首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have developed a wind-wave-surge coupled process-based numerical model for simulating storm surge, consisting of a meso-scale atmospheric model (MM5), a third-generation spectral wave model (WW3) and a coastal ocean model (POM). We introduced an additional sea surface shear stress by wave dissipation into the model to consider the process of energy transfer from winds to currents through whitecap breaking. We demonstrate the importance of this energy transfer path through a hindcast simulation of a cyclone surge in April, 1991 in the Bay of Bengal: it helps generate mean current and has wave effects on wind-induced current fields in extremely shallow water areas.  相似文献   

2.
《Ocean Modelling》2009,26(3-4):132-143
We have developed a wind-wave-surge coupled process-based numerical model for simulating storm surge, consisting of a meso-scale atmospheric model (MM5), a third-generation spectral wave model (WW3) and a coastal ocean model (POM). We introduced an additional sea surface shear stress by wave dissipation into the model to consider the process of energy transfer from winds to currents through whitecap breaking. We demonstrate the importance of this energy transfer path through a hindcast simulation of a cyclone surge in April, 1991 in the Bay of Bengal: it helps generate mean current and has wave effects on wind-induced current fields in extremely shallow water areas.  相似文献   

3.
Modeling of storm-induced coastal flooding for emergency management   总被引:3,自引:0,他引:3  
This paper describes a model package that simulates coastal flooding resulting from storm surge and waves generated by tropical cyclones. The package consists of four component models implemented at three levels of nested geographic regions, namely, ocean, coastal, and nearshore. The operation is automated through a preprocessor that prepares the computational grids and input atmospheric conditions and manages the data transfer between components. The third generation spectral wave model WAM and a nonlinear long-wave model calculate respectively the wave conditions and storm surge over the ocean region. The simulation results define the water levels and boundary conditions for the model SWAN to transform the storm waves in coastal regions. The storm surge and local tides define the water level in each nearshore region, where a Boussinesq model uses the wave spectra output from SWAN to simulate the surf-zone processes and runup along the coastline. The package is applied to hindcast the coastal flooding caused by Hurricanes Iwa and Iniki, which hit the Hawaiian Island of Kauai in 1982 and 1992, respectively. The model results indicate good agreement with the storm-water levels and overwash debris lines recorded during and after the events, demonstrating the capability of the model package as a forecast tool for emergency management.  相似文献   

4.
渤海一年四季都易受到由温带风暴和热带气旋所致风暴潮的影响。为了缓解风暴潮灾害对海岸地区人员生命财产的影响,十分有必要了解大型风暴潮的发生过程和机制。目前大部分研究主要局限于单一的温带风暴潮或台风风暴潮。本文利用所构建的海气耦合数值模型研究了发生于渤海的两种类型的风暴潮,对发生在渤海的2次典型强风暴潮过程进行了模拟。由WRF模型模拟得到的风场强度和最低海平面气压与实测数据吻合较好,由ROMS模型模拟得到的风暴潮期间水位变化过程与潮位站观测结果也吻合较好。对两种类型风暴潮期间的风场结钩、海面风应力、海洋表面平均流场以及水位分布进行了分析对比,并将耦合模型结果与非耦合模型结果进行了对比。研究表明,渤海两种类型风暴潮期间的风场结钩、海面风应力、海洋表面平均流场以及水位分布等均存在巨大差异。渤海风暴潮的强度主要由海洋表面的驱动力所决定,但同时也受海岸地形地貌的影响。  相似文献   

5.
海浪破碎使得海面产生飞沫水滴,由于飞沫水滴的存在改变着大气和海洋之间的能量传输。飞沫生产函数一般认为是水滴初始半径和风速的函数,但海浪时刻存在于海-气界面,仅仅考虑海面风的作用,而忽略海浪的影响是不够完善的。白冠覆盖率是海浪破碎的重要特征参数,有研究者发现白冠覆盖率与海面风速和海浪均存在相关性。本文尝试从白冠覆盖率出发,构建飞沫水滴的生成函数参数化方案,将描述不同飞沫水滴半径的飞沫生成函数基于白冠覆盖率参数有机整合,然后结合白冠覆盖率和海浪状态的关系,利用实验室观测数据,分析不同海浪状态条件下海浪对飞沫生成函数的影响。研究结果表明,新的考虑波浪效应的飞沫生成函数可以合理地描述不同海浪状态条件下飞沫水滴的生成过程。  相似文献   

6.
文章基于近岸海洋数值模式ADCIRC (a parallel advanced circulation model for oceanic, coastal and estuarine waters)和近海波浪数值模式SWAN (simulating waves nearshore), 建立雷州市高分辨率的风暴潮-海浪耦合漫滩数值模型, 并反演了对雷州市影响较为严重的1415号台风“海鸥”的风暴潮过程。经过对比分析得出, 波浪对雷州市沿海海域的风暴潮产生重要影响。然后以8007号台风路径为基础, 构造了7个不同等级共35组台风风暴潮案例, 计算分析出不同等级台风强度下雷州市风暴潮淹没范围及水深。900hPa等级下, 雷州市淹没面积达到463.2km2。文章还构造了60组可能最大风暴潮事件集, 计算得到雷州市可能最大台风风暴潮淹没范围及水深分布。在可能最大台风影响下, 大量海水将漫过海堤, 造成极其严重的淹没灾害, 雷州市总的淹没面积可达602.0km2, 其中465.8km2的淹没面积达到了危险性等级 Ⅰ 级, 淹没水深大于3m。雷州市东岸的淹没灾害大于西岸。  相似文献   

7.
海浪微波散射理论模式   总被引:4,自引:1,他引:3  
何宜军 《海洋与湖沼》2000,31(2):178-185
在假设海面白帽为球形气泡层的基础上,利用白帽海面的矢量辐射传输方程各随机粗糙面散射模型建立了海面的微波散射模型。辐射传输方程利用迭代法求解,随机粗糙面散射模型采用双尺度散射模型,利用白帽覆盖率的经验公式计算海面的微波散射特性。数值计算结果表明,随着气泡厚度的增加球形气泡散射系数越来越接近球形粒子散射系数;白帽对散射同的贡献随风速增大而增大;侧风情况比逆风和顺风情况影响均大;水平极化比垂直极化影响大  相似文献   

8.
《Ocean Modelling》2008,20(3):252-269
The effects of wave–current interactions on the storm surge and inundation induced by Hurricane Hugo in and around the Charleston Harbor and its adjacent coastal regions are examined by using a three-dimensional (3-D) wave–current coupled modeling system. The 3-D storm surge and inundation modeling component of the coupled system is based on the Princeton ocean model (POM), whereas the wave modeling component is based on the third-generation wave model, simulating waves nearshore (SWAN). The results indicate that the effects of wave-induced surface, bottom, and radiation stresses can separately or in combination produce significant changes in storm surge and inundation. The effects of waves vary spatially. In some areas, the contribution of waves to peak storm surge during Hurricane Hugo reached as high as 0.76 m which led to substantial changes in the inundation and drying areas simulated by the storm surge model.  相似文献   

9.
The influence of inhomogeneities of surface currents on the intensity of breaking wind waves is considered and a model for the relation between whitecap contrasts and the tensor of current gradients is developed. The imagery of typical patterns of ocean currents is discussed. The results of field observations supporting this model are given.Translated by Mikhail M. Trufanov.  相似文献   

10.
A new real-time, event-triggered storm surge prediction system has been developed for the State of North Carolina to assist emergency managers, policy-makers and other government officials with evacuation planning, decision-making and resource deployment during tropical storm landfall and flood inundation events. The North Carolina Forecast System (NCFS) was designed and built to provide a rapid response assessment of hurricane threat, accomplished by driving a high-resolution, two-dimensional, depth-integrated version of the ADCIRC (Advanced Circulation) coastal ocean model with winds from a synthetic asymmetric gradient wind vortex. These parametric winds, calculated at exact finite-element mesh node locations and directly coupled to the ocean model at every time step, are generated from National Hurricane Center (NHC) forecast advisories the moment they are inserted into the real-time weather data stream, maximizing the number of hours of forecast utility. Tidal harmonic constituents are prescribed at the open water boundaries and applied as tidal potentials in the interior of the ocean model domain. A directional surface roughness parameterization that modulates the wind speed at a given location based on the types of land cover encountered upwind, a forest canopy sheltering effect, and a spatially varying distribution of Manning’s–n friction coefficient used for computing the bottom/channel bed friction are also included in the storm surge model. Comparisons of the simulated wind speeds and phases against their real meteorological counterparts, of model elevations against actual sea surface elevations measured by NOAA tide gauges along the NC coast, and of simulated depth-averaged current velocities against Acoustic Doppler Current Profiler (ADCP) data, indicate that this new system produces remarkably realistic predictions of winds and storm surge.  相似文献   

11.
《Ocean Modelling》2009,26(3-4):95-119
A new real-time, event-triggered storm surge prediction system has been developed for the State of North Carolina to assist emergency managers, policy-makers and other government officials with evacuation planning, decision-making and resource deployment during tropical storm landfall and flood inundation events. The North Carolina Forecast System (NCFS) was designed and built to provide a rapid response assessment of hurricane threat, accomplished by driving a high-resolution, two-dimensional, depth-integrated version of the ADCIRC (Advanced Circulation) coastal ocean model with winds from a synthetic asymmetric gradient wind vortex. These parametric winds, calculated at exact finite-element mesh node locations and directly coupled to the ocean model at every time step, are generated from National Hurricane Center (NHC) forecast advisories the moment they are inserted into the real-time weather data stream, maximizing the number of hours of forecast utility. Tidal harmonic constituents are prescribed at the open water boundaries and applied as tidal potentials in the interior of the ocean model domain. A directional surface roughness parameterization that modulates the wind speed at a given location based on the types of land cover encountered upwind, a forest canopy sheltering effect, and a spatially varying distribution of Manning’s–n friction coefficient used for computing the bottom/channel bed friction are also included in the storm surge model. Comparisons of the simulated wind speeds and phases against their real meteorological counterparts, of model elevations against actual sea surface elevations measured by NOAA tide gauges along the NC coast, and of simulated depth-averaged current velocities against Acoustic Doppler Current Profiler (ADCP) data, indicate that this new system produces remarkably realistic predictions of winds and storm surge.  相似文献   

12.
Neural network prediction of a storm surge   总被引:4,自引:0,他引:4  
T.-L. Lee   《Ocean Engineering》2006,33(3-4):483-494
The occurrence of storm surge does not only destroy the resident's lives, but also cause the severe flooding in coastal areas. Therefore, accurate prediction of storm surge is an important task during the coming typhoon. Conventional numerical methods and experienced methods for storm surge prediction have been developed in the past, but it is still a complex ocean engineering problem which many factors, including the central pressure of typhoon, the speed of the typhoon, the heavy rainfall, coastal topography and local features influence the variation of storm surge. In fact, this problem is still a complex nonlinear relationship that can not solved efficiently by these two methods. Therefore, this paper presents an application of the neural network for forecasting the storm surge. The original data of Jiangjyun station in Taiwan will be used to test the performance of the present model. The results indicate that the neural network can be efficiently forecasted storm surge using the four input factors, including the wind velocity, wind direction, pressure and harmonic analysis tidal level.  相似文献   

13.
根据粤西沿海4个海洋站潮位资料分析、讨论了“灿都”台风风暴潮特征:利用改进的Jelesnianski风场,并采用耦合天文潮模拟与非耦合天文潮两种方案,对1003号台风“灿都”进行模拟、分析,模拟结果显示:在改进的杰氏风场驱动下,两种预报结果误差都比较小,但耦合天文潮预报结果优于非耦合天文潮预报结果.  相似文献   

14.
A down-scaled operational oceanographic system is developed for the coastal waters of Korea using a regional ocean modeling system(ROMS).The operational oceanographic modeling system consists of atmospheric and hydrodynamic models.The hydrodynamic model,ROMS,is coupled with wave,sediment transport,and water quality modules.The system forecasts the predicted results twice a day on a 72 h basis,including sea surface elevation,currents,temperature,salinity,storm surge height,and wave information for the coastal waters of Korea.The predicted results are exported to the web-GIS-based coastal information system for real-time dissemination to the public and validation with real-time monitoring data using visualization technologies.The ROMS is two-way coupled with a simulating waves nearshore model,SWAN,for the hydrodynamics and waves,nested with the meteorological model,WRF,for the atmospheric surface forcing,and externally nested with the eutrophication model,CE-QUAL-ICM,for the water quality.The operational model,ROMS,was calibrated with the tidal surface observed with a tide-gage and verified with current data observed by bottom-mounted ADCP or AWAC near the coastal waters of Korea.To validate the predicted results,we used real-time monitoring data derived from remote buoy system,HF-radar,and geostationary ocean color imager(GOCI).This down-scaled operational coastal forecasting system will be used as a part of the Korea operational oceanographic system(KOOS) with other operational oceanographic systems.  相似文献   

15.
Using the limit surface slope as a criterion of wave breaking,a simple model for estimatingthe spatial fraction of breaking surface of sea at an instant,which is regarded as the whitecap coverge inthis paper,is analytically derived from the probability density of surface slope based on Gaussianstatistics.The resulting fraction is found depending on the fourth moment of wave spectum,m_4,as well asthe critical threshold of surface slope.By expressing the fourth moment in terms of the Neumannspectrum,a formula linking the fraction and wind speed for fully developed sea states is obtianed.Anotherformula relating the fraction to both wind speed and fetch(or duration)is achieved by expressing m_4 interms of the Krylov spectrum and applying the empirical relationships used in the SMB ocean wave pre-dicting technique.A comparison between these results and the field data of whitecap coverage collected byMonahan and O'Muircheartuigh shows an encouraging agreement.  相似文献   

16.
风暴潮可能给沿海城市造成巨大破坏, 而深圳位于易受台风影响的南海北部沿岸, 经济和人口总量巨大, 但有关深圳近海风暴潮的研究工作却十分匮乏。本文基于区域海洋模式系统(regional ocean model system, ROMS)建立了一个以深圳近海为中心的三层嵌套模型, 用于研究深圳近海台风所致风暴潮的影响因素。首先对2018年台风“山竹”过境深圳导致的风暴潮进行模拟, 模拟结果与观测结果较为一致。在此基础上, 进行一系列参数调整试验, 研究台风登陆地点、登陆角度、台风尺度、台风强度以及移动速度的改变对风暴潮及其分布的影响。结果表明, 在深圳西边登陆的台风, 比在深圳东边登陆的台风产生的最大增水高1.5m左右。由东往西移动并登陆深圳的台风, 比由南向北移动的台风产生的最大增水高1.0m左右。台风最大风速半径增加15%, 最大增水上升0.2m左右。台风强度增强15%, 最大增水上升0.4m左右。台风移动速度总体上对风暴潮影响不大, 但不同登陆地点存在明显差异。当台风在深圳西边或者东边登陆时, 台风移动速度增加30%, 深圳沿海各海湾的最大增水反而上升0.2~0.6m。当台风从深圳中部登陆时, 台风移动速度增加30%, 珠江口的最大增水降低0.1m左右, 大鹏湾和大亚湾的最大增水却相反地上升0.2m左右, 不同海湾对台风移动速度呈现不同的变化特征, 与各海湾水体重新分布到稳定状态时间和台风作用时间有关。  相似文献   

17.
《Ocean Modelling》2011,36(4):314-331
Hurricane-induced storm surge, waves, and coastal inundation in the northeastern Gulf of Mexico region during Hurricane Ivan in 2004 are simulated using a fine grid coastal surge model CH3D (Curvilinear-grid Hydrodynamics in 3D) coupled to a coastal wave model SWAN, with open boundary conditions provided by a basin-scale surge model ADCIRC (Advanced CIRCulation) and a basin-scale wave model WW3 (WaveWatch-III). The H1wind, a reanalysis 10-m wind produced by the NOAA/AOML Hurricane Research Division (HRD), and a relatively simple analytical wind model are used, incorporating the effect of land dissipation on hurricane wind. Detailed comparison shows good agreement between the simulated and measured wind, waves, surge, and high water marks. Coastal storm surge along the coast is around 2–3 m, while peak surge on the order of 3.5 m is found near Pensacola, which is slightly to the east of the landfall location on Dauphin Island. Wind waves reach 20 m at the Mobile South station (National Data Buoy Center buoy 42040) on the shelf and 2 m inside the Pensacola/Escambia Bay. Model results show that wave-induced surge (total surge subtracted by the meteorologically-induced surge due to wind and pressure) accounts for 20–30% of the peak surge, while errors of the simulated surge and waves are generally within 10% of measured data. The extent of the simulated inundation region is increased when the effects of waves are included. Surge elevations simulated by the 3D model are generally up to 15% higher than that by the 2D model, and the effects of waves are more pronounced in the 3D results. The 3D model results inside the Pensacola/Escambia Bay show significant vertical variation in the horizontal currents. While the estuary has little impact on the surge elevation along the open coastal water, surge at the head of Escambia Bay is more than 50% higher than that at the open coast with 1.5 h delay.  相似文献   

18.
刘子龙  史剑  蒋国荣 《海洋科学》2017,41(3):122-129
基于海浪模式WAVEWATCH Ⅲ模拟北太平洋海浪要素,结合NDBC浮标资料进行验证,发现模拟出的有效波高与浮标测量值具有很好的一致性。基于改进型白冠覆盖率耗散模型,利用海浪模式模拟出的有效波高、有效波周期和摩擦速度等海浪要素计算出单位面积水柱内因海浪破碎产生的湍动能通量。通过改变环流模式sbPOM湍动能方程的上边界条件,引入海浪破碎产生的湍动能通量,并探究海浪破碎对北太平洋海表面温度模拟的影响。研究表明,由于海浪破碎的引入,环流模式sbPOM对北太平洋海表面温度模拟的准确程度得到提升,这为大气模式提供一个准确的北太平洋下边界条件具有重要意义。  相似文献   

19.
A hindcast simulation of 75 typhoons and winter monsoons which affected the coastal areas of Korean Peninsula is performed by use of a third generation ocean wave prediction model, WAM-cycle 4 model, loosely coupled with a com-bined tide and surge model. Typhoon wind fields are derived from the planetary marine boundary layer model for effective neutral winds embedding the vortical storm wind from the parameterized Rankin vortex type model in the limited areas of the overall modeled region. The hindcasted results illustrate that significant wave heights (SWH) considering the wave-tide-surge coupled process are significantly different from the results via the decoupled case especially in the region of the estuaries of the Changjiang Estuary, The Hangzhou Bay, and the southwestern tip of Korean Peninsula. This extensive model simulation is the first attempt to investigate the strong wave-tide-surge interaction for the shallow depth area along the coasts of the Yellow Sea and the East China Sea Continental  相似文献   

20.
The influences of tropical cyclone paths and shelf bathymetry on the inducement of extreme sea levels in a regional bay are investigated. A finite volume coastal ocean model(FVCOM) has been configured for the Gulf of Thailand-Sunda Shelf. A parametric wind model is used to drive the FVCOM. The contributions of the tropical cyclone characteristics are determined through a scenario-based study. Validation based on a historical extreme sea level event shows that the model can resolve the oscillation mechanism well. The intensification of severe storm surges in the region highly depends on four factors including phase propagation of the storm surge wave determined by the landfall position, funnel effect caused by locality of the coastline, and shelf bathymetry determined by the state of mean sea level and coastline crossing angle of the storm path. The coexistence of these factors can cause particular regions e.g. the Surat Thani Bay, inner Gulf of Thailand and Ca Mau Peninsular to experience a larger surge magnitude. These areas are found to be highly related to monsoon troughs that develop during the onset and early northeastern monsoon season(October–November).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号