首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea ice drift is mainly controlled by ocean currents, local wind, and internal ice stress. Information on sea ice motion, especially in situ synchronous observation of an ice velocity, a current velocity, and a wind speed, is of great significance to identify ice drift characteristics. A sea ice substitute, the so-called "modelled ice", which is made by polypropylene material with a density similar to Bohai Sea ice, is used to complete a free drift experiment in the open sea. The trajectories of isolated modelled ice, currents and wind in the Bohai Sea during non-frozen and frozen periods are obtained. The results show that the currents play a major role while the wind plays a minor role in the free drift of isolated modelled ice when the wind is mild in the Bohai Sea. The modelled ice drift is significantly affected by the ocean current and wind based on the ice–current–wind relationship established by a multiple linear regression. The modelled ice velocity calculated by the multiple linear regression is close to that of the in situ observation, the magnitude of the error between the calculated and observed ice velocities is less than12.05%, and the velocity direction error is less than 6.21°. Thus, the ice velocity can be estimated based on the observed current velocity and wind speed when the in situ observed ice velocity is missing. And the modelled ice of same thickness with a smaller density is more sensitive to the current velocity and the wind speed changes. In addition, the modelled ice drift characteristics are shown to be close to those of the real sea ice, which indicates that the modelled ice can be used as a good substitute of real ice for in situ observation of the free ice drift in the open sea, which helps solve time availability, safety and logistics problems related to in situ observation on real ice.  相似文献   

2.
根据2007年辽宁葫芦岛气象站资料分析了葫芦岛地区海陆风变化特征,并用MM5v3模式模拟了典型日的海陆风风场变化和热内边界层位温场结构变化。结果表明:海风和陆风出现的频率有明显的季节性变化。冬季陆风较多,春夏海风较多,春季、秋季易形成海陆风;海风起止时间夏季长冬季短,陆风起止时间秋冬季较夏季长;典型海陆风日中,海风造成陆地湿度变大,海风风速大于陆风风速;通过海风的数值模拟,海风由生成到成熟海岸吹向内陆其厚度可增厚到2 000 m以上,伸向内陆距离可到40 km;热内边界层向内陆呈舌状分布,海岸边界层高度在200-300 m之间,抛物面高度随着向内陆延伸的距离增加而升高。热内边界层最高达1 800 m。  相似文献   

3.
龙口的海风及其影响   总被引:4,自引:0,他引:4  
本文运用龙口气象站近5年自记风资料及实测探空资料,分析了龙口海风的生消规律、海风强度、空间结构及海风生成后对温、湿度的影响。同时为分析海风环流对大气污染物的影响。本文提出了一个简单地计算热内边界层的方法。  相似文献   

4.
ModellingofthebarotropicprocessesintheBohaiSea¥HuangDaji;ChenZongyongandSuJilan(SecondIngtituteofOceanography,StateOceanicAdm...  相似文献   

5.
Current meter data from the coastal ocean at Sydney, south‐eastern Australia, were analysed to seek evidence of a response to the prevailing summer sea breeze. A response to the sea breeze was found in the currents. This is significant since the magnitude of the sea breeze was small by comparison with winds associated with large‐scale pressure systems and the East Australian Current. Responses were determined by analysing short periods (3–5 days) of sea breeze activity as opposed to the whole 2‐month data set. The correlations between the alongshore nearshore diurnal‐period currents and the local wind stress during the sea breeze periods were significantly higher than the correlations during non‐sea‐breeze periods. Despite the stronger correlations the sea breeze could only account for around one‐quarter of the variance in the diurnal‐period currents. However, the detection of the response to the sea breeze is significant since the sea breeze has never previously been identified as a process for forcing alongshore nearshore currents on this shelf.  相似文献   

6.
青岛局地风特征的分析   总被引:8,自引:0,他引:8  
本文根据位于胶州湾东岸的青岛沧口和流亭两机场气象台和唠山区气象台资料及现场实验资料对胶州湾东岸的海陆风气候特征,来自胶州湾与来自南面黄海水域的两支海陆风相互作用及其对沧口地区的影响,崂山西坡下坡风的气候特征及影响进行了分析。文中还提出了一种根据常规气象观测资料估算海陆风发生频率的方法。  相似文献   

7.
The homogeneous residual circulation in Hauraki Gulf arising from the tides, steady winds, and oceanic inflows is considered by use of a depth‐averaged 2‐dimensional numerical model. Vertical current structure of the wind‐driven circulation is derived by using the computed wind‐induced sea surface slopes, the wind stress, and a prescribed vertical eddy viscosity. Tidal residual circulation is weak, less than 0.01 ms‐1 over most of the Gulf. The response of the Gulf to wind‐forcing indicates a preference for north‐west/south‐east directed winds, the flow through the Gulf being more than 3 times as strong as for winds from other directions. Surface currents are mainly in the wind direction, but subsurface currents reveal closed circulation cells in near‐coastal areas. Simple oceanic inflows give rise to water movements which penetrate to the inner part of the Gulf.  相似文献   

8.
In this paper the seasonal variation and structural characteristics of the sea/ land breeze in the northern coastal area of" Shandong Peninsula are studied in two ways: one is the analysis of the observed wind data, and the other is numerical simulation and experiments. Firstly, the hour to hour wind data through the year 1984 at Longkou Meteorological Station and Yantai Oceanographic Station are analysed through energy spectra and hodograph. It is revealed from the analysed results that the effects of the sea/ land breeze in the area are notable in spring, summer and fall, especially in May. However, in winter the effects of sea / land breeze are not obvious. because the cold noitherly is prevailing. Secondly, a two-dimensional non- linear model of primitive equations is used to study the sea / land breeze circulation in May in the area. The results of numerical simulation consist basically with the analysed results of the observed sea / land breeze. A reasonable theoretical structure of the sea / land  相似文献   

9.
The solution of the linear three dimensional hydrodynamic equations describing wind induced flow in a sea region is developed using the Galerkin method through the vertical. A basis set of B-splines is shown to have some computational advantages over a set of eigenfunctions (vertical modes). However, a basis set of modes leads to a system of essentially uncoupled equations and current profiles can be interpreted in terms of vertical modes.The influence of wind induced surface turbulence and turbulence at depth due to tidal motion upon current profiles in both deep (260 m) and shallow (35 m) sea regions is examined. The variation in the angle between surface current and surface wind for different viscosity profiles, and the effect of bottom friction upon it is considered.The magnitude and direction of the surface current is significantly influenced by surface eddy viscosity. However, viscosity at depth due to tidal motion also has an important effect upon the surface current.The time evolution of current structure following the sudden onset of a wind is examined using the modal model. Calculations show that the rate of damping of the internal modes is inversely proportional to the square of the depth. Consequently wind induced current structure takes longer to reach a steady state in a deep sea region than a shallow area.The influence of sea surface elevation gradients in determining the direction of surface current is also considered.  相似文献   

10.
It is widely recognized that the geostrophic flows computed by the dynamic method of Bjerknes and collaborators represent the actual currents pretty faithfully. However, what would be the reason that a geostrophic current derived by only retaining the terms of Coriolis and the pressure gradient forces in the hydrodynamical equations agrees so closely with the actual ocean current of the same area? In this attempt was assumed an imaginative ocean of homogeneous water and uniform depth on a rotating earth but with neither continent nor islands. The average wind distribution observed along several meridians over the Pacific Ocean was assumed to prevail in this sea throughout with no variation in east-west direction. Taking the curvature of the earth surface, rotation of the earth, Coriolis forces, pressure gradients and the horizontal and vertical eddy viscosity into account, the equations of motion were solved and velocity components were derived for all latitudes. A comparison of the east-west components thus obtained with the corresponding components of the geostrophic flows, reveals that they agree well in higher latitudes but there appears a remarkable disagreement in lower latitudes. This means that a special care must be taken in replacing the existing currents with the geostrophic flows at lower latitudes.  相似文献   

11.
A Leeway-Trace model was established for the traceability analysis of drifting objects at sea. The model was based on the Leeway model which is a Monte Carlo-based ensemble trajectory model, and a method of realistic traceability analysis was proposed in this study by using virtual spatiotemporal drift trajectory prediction. Here,measured data from a drifting buoy observation experiment in the northern South China Sea in April 2019,combined with surface current data obtained from the finite volu...  相似文献   

12.
The contribution of the steady drift force on a floating structure may arise from waves, wind and current. The component of the wave drift force may be due to the second-order diffraction theory or potential effect and may be due to the velocity squared force or viscous effect. The presence of current in waves increases the effect of the viscous force. The expressions for these terms for a vertical cylinder are derived and their relative importance is investigated. Plots are presented showing the regions where the viscous or potential drift force predominates. Experiments were conducted with both small and large diameter cylinders. The mean drift forces obtained in these tests are compared with the theory.  相似文献   

13.
The response of near-surface current profiles to wind and random surface waves are studied based on the approach of Jenkins [1989. The use of a wave prediction model for driving a near surface current model. Dtsch. Hydrogr. Z. 42, 134–149] and Tang et al. [2007. Observation and modeling of surface currents on the Grand Banks: a study of the wave effects on surface currents. J. Geophys. Res. 112, C10025, doi:10.1029/2006JC004028]. Analytic steady solutions are presented for wave-modified Ekman equations resulting from Stokes drift, wind input and wave dissipation for a depth-independent constant eddy viscosity coefficient and one that varies linearly with depth. The parameters involved in the solutions can be determined by the two-dimensional wavenumber spectrum of ocean waves, wind speed, the Coriolis parameter and the densities of air and water, and the solutions reduce to those of Lewis and Belcher [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans. 37, 313–351] when only the effects of Stokes drift are included. As illustrative examples, for a fully developed wind-generated sea with different wind speeds, wave-modified current profiles are calculated and compared with the classical Ekman theory and Lewis and Belcher's [2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans 37, 313–351] modification by using the Donelan and Pierson [1987. Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92, 4971–5029] wavenumber spectrum, the WAM wave model formulation for wind input energy to waves, and wave energy dissipation converted to currents. Illustrative examples for a fully developed sea and the comparisons between observations and the theoretical predictions demonstrate that the effects of the random surface waves on the classical Ekman current are important, as they change qualitatively the nature of the Ekman layer. But the effects of the wind input and wave dissipation on surface current are small, relative to the impact of the Stokes drift.  相似文献   

14.
Residual currents induced by the tidal current flowing over a rotating ridge, which is infinitely elongated in they-direction and the width of which is so large that the nonlinear effect is weak enough, have been analysed theoretically. The currents are restrained by Stokes and Ekman layers which are given through a constant viscosity. This study shows that the direction of the cross-isobath residual current just above the sea floor varies with the value off *(=Coriolis parameter/tide frequency), that the along-isobath residual current forms a clockwise circulation around the rotating ridge and that it is stronger asf * grows larger.  相似文献   

15.
16.
青岛近海夏季海风特征及其预报方法研究   总被引:3,自引:1,他引:2  
采用2003~2006年7~9月青岛以及沿海地区自动站资料、探空资料对青岛近海海风进行了统计分析.平均而言,青岛近海7~8月海风发生频率为30%~35%,9月海风发生频率为25%;海风开始时间平均为10:00~12:00,结束时间可以持续到18:00~19:00;海风在垂直方向上厚度为500~600 m左右.青岛近海海风的发生与否取决于青岛上空低层925 hPa风速大小、低层大气稳定度、海陆温差以及海平面气压差四方面的综合效应.通常,925 hPa风速达到8 m/s,系统风较强时不利于海风建立;当低层大气不稳定时,有利于触发海风环流的建立;海陆温差达到4 ℃以上时,青岛近海易出现海风;此外,当地转风为离岸风时,海阳站或日照站与青岛本站08:00时海平面气压差>1 hPa时,当日一般不会出现海风.综合以上预报因子及其指标,通过建立逻辑回归模型,初步实现了夏季青岛近海海风能否发生的客观预报,并在2007年举行的国际帆船赛期间得到了应用.  相似文献   

17.
海南岛地形对局地海风环流结构影响的数值模拟   总被引:3,自引:1,他引:2  
本文利用WRF模式对2014年5月25日发生在海南的一次海风过程进行了数值模拟,通过地形敏感性试验,探讨了海南岛地形对局地海风环流结构的影响。结果表明:控制试验(CNTL)海风于15时左右达到强盛。无地形试验(FLAT)中,水平方向上,海风持续时间缩短,南、北、西向海风向内陆传播距离变短1~5 km,海风强度减弱1 m/s左右,海风动能及辐合强度在沿海地区及西南山区存在大值衰减区;垂直方向上,海风碰撞位置向西、北方向移动,高空回流高度降低,海风厚度减小,垂直环流强度减弱2~6 m2/s2,海风锋附近的垂直速度减小10 cm/s以上。谷风对海风同相叠加作用的消失也使得海风强度减弱。其主要影响机制为:在动力方面,由山脉屏障作用引起的海风强迫抬升、绕流等增强作用消失;在热力方面,地表吸收净辐射减少,导致其向大气中释放的感热、潜热通量等各项均减少约9%,这种改变造成了海陆之间温度、气压差的减小,最终造成了海风的减弱。此外,通过两组削山试验,发现海拔高度降低区辐合范围、强度及动能均减小,同时海风垂直环流结构也相应发生改变,其中移去黎母山脉(RMLM)对海风环流结构的影响大于移去五指山脉(RMWZ)。  相似文献   

18.
The heat balance of the upper ocean under a land and sea breeze was investigated based on observations of sea water temperature in the upper 300 m layer and heat flux across the sea surface at a fixed station in Sagami Bay (3510N, 13925E) during two periods of two days in August 1980 and three days in August 1981. During both periods, a typical land and sea breeze of 4–6 m sec–1 at maximum prevailed in the observation area. Large diurnal variation of sea surface temperature with a maximum peak around noon LST was observed during both periods (the daily value of the range was 0.9C and 2.5C in 1980, and 1.2C, 1.5C and 1.7C in 1981). It was found that these large temperature variations were caused by diurnal variation of the wind speed which dropped to 0–3 m sec–1 at noon when the strongest insolation (–270 Wm–2) penetrated the sea and at midnight in association with alternations of the land breeze and the sea breeze. On the other hand, vertical mixing of the sea water caused by the wind stress and/or convection due to cooling at night extended down only to the surface 10 m layer. Horizontal heat advection was negligibly small. Therefore the local time change of the heat content in the upper 10 m water column was affected mainly by the heat flux across the air-sea interface which was estimated from data on radiation fluxes measured directly on board and latent and sensible heat fluxes calculated by the aerodynamic bulk method. The water temperature below the 10 m layer also varied with time and the temperature variation in the thermocline (20–50 m depth) was frequently larger than that of the sea surface temperature. However, the variation in the upper 10 m layer was little influenced by that below the layer.  相似文献   

19.
An iterative frequency domain method of analysis is presented for determining the response behaviour of Guyed Offshore Towers to low-frequency, second-order wave drift forces generated in a random sea environment. For the response analysis, the tower is idealized as a shear beam with a rotational spring at the bottom support. The guylines are replaced by a non-linear spring. The second-order drift force is considered to be proportional to the square of the wave elevation and is simulated using a drift force coefficient and the time history of a slowly varying wave envelope in random sea. The responses due to drift forces are obtained in frequency domain by incorporating the non-linearities produced due to non-linear guy lines. An example problem is solved under different random sea states to compare the response behaviour of the tower obtained by the second-order wave force, the first-order wave force and a combination of the two.  相似文献   

20.
Diurnal wind (DW) and nonlinear interaction between inertial and tidal currents near the Xisha Islands of the South China Sea (SCS) during the passage of Typhoon Conson (2010) are investigated using observational data and a damped slab model. It is found that the DWs, which are dominated by clockwise wind components, are prominent at our observational site. The DWs increase after the passage of the typhoon from 1 to about 4 m/s, which may be due to the decrease of the sea surface temperature caused by the passage of the typhoon. Kinetic energy spectra and bicoherence methods reveal nonlinear interactions between the inertial currents and the 2MK3 tidal constituent at our observational site. The slab damped model reproduces the inertial currents successfully induced by the total observed winds, and it is shown that the inertial currents induced by DWs are positively proportional to the DWs speed. Even though the observed inertial currents are distinct, the proportion of inertial currents induced by DWs to those induced by the total observed winds is just 0.7%/4% before/after the passage of typhoon. This shows that the inertial currents induced by the DWs are unimportant near the Xisha Islands during the typhoon season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号