首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a numerical simulation procedure of moored ship motions due to initial attack of large-scaled tsunamis and investigate the effects on the motions and mooring loads. The effect of methodology on selection of tsunami wave components and of the drag forces are then considered by using the numerical simulation method, applying to several case studies for LNG-carrier. Large ship motions and excessive mooring loads beyond the safe working loads are induced by the resonant tsunami wave components in the sway and surge motions and drag forces.  相似文献   

2.
The two-dimensional problem of wave transformation by, and motions of, moored floating objects is solved numerically as a boundary value problem by direct use of Green's identity formula for a potential function. The cross-sectional shape of the floating object, the bottom configuration and the mooring arrangements may be all arbitrary. For a given incident wave, the three modes of body motion, the wave system and mooring forces are all solved at the same time. A laboratory experiment is conducted to verify the theory. Generally good agreements between the theory and experiments are obtained as long as the viscous damping due to flow separation is small. A numerical experiment indicates that a conventional sluck mooring is to worsen the wave attenuation by a floating breakwater and that a properly arranged elastic mooring can considerably improve the wave attenuation by a floating breakwater.  相似文献   

3.
A three-dimensional general mathematical hydroelastic model dealing with the problem of wave interaction with a floating and a submerged flexible structure is developed based on small amplitude wave theory and linear structural response. The horizontal floating and submerged flexible structures are modelled with a thin plate theory. The linearized long wave equations based on shallow water approximations are derived and results are compared. Three-dimensional Green’s functions are derived using fundamental source potentials in water of finite and infinite depths. The expansion formulae associated with orthogonal mode-coupling relations are derived based on the application of Fourier transform in finite and infinite depths in case of finite width in three-dimensions. The usefulness of the expansion formula is demonstrated by analysing a physical problem of surface gravity wave interaction with a moored finite floating elastic plate in the presence of a finite submerged flexible membrane in three-dimensions. The numerical accuracy of the method is demonstrated by computing the complex values of reflected wave amplitudes for different modes of oscillation and mooring stiffness. Further, the effect of compressive force and modes of oscillations on a free oscillation hydroelastic waves in a closed channel of finite width and length for floating and submerged elastic plate system is analysed.  相似文献   

4.
The dynamically coupled interaction between the hull of a floating platform and its risers and tendons plays an important role in the global motions of the platform and the tension loads in the tendons and risers. This is an especially critical design issue in the frequency ranges outside the wave frequencies of significant energy content. This study examines the importance of this coupled dynamic interaction and the effectiveness of different approaches for their prediction. A numerical code, named COUPLE, has been developed for computing the motions and tensions pertaining to a moored floating structure positioned and restrained by its mooring/tendon and riser systems. In this study the experimentally measured motions of a mini-TLP are compared with those computed using COUPLE and alternative predictions based upon quasi-static analysis. The comparisons confirm that COUPLE is able to predict the dynamic interaction between the hull and its tendon and riser systems while the related quasi-static analysis fails. The comparisons also show that wave loads on the mini-TLP can be accurately predicted using the Morison equation provided that the wavelength of incident waves is much longer than the diameters of the columns and pontoons and that the wave kinematics used are sufficiently accurate. Although these findings are based upon the case of a mini-TLP, they are expected to be relevant to a wide range of floating or compliant deepwater structures.  相似文献   

5.
波浪作用下方箱-水平板浮式防波堤时域水动力分析   总被引:1,自引:0,他引:1  
在线性化势流理论范围内求解方箱-水平板浮式防波堤的波浪绕射和辐射问题,从时域角度分析了浮式防波堤的水动力特性.采用格林函数法将速度势定解问题的控制微分方程变换成边界上的积分方程进行数值求解,浮式防波堤的运动方程采用四阶Runge-Kutta方法求解.对不同层数水平板的浮式防波堤的波浪透射系数、运动响应和锚链受力进行了计算分析,结果表明方箱相对宽度对方箱-水平板浮式防波堤的波浪透射作用有重要的影响,透射系数随着方箱相对宽度的增加而减小.对于方箱加二层水平板的浮式防波堤,在本研究的计算条件下,当方箱相对宽度从0.110增加至0.295时,透射系数从0.88减小至0.30.水平板有利于增加浮式防波堤对波浪的衰减作用,但随着水平板层数从0增加至2,这种波浪衰减作用增加的程度趋弱.方箱-水平板的浮式防波堤的运动量小于单一方箱防波堤的运动量.与此对应,方箱-水平板防波堤的锚链受力小于单一方箱防波堤的锚链受力.  相似文献   

6.
《Applied Ocean Research》2005,27(4-5):187-208
In the present paper, the performance of a moored floating breakwater under the action of normal incident waves is investigated in the frequency domain. A three-dimensional hydrodynamic model of the floating body is coupled with a static and dynamic model of the mooring lines, using an iterative procedure. The stiffness coefficients of the mooring lines in six degrees of freedom of the floating breakwater are derived based on the differential changes of mooring lines' tensions caused by the static motions of the floating body. The model of the moored floating system is compared with experimental and numerical results of other investigators. An extensive parametric study is performed to investigate the effect of different configurations (length of mooring lines and draft) on the performance of the moored floating breakwater. The draft of the floating breakwater is changed through the appropriate modification of mooring lines' length. Numerical results demonstrate the effects of the wave characteristics and mooring lines' conditions (slack-taut). The existence of ‘optimum’ configuration of the moored floating breakwater in terms of wave elevation coefficients and mooring lines' forces is clearly demonstrated, through a decision framework.  相似文献   

7.
《Coastal Engineering》2006,53(10):799-815
Using the volume of fluid (VOF) method, a numerical model is developed to estimate the nonlinear dynamics of a pontoon type moored submerged breakwater under wave action and the forces acting on the mooring lines, for both the vertical and inclined mooring alignments. The model is developed for a two-dimensional wave field in a vertical plane. The finite displacements of the breakwater such as sway, heave and roll in a very small time step are considered and the numerical grid cells intersected by the breakwater surfaces for changing its position due to wave action are treated using the concept of porous body model. Also, two-dimensional experimental studies are carried out to investigate the performance of the proposed model. The comparison of the computed and measured results reveals that the developed numerical model can reproduce well the dynamics of the floating body and the mooring line forces.  相似文献   

8.
针对非通航孔桥墩,研发了一种自适应拦截网防船舶撞击装置,主要由系泊大浮体、系泊锚链和固定锚、自适应小浮筒、拦截网、恒阻力缆绳以及触发钢索所组成。阐述了该防撞装置设计原理,即偏航船舶撞击该防撞装置,小浮筒会带动拦截网自适应地从水平状态竖起展开,包裹住来撞船首,再通过相连浮体的运动阻力和恒阻力缆绳来吸收船舶动能,拦截住船舶,保护非通航孔桥墩安全。随后介绍在福建平潭海峡大桥引桥附近海域实施的实船撞击自适应拦截网防撞装置的大型试验,试验结果显示:自适应拦截网成功升起,船舶被安全拦截,从而实验证实了设计原理与设计方案的可行性和可靠性。最后,采用大型水动力分析软件AQWA对防撞装置拦截船舶过程进行数值模拟,模拟结果与实验结果基本一致,说明了数值仿真具有较好的计算精度和可靠性,能够为该防撞装置的结构设计与优化提供重要的参考。  相似文献   

9.
为配合我国南海重要岛礁陆域拓展及海洋资源开发,提出了一种基于新型单桩缓冲系泊与波浪能装置(WEC)集成的具有潮汐自适应特性的模块化浮体结构系统。基于三维势流理论,综合考虑浮体模块与单桩缓冲结构的相对运动及相关波浪能装置的机械耦合机理,重点研究了新型单模块浮式结构系统在典型海况下的动力响应特征,获得了单桩缓冲系泊系统的初步优化设计参数,并对极端海况进行安全校核,提出了优化自存策略。数值结果表明,此带有波浪能装置的新型单桩缓冲系泊系统,不仅可以有效地降低浮体模块的运动响应幅值并改善平台舒适度,还可以获得可观的发电量,而且在极端海况下,可以通过调整阻尼装置系统来稳定浮体模块的运动。  相似文献   

10.
波浪作用下刚性框架浮体及其锚绳运动数值模拟精度分析   总被引:2,自引:1,他引:1  
由小尺度刚性杆件构成的复杂结构近年来多用于海洋平台建设和海洋监测浮标制作以及海洋增养殖人工浮鱼礁的设计。采用有限单元法和集中质量点法建立波浪作用下刚性框架浮体及其锚绳运动数值模型,探讨空间单元划分、时间离散步长、数据保存格式对刚性框架浮体和柔性锚绳运动模拟精度的影响,分别给出此三者之间的匹配关系。研究结果表明:框架浮体的单元划分可依据是否出水给定,单元的划分比建议取0.05;锚绳的单元划分与其上端连接的浮体浮力有关,当锚绳的拉力主要由上端浮体浮力产生时锚绳单元的划分影响较小,当锚绳的拉力主要由波浪力产生时锚绳单元的划分比建议取0.02;空间单元划分与时间离散步长存在匹配关系,通过减小时间步长来追求数值模拟精度时必须同时考虑保存运动物理量截断误差的影响。  相似文献   

11.
Liu  Ya-qiong  Ren  Nian-xin  Ou  Jin-ping 《中国海洋工程》2022,36(6):880-893

The present work reports a Hybrid Modular Floating Structure (HMFS) system with typical malfunction conditions. The effects of both fractured mooring lines and failed connectors on main hydrodynamic responses (mooring line tensions, module motions, connector loads and wave power production) of the HMFS system under typical sea conditions are comparatively investigated. The results indicate that the mooring tension distribution, certain module motions (surge, sway and yaw) and connector loads (Mz) are significantly influenced by mooring line fractures. The adjacent mooring line of the fractured line on the upstream side suffers the largest tension among the remaining mooring lines, and the case with two fractured mooring lines in the same group on the upstream side is the most dangerous among all cases of two-line failures in view of mooring line tensions, module motions and connector loads. Therefore, one emergency strategy with appropriate relaxation of a proper mooring line has been proposed and proved effective to reduce the risk of more progressive mooring line fractures. In addition, connector failures substantially affect certain module motions (heave and pitch), certain connector loads (Fz and My) and wave power production. The present work can be helpful and instructive for studies on malfunction conditions of modular floating structure (MFS) systems.

  相似文献   

12.
Floating wind turbine has been the highlight in offshore wind industry lately. There has been great effort on developing highly sophisticated numerical model to better understand its hydrodynamic behaviour. A engineering-practical method to study the nonlinear wave effects on floating wind turbine has been recently developed. Based on the method established, the focus of this paper is to quantify the wave nonlinearity effect due to nonlinear wave kinematics by comparing the structural responses of floating wind turbine when exposed to irregular linear Airy wave and fully nonlinear wave. Critical responses and fatigue damage are studied in operational conditions and short-term extreme values are predicted in extreme conditions respectively. In the operational condition, wind effects are dominating the mean value and standard deviation of most responses except floater heave motion. The fatigue damage at the tower base is dominated by wind effects. The fatigue damage for the mooring line is more influenced by wind effects for conditions with small wave and wave effects for conditions with large wave. The wave nonlinearity effect becomes significant for surge and mooring line tension for large waves while floater heave, pitch motion, tower base bending moment and pontoon axial force are less sensitive to the nonlinear wave effect. In the extreme condition, linear wave theory underestimates wave elevation, floater surge motion and mooring line tension compared with fully nonlinear wave theory while quite close results are predicted for other responses.  相似文献   

13.
The real-time estimation of second-order difference-frequency wave forces using real-time random-wave measurement is developed for the FF (feed-forward) control based dynamic positioning of floating offshore vessels and platforms. The efficacy of the developed FF control scheme is validated by using the in-house hull-mooring-riser-thruster fully coupled time-domain computer simulation program through comparisons with the results by the conventional feedback-control-only case. The feedback (FB) control intends to reduce the accumulated position-excursion error, meanwhile the proposed feed-forward control compensates the controllable slowly-varying wave loads by activating thrusters in advance based on the real-time estimation of the second-order difference-frequency wave loadings using the real-time signal of random incident wave. The real-time estimation of the second-order difference-frequency wave loads is done by using the double-convolution integral with pre-calculated QIF (quadratic impulse function). The numerical DP system is successfully implemented with the FF control algorithm in the vessel-thruster fully coupled time-domain simulation program. The developed schemes are applied to a turret-moored FPSO (floating production storage offloading) with six dynamic-positioning (DP) azimuth thrusters in two non-collinear storm conditions. It is clearly demonstrated that the developed FF control scheme performs much better than the conventional feedback-control-only case. The corresponding reductions in horizontal offsets, motions, mooring tensions, and fuel consumptions by using the developed FF control scheme are underscored.  相似文献   

14.
针对具有天然岛礁庇护或人工庇护的温和海洋环境,提出了一种混合模块大型浮式结构系统,即水动力性能更优的半潜式模块作为内侧主模块,消波效果更优的箱式模块作为外侧浮式防波模块和波浪能发电模块.波浪能装置利用外侧箱式模块与内侧半潜式模块的相对纵摇运动进行发电.考虑模块间多体水动力耦合效应和连接器机械耦合效应,基于ANSYS-AQWA程序重点研究了典型海况下混合5模块串联浮式结构系统的动力响应特征.结果表明,外侧箱式模块和波浪能发电装置能有效减弱内侧半潜式主模块运动响应、连接器动力响应和系泊缆绳张力,并且提供一定的能源供给.所得研究成果可为模块化超大型浮式结构系统的防波—发电集成系统设计提供参考.  相似文献   

15.
This paper investigates the hydrodynamic performance of a cylindrical-dual or rectangular-single pontoon floating breakwater using the numerical method and experimental study. The numerical simulation work is based on the multi-physics computational fluid dynamics (CFD) code and an innovative full-structured dynamic grid method applied to update the three-degree-of-freedom (3-DOF) rigid structure motions. As a time-marching scheme, the trapezoid analogue integral method is used to update the time integration combined with remeshing at each time step. The application of full-structured mesh elements can prevent grids distortion or deformation caused by large-scale movement and improve the stability of calculation. In movable regions, each moving zone is specified with particular motion modes (sway, heave and roll). A series of experimental studies are carried out to validate the performance of the floating body and verify the accuracy of the proposed numerical model. The results are systematically assessed in terms of wave coefficients, mooring line forces, velocity streamlines and the 3-DOF motions of the floating breakwater. When compared with the wave coefficient solutions, excellent agreements are achieved between the computed and experimental data, except in the vicinity of resonant frequency. The velocity streamlines and wave profile movement in the fluid field can also be reproduced using this numerical model.  相似文献   

16.
A computer program is developed for hull/mooring/riser coupled dynamic analysis of a tanker-based turret-moored FPSO (Floating Production Storage and Offloading) in waves, winds, and currents. In this computer program, the floating body is modeled as a rigid body with six degrees of freedom. The first- and second-order wave forces, added mass, and radiation damping at various yaw angles are calculated from the second-order diffraction/radiation panel program WAMIT. The wind and current forces for various yaw angles of FPSO are modeled following the empirical method suggested by OCIMF (Oil Company International Marine Forum).

The mooring/riser dynamics are modeled using a rod theory and finite element method (FEM), with the governing equations described in a generalized coordinate system. The dynamics of hull, mooring lines, and risers are solved simultaneously at each time step in a combined matrix for the specified connection condition. For illustration, semi-taut chain-steel wire-chain mooring lines and steel catenary risers are employed and their effects on global FPSO hull motions are investigated. To better understand the physics related to the motion characteristics of a turret-moored FPSO, the role of various hydrodynamic contributions is analyzed and assessed including the effects of hull and mooring/riser viscous damping, second-order difference-frequency wave-force quadratic transfer functions, and yaw-angle dependent wave forces and hydrodynamic coefficients. To see the effects of hull and mooring/riser coupling and mooring/riser damping more clearly, the case with no drag forces on those slender members is also investigated. The numerical results are compared with MARIN's wave basin experiments.  相似文献   


17.
浮式防波堤充分利用波能在水深方向的分布特性,在满足工程消浪要求的同时对海域水沙交换影响较小,且能够快速布置,在某些实际工程有一定应用前景。为了深入了解波浪作用下浮式防波堤的动力响应,基于OpenFOAM标准求解器olaFlow,在刚体运动求解计算中植入锚链求解模块MOODY(mooring cable dynamics),实现了基于重叠网格方法的浮体运动与锚链受力耦合求解,建立了锚链系泊浮式防波堤动力响应的二维数值模型。利用该数值模型对锚链系泊单方箱浮式防波堤在波浪作用下的透射系数、运动响应、锚链张力进行了模拟,并和相关试验结果进行了比较。结果表明,模型能够准确模拟二维波浪和浮式防波堤的相互作用,并用于三维模型的改进。  相似文献   

18.
19.
The three-dimensional problem of the dynamics of a moored floating object under the action of regular waves is solved numerically as a boundary value problem by use of the finite-infinite element method. The cross-sectional shape of the floating body and the mooring arrangements may all be arbitrary. The mathematical formulations of the problem and procedures of the numerical method are presented in this paper. A corresponding computer program WALOAD has been developed, which is capable of computing wave forces on fixed and floating structures. Numerical computations using this program could give very accurate results, even though rather coarse meshes were used. The program is easy to use and is readily applicable in many practical situations.  相似文献   

20.
The present research aims at clarifying the effects of freak wave on the motion and dynamic responses of a semisubmersible. To reveal the effects of mooring stiffness, two mooring systems were employed in the model tests and time-domain simulations. The 6-DOF motion responses and mooring tensions have been measured and the 3-DOF motions of fairleads were calculated as well. From the time series, trajectories and statistics information, the interactions between the freak wave and the semisubmersible have been demonstrated and the effects of mooring stiffness have been identified. The shortage of numerical simulations based on 3D potential flow theory is presented. Results show that the freak wave is likely to cause large horizontal motions for soft mooring system and to result in extremely large mooring tensions for tight mooring system. Therefore, the freak wave is a real threat for the marine structure, which needs to be carefully considered at design stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号