首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Rayleigh wave dispersion data usually appear in the form of multimodal spectra for a layered model structure. The number of dispersion modal curves depends on the number of layers in the model. The measured dispersion velocities from the frequency–wavenumber (F–K) space, however, may not represent the true phase velocities of the fundamental-mode dispersion curve, but apparent phase velocities. The present study discusses how multimode curves are generated in the multichannel analysis of surface waves (MASW) method and the cause of the apparent velocity produced by the F–K method. Results from a field trial demonstrate that apparent phase velocities fail to reveal thin layers with low velocities. A better agreement of the inverted model with the geotechnical record is obtained by using the data points extracted from the fundamental-mode curve of the MASW spectral image.  相似文献   

2.
声波测井中的相速度与群速度讨论(英文)   总被引:3,自引:2,他引:1  
声波测井过程中获取的速度到底是相速度还是群速度,目前仍存在一些争议,本文从理论分析和数值模拟的角度,使用三种模型对这一问题进行了研究。首先,构造一个相速度与群速度可调的稳态声波传播模型——不同声速的两个平面波叠加模型,利用慢度时间相关(STC)方法提取声波波速,数值模拟结果表明,无论相速度较大或是群速度较大,STC方法提取出来的波速都是相速度;其次,通过频散分析和割线积分得到刚性壁圆柱流体模型中的频散曲线与分波波形,使用STC方法得到的速度与相速度的频散曲线吻合较好,而直接读取波至获得的速度与群速度的频散曲线趋势一致;最后,利用频散分析和实轴积分方法,获得偶极子在慢地层中激发的模式及全波波形,得到的结果再次验证了刚性壁圆柱流体模型中的结论。  相似文献   

3.
Love wave dispersion in various semi-infinite media consisting of inhomogeneous layers is discussed. The phase and group velocities are computed when shear wave velocity and density in each inhomogeneous layer are varying exponentially with depth. At the beginning one or two inhomogeneous layers over a homogeneous semi-infinite medium are considered. The dispersion results for these structures are compared with those for their approximations with homogeneous layers. Comparisons show that differences of phase and group velocities for the original models from those for their approximated models (i) increase with the increase of wave number and (ii) are larger for group velocity than for phase velocity. The difference is approximately proportional to the rate of change of parameters in the layers. Finally, dispersion curves are obtained for model IP3MC, which consists of many inhomogeneous and homogeneous layers over a homogeneous semi-infinite medium. The results are compared with the observed group velocity data across the Indian Peninsula.  相似文献   

4.
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ‘‘jumping’’ appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P–SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.  相似文献   

5.
We present a methodology for determining the elastic properties of the shallow crust from inversion of surface wave dispersion characteristics through a fully nonlinear procedure. Using volcanic tremor data recorded by a small-aperture seismic array on Mount Etna, we measured the surface waves dispersion curves with the multiple signal classification technique. The large number of measurements allows the determination of an a priori probability density function without the need of making any assumption about the uncertainties on the observations. Using this information, we successively conducted the inversion of phase velocities using a probabilistic approach. Using a wave-number integration method, we calculated the predicted dispersion function for thousands of 1-D models through a systematic grid search investigation of shear-wave velocities in individual layers. We joined this set of theoretical dispersion curves to the experimental probability density function (PDF), thus obtaining the desired structural model in terms of an a posteriori PDF of model parameters. This process allowed the representation of the objective function, showing the non-uniqueness of the solutions and providing a quantitative view of the uncertainties associated with the estimation of each parameter. We then compared the solution with the surface wave group velocities derived from diffuse noise Green’s functions calculated at pairs of widely spaced (~5–10 km) stations. In their gross features, results from the two different approaches are comparable, and are in turn consistent with the models presented in several earlier studies.  相似文献   

6.
Rayleigh-wave phase velocities have been utilized to determine shear (S)-wave velocities in near-surface geophysics since early 1980s. One of the key steps is to calculate theoretical dispersion curves of an earth model. When the S-wave velocity of the surface layer is higher than some of the layers below, however, the Rayleigh-wave phase velocity in a high-frequency range calculated by existing algorithms approaches the lowest S-wave velocity among the layers above the half-space, rather than a value related to the S-wave velocity of the surface layer. According to our numerical modeling results based on wave equation, trends of the Rayleigh-wave dispersive energy approach about a 91% of the S-wave velocity of the surface layer at a high-frequency range when its wavelength is much shorter than the thickness of the surface layer, which cannot be fitted by a dispersion curve calculated by existing algorithms. We propose a method to calculate Rayleigh-wave phase velocities of models with a high-velocity surface layer by considering its penetration depth. We build a substituted model that only contains the layer with the lowest S-wave velocity among the layers above the half-space and the layers above it. We use the substituted model to replace the original model to calculate phase velocities when the Rayleigh-wave wavelength is not long enough to penetrate the lowest S-wave velocity layer. Several synthetic models are used to verify fitness between the dispersion curve calculated by our proposed method and the trend of the highest dispersive energy. Examples of inversion also demonstrate high accuracy of using our method as the forward calculation method during the inversions.  相似文献   

7.
We propose a new quantitative determination of shear wave velocities for distinct geological units in the Bohemian Massif, Czech Republic (Central Europe). The phase velocities of fundamental Love wave modes are measured along two long profiles (~200 km) crossing three major geological units and one rift-like structure of the studied region. We have developed a modified version of the classical multiple filtering technique for the frequency-time analysis and we apply it to two-station phase velocity estimation. Tests of both the analysis and inversion are provided. Seismograms of three Aegean Sea earthquakes are analyzed. One of the two profiles is further divided into four shorter sub-profiles. The long profiles yield smooth dispersion curves; while the curves of the sub-profiles have complicated shapes. Dispersion curve undulations are interpreted as period-dependent apparent velocity anomalies caused both by different backazimuths of surface wave propagation and by surface wave mode coupling. An appropriate backazimuth of propagation is found for each period, and the dispersion curves are corrected for this true propagation direction. Both the curves for the long and short profiles are inverted for a 1D shear wave velocity model of the crust. Subsurface shear wave velocities are found to be around 2.9 km/s for all four studied sub-profiles. Two of the profiles crossing the older Moldanubian and Teplá-Barrandian units are characterized by higher velocities of 3.8 km/s in the upper crust while for the Saxothuringian unit we find the velocity slightly lower, around 3.6 km/s at the same depths. We obtain an indication of a shear wave low velocity zone above Moho in the Moldanubian and Teplá-Barrandian units. The area of the Eger Rift (Teplá-Barrandian–Saxothuringian unit contact) is significantly different from all other three units. Low upper crust velocities suggest sedimentary and volcanic filling of the rift as well as fluid activity causing the earthquake swarms. Higher velocities in the lower crust together with weak or even missing Moho implies the upper mantle updoming.  相似文献   

8.
裸眼井中弹性波传播的非对称模式的数值研究   总被引:6,自引:0,他引:6       下载免费PDF全文
本文从数值上研究了裸眼井中弹性波传播的非对称模式,给出了合成微地震图和导波(弯曲波)的频散曲线,发现在“硬”地层和“软”地层的井中,导波都是高度频散的,其最大相速度等于地层的横波速度,其截止频率低于对称模式的伪瑞利波的截止频率;在低频(2-3kHz)和长源距(3-4m)的条件下,由非对称的声源(如声偶极子)所产生的微地震图中,初至信号是以横波速度传播的,而以纵波速度传播的信号被抑制。本文的结果对研制横波速度测井仪是有意义的。  相似文献   

9.
槽波地震勘探利用槽波的频散特性反演煤层的结构特征,故理论频散曲线的计算是一个重要方面.使用水平层状模型假设下的面波频散曲线计算方法能够计算煤层厚度恒定模型地震槽波频散曲线;但当煤层厚度变化时该方法不再适用.基于前人水平层状均匀介质模型的面波理论频散曲线计算方法,对于含煤三层模型,本文发展了煤层厚度变化情况下的地震槽波理论频散曲线计算方法,并使用该方法计算分析了不同厚度函数模型的频散曲线形态特征.研究表明:与稳定厚度煤层相比,煤层厚度变化使得地震槽波群速度成为与频率及传播射线在水平面投影路径相关的二元函数;射线路径上煤层厚度的变化使得频散曲线在群速度方向上压缩,群速度变化范围变小,且使处于最小值位置的埃里相群速度增大;而煤层厚度的线性变化模型频散曲线只与射线首、尾处的煤层厚度有关,与煤层厚度恒定模型相比,曲线形态不发生改变;煤层厚度呈非线性变化时,频散曲线形态上可能发生改变.  相似文献   

10.
Surface wave dispersion is studied to obtain the 1-D average velocity structure of the crust in the Korean Peninsula by inverting group- and phase-velocities jointly. Group velocities of short-period Rayleigh and Love waves are obtained from cross-correlations of seismic noise. Multiple-filter analysis is used to extract the group velocities at periods between 0.5 and 20 s. Phase velocities of Rayleigh waves in 10- and 50-s periods are obtained by applying the two-station method to teleseismic data. Dispersion curves of all group and phase velocities are jointly inverted for the 1-D average model of the Korean Peninsula. The resultant model from surface wave analysis can be used as an initial model for numerical modeling of observations of North Korean events for a velocity model appropriated to the Korean Peninsula. The iterative process is focused especially on the surface sedimentary layer in the numerical modeling. The final model, modified by numerical modeling from the initial model, indicates that the crust shear wave velocity increases with depth from 2.16 km/s for a 2-km-thick surface sedimentary layer to 3.79 km/s at a Moho depth of 33 km, and the upper mantle has a velocity of 4.70 km/s.  相似文献   

11.
李建平 《地震学报》2018,40(1):24-31
浅层地震反射波法和面波方法是两种相互独立发展的地震勘探方法,在各自的数据采集和处理中,对方都是作为干扰信号而存在. 本文利用浅层地震反射资料中被视为干扰的面波信号,通过成熟的多道面波勘探技术处理浅层地震反射资料,在频率-波数域中提取多阶振型面波的频散曲线,并基于该曲线反演浅地表S波速度结构. 这种方法充分开发利用了已有数据,无需单独的面波数据采集系统,同时为解释浅层地震反射资料提供了额外的信息约束. 结果表明:浅层地震反射资料中可提取出可靠的多阶振型面波频散曲线,并能给出稳定的反演结果,同时,面波反演的多解性可以通过高阶振型反演得以进一步约束;低速层的存在是观测频散曲线出现振型跳跃或呈“之”字形回折的必要条件而非充分条件.   相似文献   

12.
In-seam seismic survey currently is a hot geophysical exploration technology used for the prediction of coal seam thickness in China. Many studies have investigated the relationship between the group velocity of channel wave at certain frequency and the actual thickness of exposed coal beds. But these results are based on statistics and not universally applicable to predict the thickness of coal seams. In this study, we first theoretically analyzed the relationship between the depth and energy distribution of multi-order Love-type channel waves and found that when the channel wave wavelength is smaller than the thickness of the coal seam, the energy is more concentrated, while when the wavelength is greater than the thickness, the energy reduces linearly. We then utilized the numerical simulation technology to obtain the signal of the simulated Love-type channel wave, analyzed its frequency dispersion, and calculated the theoretical dispersion curves. The results showed that the dispersion characteristics of the channel wave are closely related to the thickness of coal seam, and the shear wave velocity of the coal seam and its surrounding rocks. In addition, we for the first time realized the joint inversion of multi-order Love-type channel waves based on the genetic algorithm and inversely calculated the velocities of shear wave in both coal seam and its surrounding rocks and the thickness of the coal seam. In addition, we found the group velocity dispersion curve of the single-channel transmitted channel wave using the time–frequency analysis and obtained the phase velocity dispersion curve based on the mathematical relationship between the group and phase velocities. Moreover, we employed the phase velocity dispersion curve to complete the inversion of the above method and obtain the predicted coal seam thickness. By comparing the geological sketch of the coal mining face, we found that the predicted coal seam thickness is in good agreement with the actual thickness. Overall, adopting the channel wave inversion method that creatively uses the complete dispersion curve can obtain the shear wave velocities of the coal and its surrounding rocks, and analyzing the depth of the abruptly changed shear wave velocity can accurately obtain the thickness of the coal seam. Therefore, our study proved that this inversion method is feasible to be used in both simulation experiments and actual detection.  相似文献   

13.
高频面波方法的若干新进展   总被引:12,自引:5,他引:7       下载免费PDF全文
面波多道分析方法(MASW)通过分析高频瑞雷波确定浅地表剪切波速度.在过去的20年中,由于该方法具有非侵入性、无损、高效及价格低的特点,越来越受到浅地表地球物理和地质工程学界的重视,视为未来最有希望的技术之一.这篇综述论文将介绍中国地质大学(武汉)浅地表地球物理团队近年来在研究高频面波的传播理论和应用中取得的部分成果.非几何波是一种仅存在于浅地表介质,尤其是未固结的沉积物中的独特的地震波.它的存在对快速而准确地获得表层S波速度有一定价值.我们的研究表明非几何波是一种具有频散特性的泄漏波.泄漏波的存在可能导致将其误认为瑞雷波的基阶或高阶能量,从而造成模式误判.这种模式误判会导致错误的反演结果.我们通过求取高基阶分离后的瑞雷波格林函数证明虚震源法瑞雷波勘探的可行性.这个结果将极大地降低野外瑞雷波勘探成本.勒夫波多道分析方法(MALW)中未知参数比瑞雷波的少,这使得勒夫波的频散曲线比瑞雷波的简单.因此,勒夫波反演更稳定,非唯一性更低.勒夫波数据生成的能量图像通常比瑞雷波的清晰,并具有更高的分辨率,从而可以更容易地拾取精确的勒夫波的相速度.利用雅克比矩阵分析波长与探测深度的关系表明对相同波长的基阶模式而言,瑞雷波的探测深度是勒夫波的1.3~1.4倍;而两种波的相同波长的高阶模式波的探测深度相同.我们也尝试了时间域勒夫波反演.按照勒夫波分辨率将地球模型剖分成了不同尺寸的块体,利用反卷积消除了地震子波对勒夫波波形的影响,通过更新每个块体的S波速度来拟合勒夫波波形,从而获得地下S波速度模型.该方法不基于水平层状模型假设,适用于任意二维介质模型.  相似文献   

14.
收集辽宁及其周边地区(吉林、河北、山东、内蒙)70个宽频带地震仪2012年连续背景噪声波形数据,基于地震背景噪声层析成像方法,得到研究区面波群速度及相速度图像。利用台站对互相关方法,提取瑞利面波格林函数,采用时频分析法(FTAN)获取2 416条相速度频散曲线,从中筛选1 661条信噪比较高的频散曲线。将研究区以0.25°×0.25°进行网格化,采用Ditmar等提出的层析成像反演方法,得到周期10—40 s的瑞利面波群速度及相速度结构分布图。与群速度结果相比,分辨率更高,研究区大部可达0.5°×0.5°(局部可达0.25°×0.25°)。结果表明,辽宁地区地壳及上地幔面波相速度结构存在显著的横向不均匀性。在周期10—15 s的群速度图中,浅层及中上地壳速度分布与研究区地形地貌及主要地质构造单元具有较好的对应关系,盆地及沉积层低速,山区隆起高速,且在高低速转换带多为地震孕震区;在周期20—30 s相速度结构图中,下地壳至上地幔顶部深度范围内,相速度速度结构主要受地壳厚度及渤海湾内巨厚沉积层的影响,在海城至大连区域内出现的低速异常推测为地下热物质上涌;随着深度的增加,在周期30—40 s的相速度图中,速度分布逐渐受控于莫霍面起伏,明显变化出现在辽东半岛,由高速变为低速。  相似文献   

15.
An assertion that the cross-correlation function of seismic noise, considered as a result of the superposition of the surface waves, excited by the sources, randomly distributed over the Earth’s surface, determines the Green function of the surface wave is verified by numerical modeling. The maximum wave periods, for which this assertion is correct, are estimated and the errors in determination of the phase and group velocity of the surface waves are evaluated. The procedure for the determination of the correlation function and estimation from it of the group velocity are tested thoroughly based on the example of the pair of the BJT and TLY stations in Asia. This procedure is used for obtaining the group and phase velocities of the Rayleigh waves on the traces between the OBN-ARU and PUL-ARU stations. The velocity sections of the transverse waves are built based on the dispersion curves of the phase and group velocities of averages along these traces. The region of the lowered velocity in the upper mantle at depths of 150–300 km is revealed on both traces. From the analysis of correlation functions, which are subjected to narrow-band filtering, it is shown that the frequency composition of noise varies from the East and from the West from the profiles between the stations: in the East (Siberia) the noise has an appreciably lower-frequency than in the West (Western Europe).  相似文献   

16.
The elastic and anelastic structure of the lithosphere and asthenosphere of the Iberian Peninsula is derived by means of tomographic techniques applied to local phase and group velocities and local attenuation coefficients of Rayleigh wave fundamental mode. The database consists of surface wavetrains recorded at the broadband stations located in the Iberian Peninsula on the occasion of the ILIHA project. Path-averaged phase and group velocities and attenuation coefficients were previously obtained by standard filtering techniques of surface wavetrains and, subsequently, local dispersion curves were computed according to the Yanovskaya-Ditmar formulation. First, a principal component analysis (PCA) and the average linkage (AL) clustering algorithm are applied to these local values in order to classify the Iberian Peninsula in several rather homogeneous domains from the viewpoint of the similarity of the corresponding local dispersion curves, without previous seismotectonic constraints. Second, averaged phase and group velocities and attenuation coefficients representing each homogeneous region are used to derive the respective elastic and anelastic models of the lithosphere and asthenosphere. This purpose is achieved by using the uncoupled causal inversion of phase and group velocities and attenuation coefficients. The main features of the homogeneous regions are discussed by taking as reference the Hercynic, Alpine and Neogene domains of the Iberian Peninsula, and two questions affecting the reliability of the elastic-anelastic models are revised. First, the coherence of the shear-velocity and Qβ−1 models obtained by causal uncoupled inversion for each region is analysed. Second, the influence of the causal phase and group velocities on the shear-velocity models is evaluated by comparing elastic and anelastic models derived from causal uncoupled inversion with those deduced from non-causal inversion.  相似文献   

17.
High-frequency (≥ 2 Hz) Rayleigh-wave phase velocities have been utilized to determine shear-wave velocities in near-surface geophysics since the early 1980s. One of the key steps is to calculate theoretical dispersion curves of an earth model. When the earth model contains a low-velocity half-space, however, some roots of the dispersion equation turn out to be complex numbers, which makes phase velocities disappear at some frequencies. When encountering this situation, the common practice is to append an additional high velocity layer as the half-space to the model to make the roots real or use the real parts of complex roots as Rayleigh-wave phase velocities. The correctness of the first method has been verified. The correctness of the second method, however, remains to be unproved. We use synthetic data generated by numerical modeling of the wave equation to verify the correctness of the second method. In this paper, we firstly discuss the reasons that only complex numbers of the dispersion equation exist at some frequencies when an earth model contains a low velocity half-space. Then we discuss how the nearest offset affects a synthetic model and recommend an optimal nearest offset in generating synthetic data that are close to real-world situations. Several synthetic models are used to verify correctness of using real parts of complex roots as Rayleigh-wave phase velocities when an earth model contains a low velocity layer as the half-space.  相似文献   

18.
Two-month continuous waveforms of 108 broadband seismic stations in Fujian Province and its adjacent areas are used to compute noise cross-correlation function (NCF). The signal quality of NCF is improved via the application of time-frequency phase weighted stacking. The Rayleigh and Love waves group velocities between 1s-20s are measured on the symmetrical component of the NCF with the multiple filter method. More than 5,000 Rayleigh wave dispersion curves and about 4,000 Love wave dispersion curves are obtained and used to invert for group velocity maps. This data set provides about 50km resolution that is demonstrated with checkerboard tests. Considering the off great circle effect in inhomogeneous medium, the ray path is traced based on the travel time field computed with a finite difference method. The inverted group velocity maps show good correlation with the geological features in the upper and middle crust. The Fuzhou basin and Zhangzhou basin showed low velocity on the short period group velocity maps. On the long period group velocity maps, the low velocity anomaly in the high heat flow region near Zhangzhou and clear velocity contrast across the Zhenghe-Dapu faults, which suggests that the Zhenghe-Dapu fault might be a deep fault.  相似文献   

19.
Dispersion curves of phase velocities of Rayleigh waves are determined by the method of frequency-time analysis in a range of periods of 10–200 s from data of 43 interstation traces in Central Asia. Because the joint use of phase and group velocities significantly decreases the uncertainty in the determination of S wave velocity structures, the same traces were used for calculating group velocities from tomographic reconstructions obtained in [Yanovskaya and Kozhevnikov, 2003, 2006] and determining average velocity structures along these traces. The velocity structures were calculated by the Monte Carlo and linear inversion methods, which gave consistent results. Using velocity values obtained at fixed depths by the 2-D tomography method, lateral variations in velocities at these depths were estimated, which allowed us to construct smoothed vertical velocity structures at some points in the region. The resulting structures were used as initial approximations for constructing local velocity structures solely from previously obtained local dispersion curves of group velocities in the area (32°–56°N, 80°–120°E). Based on these structures, we mapped the lateral distribution of velocity variations at upper mantle depths of 75–400 km and along three vertical profiles. The inferred velocity variations are in good agreement with data on the tectonics of the region.  相似文献   

20.
Spectral analysis of surface waves (SASW) is a nondestructive in-situ testing method that is used to determine stiffness profiles of soil and pavement sites based on dispersion characteristics of Rayleigh-type surface waves.Inversion of the Rayleigh wave dispersion curve of a site provides information on the variation of shear-wave velocity with depth. In the inversion procedures currently used for SASW tests, the field dispersion curve is matched with a theoretical dispersion curve obtained for the fundamental mode of surface wave propagation.In order to overcome difficulties associated with the presence of multi-modes in SASW signals, a new inversion method based on the maximum vertical flexibility coefficient is introduced in this paper. Unlike root-searching methods, the new method easily identifies the predominant propagation modes. In this new approach, the simplex method is used to match field and theoretical dispersion curves automatically. The purpose of this paper is to present the details of the new method and to demonstrate its advantages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号