首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
河北兴隆复式叠瓦扇构造   总被引:4,自引:0,他引:4       下载免费PDF全文
姜波  刘洪章 《地质科学》1997,32(2):165-172
河北省北部兴隍-平泉复向斜的西端发育了一种特殊类型的推覆构造,该推覆构造具有三重结构的特点,即由上叠瓦扇、下叠瓦扇和下伏系统组成。上叠瓦扇可以分为被分支断裂分割的太古字、长城系、蓟县系、青白口系和寒武-奥陶系5个逆冲岩席;各分支断裂上陡下缓,向下逐渐归并于F1主逆冲断裂上。F1断层下的石炭-二叠系也发育了一组叠瓦状逆冲断层,形成了与上叠瓦扇具有不同变形特征的下叠瓦扇。由于这一构造特殊的两套叠瓦扇结构,故笔者称其为复式叠瓦扇构造,这是一种新的推覆构造类型。  相似文献   

2.
黄骅盆地南部前第三系基底中的逆冲构造   总被引:12,自引:0,他引:12  
黄骅盆地南部前第三系构造层中广泛发育有逆冲构造.其中西部的逆冲构造带以逆冲堆叠背形构造和逆冲叠瓦扇构造为主, 中部以楔冲双重构造和低角度盲冲或顺层滑脱构造为主, 东部以高角度板状逆冲叠瓦构造为主.这些逆冲构造带都表现为由SE向NW-MNW方向的逆冲, 而且由构造样式推测的拆离滑脱深度是由西向东逐渐加深, 表明在深层可能有一条向南东倾斜的拆离断层将它们连锁在一起, 构成统一的逆冲构造系统.从卷入逆冲构造的地层的地质时代推测, 逆冲构造主要是在早—中三叠世盆地发育之后、侏罗—白垩纪盆地形成之前形成的, 并在早—中侏罗世盆地发育过程中又有进一步活动.逆冲构造形成后又受到中—新生代时期的伸展构造和走滑构造的叠加和改造.控制黄骅盆地老第三纪伸展盆地的形成和演化的沧东断层的某些地段, 在前第三纪时期曾经是一条逆冲断层.   相似文献   

3.
The terminology of structures in thrust belts   总被引:1,自引:0,他引:1  
A review of structures and geometric relationships recognized in thrust belts is presented. A thrust is defined as any contractional fault, a corollary being that thrusts must cut up-section in their transport direction. ‘Flats’ are those portions of a thrust surface which were parallel to an arbitrary datum surface at the time of displacement and ‘ramps’ are those portions of thrusts which cut across datum surfaces. Ramps are classified on the basis of their orientation relative to the thrust transport direction and whether they are cut offs in the hangingwall or footwall of the thrust. Lateral variations in the form of staircase trajectories are joined by oblique or lateral ramps which have a component of strike-slip movement.An array of thrusts which diverge in their transport direction may form by either of two propagation models. These are termed ‘piggy-back’ propagation, which is foreland-directed, and ‘overstep’ propagation which is opposed to the thrust transport direction. An array of thrust surfaces is termed an ‘imbricate stack’ and should these surfaces anastamose upwards a ‘duplex’ will result; the fault-bounded blocks are termed ‘horses’. A duplex is bounded by a higher, ‘roof’ thrust and a lower, ‘floor’ thrust. The intersection of any two thrust planes is termed a ‘branch line’.Thrusts can be classified on the basis of their relationship to asymmetric fold limbs which they cut. A further classification arises from whether a particular thrust lies in the hangingwall or footwall of another one.The movement of thrust sheets over corrugated surfaces, or the local development of thrust structures beneath, will fold higher thrust sheets. These folds are termed ‘culminations’ and their limbs are termed ‘culmination walls’. Accommodation of this folding may require movement on surfaces within the hangingwall of the active thrust. These accommodation surfaces are termed ‘hangingwall detachments’ and they need not root down into the active thrust. This category of detachment includes dip-slip ‘hangingwall drop faults’ which are developed by differential uplift of duplex roofs, and ‘out-of-the-syncline’ thrusts which develop from overtightened fold hinges. Back thrusts, as well as forming as hangingwall detachments, may also form due to layer-parallel shortening above a sticking thrust or by rotation of the hangingwall above a ramp.  相似文献   

4.
The eastern part of the Cape Fold Belt, near Steytlerville, South Africa, reveals a typical pattern of numerous, north-verging thrust faults and associated folds, interpreted as part of a large duplex structure that formed along the southern margin of Gondwana during the Late Palaeozoic. Steeply-dipping fore- and backthrusts occur in the Bokkeveld Group (middle Cape Supergroup), where strata are composed of predominantly argillaceous rocks, whereas in the more arenaceous Witteberg Group (upper Cape Supergroup) there are fewer recognizable and less closely-spaced thrusts. Open style folds characterize areas in which the Bokkeveld Group crops out, but in areas of Witteberg outcrop, folds, especially those adjacent to thrusts, are often overturned.In spite of a general absence of marker horizons, a displacement of at least 500 metres can be inferred for one prominent thrust, the Jackalsbos thrust. This fault, the northernmost in the area investigated, is probably the sole thrust in the duplex structure, linked through southward-dipping imbricates to a projected roof thrust (the Baviaanskloof thrust) cropping out immediately south of the study area.Displacements on imbricates within the duplex are difficult if not impossible to measure, but the net effect is certainly accumulative and incremental. Truncation by a roof thrust and subsequent erosional processes may explain why so few of the many thrusts so far identified in the eastern part of the fold belt can be successfully mapped, and their displacements measured. Normal and strike-slip faults, less common than thrust faults, formed during extensional tectonism related to the breakup of Gondwana, during the Mesozoic.  相似文献   

5.
汶川地震是有仪器记录以来发生的世界上最大的板内逆冲型地震之一。野外调查表明,沿北东走向的龙门山断裂带上,至少有两条逆冲断裂同时参与汶川地震的同震破裂过程,即北川断裂和安县灌县断裂(彭灌断裂)。倾向北西的高角度北川逆冲断裂上的地表破裂长度大于200 km,可能达225 km。运动方式在南部表现为以北西盘抬升的逆冲为主,往北东转为逆冲右旋走滑,走滑分量与垂向陡坎高度相当,陡坎高度最大值约为11 m。在彭灌断裂上,地表破裂表现为北西盘抬升的近纯逆冲性质的破裂,破裂长度达70 km,陡坎最高达3~3.5 m。汶川地震是世界上第一次明确记录到多条平行断裂参与同震破裂的逆冲型地震,而且因发震断层是龙门山断裂带内部的高角度逆冲断裂,而非断裂带前锋的低角度逆冲断裂,所以汶川地震属于反序型逆冲断裂活动。这与1999年我国台湾7.5级集集地震和2005年克什米尔7.6级地震类似,说明反序型逆冲地震具有普遍性。汶川地震这一震级大、破裂长的逆冲地震事件是对目前流行的青藏高原下地壳流动的变形假说提出的严峻挑战,同时也表明加强青藏高原东缘南北地震带上其他滑动速率较低但同样具有发生大地震可能性的活动断裂的滑动速率和古地震定量研究的紧迫性,因为这一地区人口密度与东部相当,但发生强震的频率更高。  相似文献   

6.
叠瓦状逆断层是地壳中分布的主要断层组合形式之一。为了揭示地质演化过程中不同组合形式下叠瓦状逆断层间地应力分布规律,采用大型物理模拟手段,以龙门山地区的地质构造为背景,研究了两条平行叠瓦状逆断层和在其间与之相交的断层组合形式下地应力分布和变化规律。取得的主要认识如下:(1)对于研究区仅分布两条平行的叠瓦状逆断层,构造挤压方向与它们的走向垂直的情况,靠近构造挤压端的断层会首先发生失稳破坏,较大的局部应力释放会使地壳内部整体应力有所降低,但在下伏断层的深部会出现应力的突然升高;(2)对于研究区不仅分布两条平行的叠瓦状逆断层,而且在两条断裂之间存在一条与它们垂直的逆断层,构造挤压方向与叠瓦状逆断层垂直,叠瓦状逆断层附近浅层地应力变化较早,地壳易沿叠瓦状逆断层首先失稳活动,进而带动所夹逆断层的地应力发生调整;(3)对于研究区不仅分布两条平行的叠瓦状逆断层,在其间夹着走向与它们垂直的逆断层,构造挤压方向与叠瓦状逆断层斜交情况,地壳易沿所夹断层首先失稳活动,进而触发叠瓦状逆断层地应力变化;(4)仅存在叠瓦状逆断层,地应力分布较为均匀;叠瓦状逆断层间夹逆断层的情况下,在断层端部和几条断层交汇部位出现了应力集中现象。该问题的研究对区域稳定性评价和地震预测具有一定的指导意义。  相似文献   

7.
Analysis of the Gachsar structural sub-zone has been carried out to constrain structural evolution of the central Alborz range situated in the central Alpine Himalayan orogenic system. The sub-zone bounded by the northward-dipping Kandovan Fault to the north and the southward-dipping Taleghan Fault to the south is transversely cut by several sinistral faults. The Kandovan Fault that controls development of the Eocene rocks in its footwall from the Paleozoic–Mesozoic units in the fault hanging wall is interpreted as an inverted basin-bounding fault. Structural evidences include the presence of a thin-skinned imbricate thrust system propagated from a detachment zone that acts as a footwall shortcut thrust, development of large synclines in the fault footwall as well as back thrusts and pop-up structures on the fault hanging wall. Kinematics of the inverted Kandovan Fault and its accompanying structures constrain the N–S shortening direction proposed for the Alborz range until Late Miocene. The transverse sinistral faults that are in acute angle of 15° to a major magnetic lineament, which represents a basement fault, are interpreted to develop as synthetic Riedel shears on the cover sequences during reactivation of the basement fault. This overprinting of the transverse faults on the earlier inverted extensional fault occurs since the Late Miocene when the south Caspian basin block attained a SSW movement relative to the central Iran. Therefore, recent deformation in the range is a result of the basement transverse-fault reactivation.  相似文献   

8.
杨斌 《地质与勘探》2014,50(Z1):1314-1319
藏南古堆地区具南北分带特征。北部地区靠达拉岩体,受也拉香波穹窿影响,断层以倾向南的正断层为主,地层呈多期次挤压褶皱形态,且出现呈楔形构造夹片出露的红柱石板岩、石榴石片岩等变质核杂岩地层;中部地区断层、褶皱较发育,褶皱呈紧闭的层间同斜褶皱,断层以倾向北的叠瓦状脆-韧性逆冲断层为主;南部地区为相对稳定区,该区地层相对较完整,褶皱以宽缓向斜形式出现,且越往南越宽缓。这一构造样式是印度板块与欧亚板块碰撞之后,在喜马拉雅造山运动影响及后期伸展作用的背景之下,由北向南的挤压推覆的结果,总体上它是一套挤压褶皱~推覆逆冲断层的组合,呈叠瓦状展布的隆子断裂是主推覆断层。  相似文献   

9.
Field work in the South-Central Pyrenees suggests that omission contacts (i.e. younger over older rocks) occur at the base of the Cadí unit (Cadí thrust), and pass laterally into thrusts. This change occurs across tear faults which are present in the hangingwall of the Cadí thrust sheet and which controlled the deposition of Upper Cretaceous sediments (Adraén formation). Detailed mapping in the contact area between the Nogueres and Cadí units has shown that the actual thrust geometry in the study area is controlled by preexisting normal and transfer faults which developed in an already compressional context. Lateral ramps or tear faults develop depending on the angle between the pre-existing extensional transfer fault and the thrust transport direction.  相似文献   

10.
塔里木盆地柯坪断隆断裂构造分析   总被引:24,自引:5,他引:24       下载免费PDF全文
柯坪断隆内断裂发育,笔者根据野外及地震数据对各主要断裂和二级断裂进行了分析,认为柯坪塔格断裂形成于晚第三纪,沙井子断裂早期与柯坪塔格具有不同的发育历史,阿合奇断裂形成于挤压而非走滑的背景下,皮羌断裂和印干走滑断裂其实是协调作用的捩断层。萨尔干断裂是一条假走滑断层,实际上应该是一条撕裂断层。在挤压背景下形成了二类主要的断裂构造组合样式;叠瓦推覆体、构造窗。笔者认为柯坪断隆上的构造其实是印度板块和欧亚板块远程碰撞造山和板内变形的一种表现。  相似文献   

11.
The evolution of geological structures is related particularly to reactivation of preexisting fault, thus the importance of tectonic inheritance. Basing on stratigraphic and structural data in external zones leaving the example of Gafsa Basin (southern central Tunisia), we study the evolution of folds during tectonic phases. The structural and stratigraphic data prove that Gafsa Basin is subject for more than one tectonic phase where beginning by Cretaceous extension and reactivated by Atlasic compression. The combination of field results associated to that geomorphology confirms the application of “fault propagation model” as evolution mode of folds. The balanced of cross section, using numerical software Ramp E.M. 1.5.2, shows the importance of tectonic inheritance to interpret evolution of structures reliefs. The deformation increases related to reactivation of old normal fault. The most important deformation is observed in Jbal At Taghli presenting folds in the form of duplex resulted from conjugate activity of tear fault; it is the first interpretation of tear fault activity in surface in the scale of Tunisia. The application of fault propagation fold model to interpret fold genesis confirms the field data and proves the role of tectonic inheritance and reactivation of preexisting faults in the evolution of structures during different tectonic phases.  相似文献   

12.
Abstract

The structure of the southern Pyrenees, east of the Albanyà fault (Empordà area), consists of several Alpine thrust sheets. From bottom upwards three main structural units can be distinguished : the Roc de Frausa, the Biure-Bac Grillera and the Figueres units. The former involves basement and Paleogene cover rocks. This unit is deformed by E-W trending kilometric-scale folds, its north dipping floor thrust represents the sole thrust in this area. The middle unit is formed by an incomplete Mesozoic succession overlain by Garumnian and Eocene sediments. Mesozoic rocks internal structure consists of an imbricate stack. The floor thrust dips to the south and climbs up section southwards. The upper unit exibits the most complete Mesozoic sequence. Its floor thrust is subhorizontal. The lower and middle units thrust in a piggy-back sequence. The upper unit was emplaced out of sequence.

Lower Eocene sedimentation in the Biure-Bac Grillera unit was controlled by emergent imbricate thrusts and synchronic extensional faults. One of these faults (La Salut fault) represents the boundary between a platform domain in the footwall and a subsident trough in the hangingwall. Southward thrust propagation produces the inversion of these faults and the development of cleavage-related folds in their hangingwalls (buttressing effect). This inversion is also recorded by syntectonic deposits, which have been grouped in four depositional sequences. The lower sequences represent the filling on the hangingwall trough and the upper sequences the spreading of clastics to the south once the extensional movement ends.  相似文献   

13.
Structural interpretations of newly acquired seismic lines in northeastern Tunisia allow us to highlight a new thrust front for the Atlasic range of Tunisia, in contrast to the previously Zaghouan fault thrust Dorsale zone. This new thrust front takes place on weakness tectonic zones, materialized by inherited faults anchored on the pre-Triassic basement. This front seems to be a paleogeographic trend controlling structural style and basin fill with a synsedimentary activity. The front is expressed by reverse faults, thrust faults, back thrusting, and decollement structures. To cite this article: S. Khomsi et al., C. R. Geoscience 336 (2004).  相似文献   

14.
We present an outcrop-scale example of a localized contractional fault geometry that developed as part of an imbricate normal fault system in response to regional extension. Although extensional regions are dominated by abundant normal faulting, local thrust duplication may occur during the same phase of deformation, and on a regional scale may concentrate important quantities of hydrocarbons. Characteristics of extension-related fold belts have mostly been derived from seismic sections; thus fault geometries, mechanisms of formation, and kinematics of these structures are not precisely understood. Abundant kinematic indicators and complete exposure of an extended sedimentary sequence within the Dead Sea Transform, however, provide the opportunity to examine these fault geometries and mechanisms in detail. The local contractional geometry developed within an imbricate normal fault system, as a result of an out-of-sequence normal fault that detached at a higher structural level. The out-of-sequence normal fault offset pre-existing faults, but was deflected into a contractional geometry upon encountering an earlier-formed rollover anticline, whose curved bedding surface served as a convenient ramp. Consequently, displacement across the out-of-sequence fault generated coeval extensional and contractional geometries along the same detachment surface. Geometries and kinematics derived from the outcrop structural analysis may serve as important analogs for larger structures identified as potential targets for hydrocarbon exploration.  相似文献   

15.
滇桂交界区印支期前陆褶皱冲断带   总被引:14,自引:2,他引:14       下载免费PDF全文
吴根耀 《地质科学》2001,36(1):64-71
最近发现的蛇绿岩指示中、越交界区发育一条古特提斯的地缝合线,分开了越北地块和华南次大陆。滇桂交界处的印支期前陆褶皱冲断带为古特提斯造山带提供了进一步的证据。本文讨论了冲断-推覆构造的特征,提出该地的古特提斯洋具复杂的大陆边缘,沿北西走向段先发生碰撞,之后沿北东东向段发生碰撞,北西向断裂则发生右行的走滑(或右行斜冲)活动。冲断作用是向北或北东扩展的,仰冲的增生杂岩可能掩埋了大部分磨拉石沉积,造成了磨拉石不发育的假象。  相似文献   

16.
In this paper, we analyze small scale examples of thrust faults and related folding in outcrops of the Cretaceous Boquillas Formation within Big Bend National Park in west Texas to develop detailed understanding of the fault nucleation and propagation that may aid in the interpretation of larger thrust system structure. Thrust faults in the outcrop have maximum displacements ranging from 0.5 cm to 9 cm within competent limestone beds, and these displacements diminish both upward into anticlines and downward into synclines within the interbedded and weaker mudrock layers. We interpret the faults as having nucleated within the competent units and partially propagated into the less competent units without developing floor or roof thrusts. Faults that continued to propagate resulted in hanging wall anticlines above upwardly propagating fault tips, and footwall synclines beneath downwardly propagating fault tips. The observed structural style may provide insights in the nucleation of faults at the formation scale and the structural development at the mountain-range scale. Décollement or detachment layers may be a consequence rather than cause of thrust ramps through competent units and could be over interpreted from seismic data.  相似文献   

17.
We present the results of a thrust fault reactivation study that has been carried out using analogue (sandbox) and numerical modelling techniques. The basement of the Pannonian basin is built up of Cretaceous nappe piles. Reactivation of these compressional structures and connected weakness zones is one of the prime agents governing Miocene formation and Quaternary deformation of the basin system. However, reactivation on thrust fault planes (average dip of ca. 30°) in normal or transtensional stress regimes is a problematic process in terms of rock mechanics. The aim of the investigation was to analyse how the different stress regimes (extension or strike-slip), and the geometrical as well as the mechanical parameters (dip and strike of the faults, frictional coefficients) effect the reactivation potential of pre-existing faults.

Results of analogue modelling predict that thrust fault reactivation under pure extension is possible for fault dip angle larger than 45° with normal friction value (sand on sand) of the fault plane. By making the fault plane weaker, reactivation is possible down to 35° dip angle. These values are confirmed by the results of numerical modelling. Reactivation in transtensional manner can occur in a broad range of fault dip angle (from 35° to 20°) and strike angle (from 30° to 5° with respect to the direction of compression) when keeping the maximum horizontal stress magnitude approximately three times bigger than the vertical or the minimum horizontal stress values.

Our research focussed on two selected study areas in the Pannonian basin system: the Danube basin and the Derecske trough in its western and eastern part, respectively. Their Miocene tectonic evolution and their fault reactivation pattern show considerable differences. The dominance of pure extension in the Danube basin vs. strike-slip faulting (transtension) in the Derecske trough is interpreted as a consequence of their different geodynamic position in the evolving Pannonian basin system. In addition, orientation of the pre-existing thrust fault systems with respect to the Early to Middle Miocene paleostress fields had a major influence on reactivation kinematics.

As part of the collapsing east Alpine orogen, the area of the Danube basin was characterised by elevated topography and increased crustal thickness during the onset of rifting in the Pannonian basin. Consequently, an excess of gravitational potential energy resulted in extension (σv > σH) during Early Miocene basin formation. By the time topography and related crustal thickness variation relaxed (Middle Miocene), the stress field had rotated and the minimum horizontal stress axes (σh) became perpendicular to the main strike of the thrusts. The high topography and the rotation of σh could induce nearly pure extension (dip-slip faulting) along the pre-existing low-angle thrusts. On the contrary, the Derecske trough was situated near the Carpathian subduction belt, with lower crustal thickness and no pronounced topography. This resulted in much lower σv value than in the Danube basin. Moreover, the proximity of the retreating subduction slab provided low values of σh and the oblique orientation of the paleostress fields with respect to the master faults of the trough. This led to the dominance of strike-slip faulting in combination with extension and basin subsidence (transtension).  相似文献   


18.
在过去的25年里,由于许多原因,作为最常见、分布也最广泛的地质构造形迹之一,逆冲断层成为倍受关注的科学研究主题。文中指出,关于逆冲断层及其几何学特征的许多普遍认识(或观念),并不像以往文献中所阐述的那样简单。其中之一的"薄皮"冲断构造是受地层控制的,极少有或者没有结晶基底物的卷入。文中主张,"薄皮"一词只有逆冲板片的几何学形态含义,而不应包含地层意义,并列举了一些完全由结晶岩石所构成的薄皮逆冲构造的例子来说明这一主张。近来,逆冲双重构造成为构造文献中的热点。关于逆冲双重构造的成因,引用得最多的是1982年Boyer和Elliot在其重要论文"逆冲断层系统"中所作的解释。他们认为,双重道冲构造是通过在冲断坡底部发生下盘破裂。新生断裂不断向前扩展并进入先存断层下盘的一系列变形过程中逐渐形成的。根据Boyer和Elliot提出的这种变形过程,将形成一个具有平面状顶板断层的边冲双重构造,这个顶板断层只在活动断坡的顶部是主动向前扩展的。依笔者之见,在实际的构造变形当中,是不可能具备形成平顶过冲双重构造的地质条件的。而能对平顶过冲双重构造形成作出最好解释的是反序(out-of-sequence,OOS)边冲断层的发育,即断层向着主冲断层的后方发展,在先存道冲构造的上部?  相似文献   

19.
The Mesozoic and Cenozoic rocks exposed in the Arve valley region of the External French Alps are used to assess the role of early intrabasinal faults on later thrust fault evolution. The early intrabasinal faults produced at some time from latest Upper Cretaceous to Tertiary strike parallel or subparallel to later Neo-Alpine thrusts. Where early faults dip away from the thrusts they are generally cut through and occasionally are overturned during this process. In one example extreme overturning has allowed partial reactivation. Early faults dipping in the same direction as thrusts may: a) be reactivated b) initiate ramping of the thrust ahead of the preexisting fault c) be cut through by the thrust d) cause pinning of the thrust at the footwall of the fault and folding against the fault as displacement continues (buttressing). From this work it is evident that intrabasinal faults exerted a major influence on the distribution of mechanical heterogeneities. These heterogeneities include variations of stratigraphic thickness and type across faults, fault-related unconformities and the presence of the fault itself. During the period of contraction such features strongly controlled the development of the stress field produced ahead of an advancing thrust and hence influenced the position of thrust fault propagation within the stratigraphy.  相似文献   

20.
An examination of thrust structures in the eastern part of the Dauphinois Zone of the external French Alps (referred to in the literature as the Ultradauphinois Zone) shows that major basement thrusts climb up section to produce cover-basement synclines. These thrusts also climb laterally and are continuous with thrust in the cover rocks. The external basement massifs are recognized as thrust sheets with variably deformed and thrust cover sequences. The distinction made in the previous literature between the Dauphinois and Ultradauphinois Zones is no longer tenable. Cover thrusting proceeded by both smooth slip and rough slip, the latter producing a duplex of cover thrust slices. Restoration of this duplex indicates that a shortening of 70 km in the cover occured during its formation. Possible errors in this estimate include uncertainties in the original stratigraphic thickness and in the overall shape of the duplex. Another duplex is thought to have formed at a basement ramp created by the presence of an early basement normal fault. Partial footwall collapse of this basement ramp gave rise to a basement horse at the bottom of the duplex. The overall relation between cover and basement thrusting is indicated using a hanging wall sequence diagram. Recent geophysical studies suggest that the basement thrusts developed from a mid-crustal décollement which passes down dip to offset the Moho. Model studies of thin-skinned tectonics may not be appropriate to such thrust geometries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号