首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a gridless particle method, the MPS (Moving Particle Semi-implicit) method has proven useful in a wide variety of engineering applications including free-surface hydrodynamic flows. Despite its wide range of applicability, the MPS method suffers from some shortcomings such as non-conservation of momentum and spurious pressure fluctuation. By introducing new formulations for the pressure gradient and a new formulation of the source term of the Poisson Pressure Equation (PPE), and by allowing a slight compressibility, we have proposed modified MPS methods for the prediction of wave impact pressure on a coastal structure. The improved performance of the modified methods is shown through the simulation of numerous wave impact problems (including the impacts by a dam break flow, a flip-through and two cases of slightly-breaking waves) in comparison with the experimental data.  相似文献   

2.
王丽珠  蒋勤  张长宽 《海岸工程》2019,38(3):165-175
为了提高粒子法即移动粒子半隐式法(Moving Particle Semi-implicit method, MPS法)中自由表面粒子的识别精度,降低由粒子误判引起的非物理压力振荡,对MPS法的自由表面识别方法进行了改进。在原始自由表面判别标准的基础上增加辅助判别条件,提出2种新的自由表面判别法即压力判别法和填充率判别法。利用对静水问题和溃坝流问题的模拟计算,对比分析选用不同自由表面判别法得到的数值计算结果,揭示粒子识别精度对压力计算的重要影响。研究结果表明:新提出的压力判别法和填充率判别法可以有效地提高自由表面粒子的识别精度,减轻压力计算中的非物理压力振荡现象,从而提高压力计算的稳定性以及整体数值计算的模拟精度。  相似文献   

3.
Numerical ocean modelling is computationally very demanding. Traditionally, the hydrostatic approximation has been applied to reduce the computational burden. This approximation is valid in large scale studies with coarse grid resolution. With faster computers and gradually smaller grid sizes, we may expect that more studies will be performed with non-hydrostatic ocean models. In recent papers several methods for including non-hydrostatic pressure in σ-coordinate models have been suggested. In this paper the sensitivity of the non-hydrostatic pressure field, the velocity fields, and the density fields to changes in the method for computing non-hydrostatic pressure in σ-coordinate ocean models is addressed.The first test case used involves the propagation and breaking of an internal wave at an incline in a tank. The other test case concerns tidally driven flow over a sill in a stratified fjord. The results from our numerical exercises suggest that the velocity and density fields are very robust to the model choices investigated here. The differences between the model results are of the same order as the uncertainty due to the internal pressure gradient error, and they are smaller than an estimate of the uncertainty due to subgrid scale closure.  相似文献   

4.
Reservoir pressures within the Bullwinkle minibasin (Green Canyon 65, Gulf of Mexico continental slope) increase at a hydrostatic gradient whereas pressures predicted from porosity within mudstones bounding these reservoirs increase at a lithostatic gradient: they are equal at a depth 1/3 of the way down from the crest of the structure. Two- and three-dimensional steady-state flow models demonstrate that bowl-shaped structures will have lower pressures than equivalent two-dimensional structures and that if a low permeability salt layer underlies the basin, the pressure is reduced. We conclude that at Bullwinkle, pressure is reduced due to an underlying salt body and the bowl-shape of the basin. A geometric approach to predict sandstone pressure is to assume that the reservoir pressure equals the area-weighted average of the mudstone pressure. When the mudstone pressure gradient is constant, as at Bullwinkle, the reservoir pressure equals the mudstone pressure at the average depth (centroid) of the reservoir.  相似文献   

5.
基于Mohr-Coulomb准则的黏弹-塑性海冰动力学本构模型   总被引:10,自引:1,他引:10  
针对中小尺度下海冰动力作用过程中的漂移、重叠和堆积特征,在连续介质力学基础上建立了一个黏弹塑性海冰动力学本构模型.该模型主要包括四部分,即海冰在屈服前的Kelvin Vogit黏弹模型、海冰塑性屈服的Mohr Coulomb准则、屈服后相关联的正交流动法则和影响海冰强度的静水压力.采用黏弹塑性本构模型对规则海域内的海冰堆积过程进行了数值试验,其结果与传统黏塑性模型、改进的黏塑性模型和经典冰坝理论的解析解相符,可合理地模拟海冰堆积的动力过程.为进一步检验该黏弹塑性本构模型的适用性,对渤海海冰的动力过程进行了48h的数值模拟,计算结果与海冰卫星遥感现场观测资料一致.通过与传统的黏塑性和改进的黏塑性模型结果的对比分析,进一步验证了黏弹塑性模型在中小尺度海冰动力学模拟中的可靠性.在以上海冰堆积的数值试验和渤海海冰动力学模拟中均采用了光滑质点流体动力学(SPH)方法.  相似文献   

6.
A new viscoelastic-plastic (VEP) constitutive model for sea ice dynamics was developed based on continuum mechanics. This model consists of four components: Kelvin-Vogit viscoelastic model, Mohr-Coulomb yielding criterion, associated normality flow rule for plastic rehololgy, and hydrostatic pressure. The numerical simulations for ice motion in an idealized rectangular basin were made using smoothed particle hydrodynamics (SPH) method, and compared with the analytical solution as well as those based on the modified viscous plastic(VP) model and static ice jam theory. These simulations show that the new VEP model can simulate ice dynamics accurately. The new constitutive model was further applied to simulate ice dynamics of the Bohai Sea and compared with the traditional VP, and modified VP models. The results of the VEP model are compared better with the satellite remote images, and the simulated ice conditions in the JZ20-2 oil platform area were more reasonable.  相似文献   

7.
By using the modified pseudo-dynamic method for submerged soils this paper explores the seismic stability of seawall for the active condition of earth pressure. Different forces such as seismic active earth pressure, seismic inertia forces of the wall, non-breaking wave pressure, hydrostatic and hydrodynamic pressures are considered in the stability analysis. Limit equilibrium has been used, and expressions for the factor of safety against sliding and overturning mode of failure have been proposed. The proposed methodology overcomes the limitations of existing pseudo-dynamic method for submerged soils. A detailed parametric study has been conducted by varying different parameters and results are presented in the form of design charts for computation of factor of safety against sliding and overturning mode of failures. It was noticed that the influences of soil friction angle, seismic acceleration coefficient, wall inclination and excess pore pressure are significant when compared to the other parameters. The value of factor of safety against the sliding mode of failure is increasing by about 62% when the value of soil frictional angle is increased from 30° to 40°. It was also found that the factor of safety against overturning mode of failure is decreasing by about 22% as the value of excess pore pressure ratio increases from 0 to 0.75. The proposed method with closed-form solutions can be used for the seismic design of seawalls.  相似文献   

8.
Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations.  相似文献   

9.
Laboratory equipment has been built which will measure the permeability and thermal conductivity of deep-sea sediments at their in-situ conditions of hydrostatic pressure, temperature, and void ratio. The apparatus has the capability of uniaxially consolidating a sediment sample to simulate compaction within the sediment column, while exposing the specimen to hydrostatic pressures ranging from atmospheric to 62 MPa and to temperatures from 22 to 220°C. The equipment includes a hypodermic needle mounted vertically through the base of the pressure vessel from which thermal conductivity is determined by the needle probe method. The system also features a combination of dead-weight testers which produces a small hydraulic gradient across the sample and permits the measurement of sediment permeability at large hydrostatic pressures.The physical property data generated from this apparatus will be important in understanding the mechanisms of heat transfer through the ocean floor and in analysing the coupled flow of heat and pore fluid in the vicinity of a heat source, such as a radioactive waste canister, buried in the seabed.  相似文献   

10.
为了研究波浪与抛石潜堤相互作用过程中大自由表面变形和堤内渗流等强非线性紊流运动问题,利用改进的MPS法,建立了模拟波浪与抛石潜堤相互作用的MPS法数值计算模型。模型将抛石潜堤假定为均质多孔介质,采用Drew的二相流运动方程描述多孔介质内外的流体运动;通过在动量方程中增加非线性阻力项,并引入亚粒子尺度紊流模型,模拟波浪与可渗结构物相互作用过程中的紊流运动。选取“U”型管中多孔介质内渗流过程和孤立波与可渗潜堤相互作用两个典型的渗流问题,通过将数值计算结果与理论解和实测值的对比分析,对所提出的MPS法紊流渗流模型的模拟精度进行验证。结果表明:基于改进的MPS法构建的垂向二维紊流渗流模型可以很好地再现“U”型管中多孔介质内渗流以及波浪作用下可渗潜堤内外的复杂流场,显著缓解流-固界面处的压力震荡与粒子分布不均匀问题,实现了较高的模拟精度。  相似文献   

11.
12.
This paper revisits the classic seamount test used in numerous previous studies to evidence the sigma errors of the pressure gradient force (PGF) and their long-term effects on circulation. Two kinds of analysis are developed. We first consider the initial PGF errors. Then, the global level of erroneous kinetic energy is computed along a 180-day simulation. The long-term circulation appears to be better correlated to the initial vorticity errors than to the initial error diagnostics.The original feature of this study is to reconsider the currently admitted idea that Density-Jacobian type PGFs perform better than the primitive sigma formulation discretized in a straightforward way (hereafter Straightforward-Primitive PGF). Errors on the discrete hydrostatic pressure are actually closely related to the way the density field is initialized. If a mass conserving method is preferred to a straightforward initialization, the rectangular integral of the Straightforward-Primitive PGF is likely to be more accurate than the trapezoidal rule usually involved in Density-Jacobian PGFs. Errors on the vorticity field of the Straightforward-Primitive PGF depend on the discretization of the hydrostatic correction term. A modified version of the Straightforward-Primitive PGF is shown to be in better agreement with the concept of bottom torque consistency. The seamount tests show that this so-called Modified-Primitive PGF performs globally better than the current low-order Density-Jacobian PGFs.  相似文献   

13.
本文总结和归纳了已有的台风海面风场模式,按照风场模式物理背景的不同进行了分类.在此基础上,本文选择并建立了一种新的台风海面风场动力诊断模式.首先,利用台风影响范围内某条具有代表性的闭合等压线的拟合方程表示出台风海面气压场,并利用改进的气压场模式和修正的梯度风方程求得台风系统风场,同时还利用宫崎正卫的热带气旋合成风假设建立移行台风风场.然后将两者作权重订正后进行迭加,即得到台风模型风场.该模式考虑了包括台风气压场的非对称性、边界层摩擦效用、气压梯度的切向变化及台风中心移动的影响等多种因素.经过对0519号“龙王”台风的模拟,结果表明本文所建立的台风风场模式可以比较准确的模拟出非圆对称的台风海面气压场和海面风场,较为真实地反映实际台风风场的特征.  相似文献   

14.
The boundary layer characteristics beneath waves transforming on a natural beach are affected by both waves and wave-induced currents, and their predictability is more difficult and challenging than for those observed over a seabed of uniform depth. In this research, a first-order boundary layer model is developed to investigate the characteristics of bottom boundary layers in a wave–current coexisting environment beneath shoaling and breaking waves. The main difference between the present modeling approach and previous methods is in the mathematical formulation for the mean horizontal pressure gradient term in the governing equations for the cross-shore wave-induced currents. This term is obtained from the wave-averaged momentum equation, and its magnitude depends on the balance between the wave excess momentum flux gradient and the hydrostatic pressure gradient due to spatial variations in the wave field of propagating waves and mean water level fluctuations. A turbulence closure scheme is used with a modified low Reynolds number k-ε model. The model was validated with two published experimental datasets for normally incident shoaling and breaking waves over a sloping seabed. For shoaling waves, model results agree well with data for the instantaneous velocity profiles, oscillatory wave amplitudes, and mean velocity profiles. For breaking waves, a good agreement is obtained between model and data for the vertical distribution of mean shear stress. In particular, the model reproduced the local onshore mean flow near the bottom beneath shoaling waves, and the vertically decreasing pattern of mean shear stress beneath breaking waves. These successful demonstrations for wave–current bottom boundary layers are attributed to a novel formulation of the mean pressure gradient incorporated in the present model. The proposed new formulation plays an important role in modeling the boundary layer characteristics beneath shoaling and breaking waves, and ensuring that the present model is applicable to nearshore sediment transport and morphology evolution.  相似文献   

15.
三维自由面流动模拟中GPU并行计算技术   总被引:1,自引:0,他引:1  
MPS(Moving Particle Semi-implicit)法能够有效地处理溃坝、晃荡等自由面大变形流动问题。在三维MPS方法中,粒子数量的急剧增加会导致其计算效率的降低并限制其在大规模流动问题中的应用。基于自主开发的MPS求解器MLParticleSJTU,本文对求解过程中耗时最多的邻居粒子搜寻和泊松方程求解两个模块采用了GPU并行加速,详细探讨了CPU+GPU策略。以三维晃荡和三维溃坝这两种典型的自由面大变形流动为例,比较了CPU+GPU相对于MLParticle-SJTU串行求解时的加速情况,结果表明CPU+GPU在邻居粒子和泊松方程这两个模块中的加速比最高能达到十倍左右。此外,采用CPU+GPU并行能够较准确地模拟溃坝、晃荡等自由面大变形问题。  相似文献   

16.
Guo  Chun-yu  Xu  Pei  Wang  Chao  Kan  Zi 《中国海洋工程》2019,33(5):522-536
When a ship model test is performed in a tank, particularly when the tank is small and the ship model is relatively large, the blockage effect will inevitably occur. With increased ship model scale and speed, the blockage effect becomes more obvious and must be corrected. In this study, the KRISO 3600 TEU Container Ship(KCS) is taken as a model and computational fluid dynamics techniques and ship resistance tests are applied to explore the mechanism and correction method of the blockage effect. By considering the degrees of freedom of the sinkage and trim, the resistance of the ship model is calculated in the infinite domain and for blockage ratios of 1.5%, 1.8%, 2.2%, and3.0%. Through analysis of the free surface, pressure distribution, and flow field around the ship model, the action law of the blockage effect is studied. The Scott formula and mean flow correction formula based on the average cross sectional area are recommended as the main correction methods, and these formulas are improved using a factor for the return flow velocity correction based on comparison of the modified results given by different formulas. This modification method is verified by resistance test data obtained from three ship models with different scale ratios.  相似文献   

17.
A numerical model is developed to predict the onset of local scour below offshore pipelines in steady currents and waves. The scour is assumed to start when the pressure gradient underneath the pipeline exceeds the floatation gradient of the sediments. In this model, the water flow field above the bed is determined by solving the two-dimensional (2-D) Reynolds-averaged Navier–Stokes equations with a k-ω turbulence closure. The seepage flow below the seabed is calculated by solving the Darcy's law (Laplace's equation) with known pressure distribution along the common boundaries of the flow domains-seabed. The numerical method used for both the turbulent flow around the pipeline and Darcy's flow in the seabed is a fractional finite element method. The average pressure gradient along the buried pipe surface is employed in the evaluation of onset condition with a calibration coefficient. The numerical model is validated against experimental data available in literature. A unified onset condition for steady currents and waves is proposed. Influences of flow parameters, including water depth, embedment depth, boundary layer thickness, Reynolds number (Re) and Keuleagan–Carpenter (KC) number, on the pressure drop coefficient over the pipeline are studied systematically.  相似文献   

18.
A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.  相似文献   

19.
Modifications of integral bubble and jet models including the pressure force are proposed. Exact solutions are found for the modified model of a stationary convective jet from a point source of buoyancy and momentum. The exact solutions are compared against analytical solutions of the integral models for a stationary jet that are based on the approximation of the vertical boundary layer. It is found that the modified integral models of convective jets retain the power-law dependences on the altitude for the vertical velocity and buoyancy obtained in classical models. For a buoyant jet in a neutrally stratified atmosphere, the inclusion of the pressure force increases the amplitude of buoyancy and decreases the amplitude of vertical velocity. The total amplitude change is about 10%. It is shown that in this model there is a dynamic invariant expressing the law of a uniform distribution of the potential and kinetic energy along the jet axis. For a spontaneous jet rising in an unstably stratified atmosphere, the inclusion of the pressure force retains the amplitude of buoyancy and increases the amplitude of vertical velocity by about 15%. It is shown that in the model of a spontaneous jet there is a dynamic invariant expressing the law of a uniform distribution of the available potential and kinetic energy along the jet axis. The results are of interest for the problems of anthropogenic pollution diffusion in the air and water environments and the formulation of models for statistical and stochastic ensembles of thermals in a mass-flux parameterization of turbulent moments.  相似文献   

20.
The role of waterjet pump is to generate thrust by increasing the flow head. Details of the flow inside waterjet pump are important when pump performance is of the main interest. However, in waterjet self-propulsion, pump induced effects are of the main interest rather than the details of the flow inside the pump. This permits simplification of pump models when using numerical methods for simulating the flow. In order to find a robust and yet accurate pump model suitable for Computational Fluid Dynamics based methods, models of different sophistication level are studied in this paper. First, a Sliding Mesh approach, which is capable of capturing the flow details, is validated against a set of cavitation tunnel measurements. Then a series of simpler models, i.e. Moving Reference Frame technique and three different body-force models, are studied and their results are compared to the ones obtained from the Sliding Mesh approach. The results indicate that one of the body-force models which takes the guide vanes as well as the impeller induced flow swirl into account has the best compromise between the robustness and accuracy among the investigated pump models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号