their frequency dependence. The imaginary part in particular seems to provide important secondary information; in some cases this part alone allows a differentiation of the various contaminants. The different behaviour of various rock types shows that the effects observed are the result of interactions between pore fluid properties and the internal pore surface structure.  相似文献   

7.
蒋海昆  张流等 《地震地质》2001,23(3):471-474
在岩石高温高压三轴变形实验中达到岩石的极限强度之后,岩样的宏观几何变形显著增加,几何变形成为表现应力与真实应力之间出现较大偏 差的主要原因。针对此问题,假定岩样从圆柱体变形成为桶形体,在一些理想假设前提下,给出了高温高压条件下三轴实验中,当试析出现半延性-延性行为时,应力曲线的一种修正方法。  相似文献   

8.
赵吉坤 《地震学刊》2010,(2):141-146
为了研究复杂应力条件下的深基坑岩石细观破坏问题,本构方程采用由应变空间导出的弹塑性损伤细观力学模型,借助有限元计算方法,实现了岩石三维破裂过程的数值模拟。采用细观破坏单元网格消去法,实现了有限元模拟裂纹扩展过程;利用位移加载来实现岩石逐渐破裂过程;数值模拟灰岩单轴拉伸及压缩破坏试验、双轴拉伸破坏试验和三轴受压破坏试验,得到其非线性应力—应变曲线和不同载荷阶段弹塑性损伤破裂演化系列图像;分析细观非均匀性对岩石宏观破裂力学行为的影响。研究表明,在复杂应力条件下,随着围压增大,峰值抗压强度明显提高,塑性变形明显增大。本文研究对深基坑施工过程中预防工程事故的发生具有借鉴意义。  相似文献   

9.
致密砂岩气藏具有裂缝发育和有效应力高的特征,研究不同有效压力下孔、裂隙介质地震波传播特征,有利于地震解释与地下储层的识别.但是前人的研究较少考虑岩石内部微观孔隙结构特征与孔隙、裂隙间流体流动的关系.本文首先通过选取四川盆地典型致密砂岩岩样,在不同有效压力下对岩石样本进行超声波实验测量.然后基于实验测得的纵、横波速度进行裂隙参数反演,得到不同有效压力下致密砂岩样本的裂隙孔隙度.再将裂隙孔隙度和样本岩石物理参数代入双重孔隙介质模型,模拟得到不同有效压力下饱水致密砂岩样本纵横波速度频散和衰减的变化规律.结果表明模型预测的速度频散曲线与纵波速度实验测量结果能够较好的吻合.最后统计分析了致密砂岩裂隙参数,得到了致密砂岩储层裂隙参数随有效压力及孔隙度变化特征.依据实际岩石物理参数建立模型,其裂隙参数三维拟合结果能够较好描述致密砂岩裂隙结构与孔隙度、应力的关联,可为实际地震勘探中预测储层裂缝性质提供基础依据.  相似文献   

10.
岩石破裂过程中电阻率变化机理的探讨   总被引:31,自引:4,他引:31       下载免费PDF全文
受压岩石在破裂过程中,视电阻率会出现明显的变化,其异常形态与实验条件有很大的关系. 实验中对磁铁石英岩样品施加了单轴压缩,岩石的破裂经反复加载和卸载实现,并在岩样的裂隙中注入了食盐溶液. 在实验的各阶段,对样品的主剖面重建出一系列内部真电阻率分布的图像,揭示了介质内的微细结构,从而探讨了视电阻率变化的原因. 实验发现,岩石中裂隙的存在及所含液体的饱和状态,是岩石在主破裂前控制电阻率变化的两个最重要的因素;低应力状态属常态导电过程,孔隙度的变化是主要因素;高应力状态属裂隙表面导电机制,随着破裂面在岩体内部出现,水和孔隙有了完全贯通的平面,多种导电机制都得以发挥作用. 此外,体导电结构的变化在宏观上表现为各向异性和图样有序性的增强.  相似文献   

11.
深部隧道围岩分区破裂颗粒流模拟研究   总被引:2,自引:1,他引:1       下载免费PDF全文
深部岩体处于"三高"环境下,表现出不同于浅埋岩体的性质,其变形破裂规律更为复杂(分区破裂、片帮、塑性流动、岩爆等),为了准确描绘深部隧道围岩变形破裂规律,采用PFC从微观角度研究深部岩体的宏观响应。研究发现:随着隧道埋深增加,压力增大,由浅部围岩表面塑性破坏变为深部围岩破裂扩展,破裂区域呈交替分区破裂向深部发展,破裂区的间距与岩性和埋深有关;从横断面看,拱腰先出现破裂,然后拱脚出现破裂,最后贯通形成破裂区;若围岩表面施加外力,破裂区域减小,分区向深部移动,因此预应力锚杆有效地改善了围岩承载特性;研究结果与模型试验吻合,符合深部岩体卸荷作用下的变形破坏规律。结论可为深部岩体工程设计施工提供参考。  相似文献   

12.
13.
Differential effective medium theory has been applied to determine the elastic properties of porous media. The ordinary differential equations for bulk and shear moduli are coupled and it is more difficult to obtain accurate analytical formulae about the moduli of dry porous rock. In this paper, in order to decouple these equations we first substitute an analytical approximation for the dry‐rock modulus ratio into the differential equation and derive analytical solutions of the bulk and shear moduli for dry rock with three specific pore shapes: spherical pores, needle‐shaped pores and penny‐shaped cracks. Then, the validity of the analytical approximations is tested by integrating the full differential effective medium equation numerically. The analytical formulae give good estimates of the numerical results over the whole porosity range for the cases of the three given pore shapes. These analytical formulae can be further simplified under the assumption of small porosity. The simplified formulae for spherical pores are the same as Mackenzie's equations. The analytical formulae are relatively easy to analyse the relationship between the elastic moduli and porosity or pore shapes and can be used to invert some rock parameters such as porosity or pore aspect ratio. The predictions of the analytical formulae for experimental data show that the formulae for penny‐shaped cracks are suitable to estimate the elastic properties of micro‐crack rock such as granite, they can be used to estimate the crack aspect ratio while the crack porosity is known and also to estimate the crack porosity evolution with pressure if the crack aspect ratio is given.  相似文献   

14.
程卫  巴晶  马汝鹏  张琳 《地球物理学报》1954,63(12):4517-4527
地质成因和构造/热应力导致地壳岩石中的孔隙结构(裂隙和粒间孔)的变化.影响岩石黏弹性的因素包括压力、孔隙度、孔隙中包含的流体和孔隙几何形状等.相对于岩石中的硬孔隙,岩石黏弹性(衰减和频散)受软孔隙(裂隙)的影响更大.本文选取三块白云岩样本,进行了不同围压和流体条件下的超声波实验测量.利用CPEM(Cracks and Pores Effective Medium,裂隙和孔隙有效介质)模型获得了岩石高、低频极限的弹性模量,并通过Zener体(标准线性体)模型将CPEM模型拓展到全频带而得到CPEM-Zener模型,用该模型拟合岩石松弛和非松弛状态下的实验数据,本文得到平均裂隙纵横比和裂隙孔隙度以及纵波速度和品质因子随频率的变化关系.结果表明,饱水岩石的平均裂隙纵横比和裂隙孔隙度均高于饱油岩石,随着压差(围压和孔隙压力的差值)的增加,饱油岩石中的裂隙首先闭合.并且压差在70 MPa以内时,随着压差增大,岩石的平均裂隙纵横比和裂隙孔隙度在饱水和饱油时的差值增大,此时流体类型对于岩石裂隙的影响越来越显著,此外,对饱水岩石,平均裂隙纵横比随压差增加而增大,这可能是由于岩石中纵横比较小的裂隙会随压差增大而逐渐趋于闭合.在饱水和饱油岩石中,裂隙孔隙度和裂隙密度都随着压差增加而减小.通过对裂隙密度和压差的关系进行指数拟合,本文获得压差趋于0时的裂隙密度,且裂隙密度随孔隙度增大而增大,增大速率随压差增加而降低.针对饱水和饱油的白云岩样本,CPEM-Zener模型预测的纵波频散随压差增大而减小,此变化趋势和实验测得的逆品质因子随压差的变化关系基本一致,由此进一步验证了模型的实用性.本研究对岩石的孔隙结构和黏弹性分析以及声波测井、地震勘探的现场应用有指导意义.  相似文献   

15.
Propagation through stress-aligned fluid-filled cracks and other inclusions have been claimed to be the cause of azimuthal anisotropy observed in the crust and upper mantle.This paper examines the behavior of seismic waves attenuation caused by the internal structure of rock mass,and in particular,the internal geometry of the distribution of fluid-filled openings Systematic research on the effect of crack parameters,such as crack density,crack aspect ratio(the ratio of crack thickness to crack diameter),pore fluid properties(particularly pore fluid velocity),VP/VS ratio of the matrix material and seismic wave frequency on attenuation anisotropy has been conducted based on Hudson’s crack theory.The result shows that the crack density,aspect ratio,material filler,seismic wave frequency,and P-wave and shear wave velocity in the background of rock mass,and especially frequency has great effect on attenuation curves.Numerical research can help us know the effect of crack parameters and is a good supplement for laboratory modeling.However,attenuation is less well understood because of the great sensitivity of attenuation to details of the internal geometry.Some small changes in the characteristics of pore fluid viscosity,pore fluids containing gas and liquid phases and pore fluids containing clay can each alter attenuation coefficients by orders of magnitude.Some parameters controlling attenuation are therefore necessary to make reasonable estimations,and anisotropic attenuation is worth studying further.  相似文献   

16.
In order to investigate the dynamic mechanical properties of amphibolite and sericite-quartz schist under confi ning pressure, two rocks are subjected to impact loadings with different strain rates and confi ning pressures by using split Hopkinson pressure bar equipment with a confi ning pressure device. Based on the experimental results, the stress-strain curves are analyzed and the effects of confi ning pressure and strain rates on the dynamic compressive strength, peak strain and failure mode are summarized. The results show that:(1) The characteristics of two rocks in the ascent stage of the stressstrain curve are basically the same, but in the descent stage, the rocks gradually show plastic deformation characteristics as the confi ning pressure increases.(2) The dynamic compressive strength and peak strain of two rocks increase as the strain rate increases and the confi ning pressure effects are obvious.(3) Due to the effect of confi ning pressure, the normal stress on the damage surface of the rock increases correspondingly, the bearing capacity of the crack friction exceeds the material cohesion and the slippage of the fractured rock is controlled, which all lead to the compression and shear failure mode of rock. The theoretical analysis and experimental methods to study the dynamic failure mode and other related characteristics of rock are useful in developing standards for engineering practice.  相似文献   

17.
Crack widths and rock temperatures were monitored on an andestic bedrock cliff in the summit area of the Daisetsu Mountains, Hokkaido, northern Japan. Sequential data recorded the gradual widening of a crack to the point of critical crack extension, which resulted in catastrophic rock breakage. The data indicate that a combination of liquid water in?ltration into crack tip and subsequent freezing is the most signi?cant factor contributing to critical crack extension. The recorded sub‐critical crack movements involved a number of minor crack extensions and contractions, the timing of which correlates well with the magnitude of the reconstructed thermal stresses at the crack tip derived from thermal deformation of the plate‐shaped rock fragment. Larger crack extensions occurred when stress at the crack tip exceeded a threshold value, possibly re?ecting the control of rock fracture mechanics by which cracks are thought to propagate when the stress intensity factor at the crack tip exceeds the threshold values for stress corrosion cracking and the fracture toughness of the material. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
An up-to-date laboratory investigation complex for testing rock samples under controlled uniaxial and triaxial compression is designed. A wide range of loading modes of samples allows one to simulate various natural seismic regimes. The complex is equipped with systems intended for measuring and recording service and physical parameters, namely, axial, uniform, and pore pressure, axial and radial deformation, velocities of longitudinal waves along 16 travel paths, and waveforms of separate acoustic events, recorded by 16 sensors. The system ensures the continuous recording of the acoustic emission stream. Data of all measuring systems are synchronized with time. The rock samples are tested in the automatic mode, which can be optionally corrected during experiments. The experimental results are stored in a single database, which contains both raw and processed data (loading history, catalogs and bulletins of acoustic events, 3D graphic visualizations of pressure-wave velocity distributions in the sample volume, etc.). The application of the complex for the laboratory modeling of the seismic regime is illustrated by a number of practical examples.  相似文献   

19.
Electrical conductivity and seismic velocity are studied for plausible pore geometries in the Earth's interior for reliable quantitative analysis of experimental data such as seismic tomography and magnetotelluric explorations. Electrical conductivity of a two-phase system with equilibrium, interfacial energy-controlled phase geometry is calculated for the dihedral angles θ = 40°–100° that are typical for rock–aqueous fluid and θ = 20°–60° for rock–melt systems of lower crust and upper mantle for the case of tetrakaidecahedral grains. Electrical conductivity vs. seismic velocity correlations are acquired by combining of the simulated electrical conductivities with the seismic velocity calculated with the help of equilibrium geometry model Takei [Takei, Y., Effect of pore geometry on VP/VS: From equilibrium geometry to crack. J. Geophys. Res. 107 (2002): 10.1029/2001JB000522.] for the same pore geometries. The results show that electrical conductivity gradually decreases reaching zero when seismic velocities reach seismic velocities of intact rock for rock–melt systems, while for rock–aqueous fluid systems with θ  60° conductivity drops to zero at velocities up to 10% smaller. This can explain the seeming discrepancy of the low seismic velocity region, attributed to the high fluid fraction, and the low electrical conductivity of the same region, which is sometimes faced at collocated electromagnetic and seismic experiments.  相似文献   

20.
Summary In order to gain an insight into the effects of natural influences in iron-ore fields, complex studies were made including lattice distorsions, the magnetic behaviour and electrical conductivity, elastic data and the stress-strain state. That all together was tested on iron-ores from Kirunavaara (Sweden).

Mitt. Nr.: 313.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号