首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
水地沟金矿是河南省北秦岭高庄-二郎坪金多金属矿成矿带内新发现的金矿,为探讨其成矿物质来源及成矿物质释放机制,对水地沟金矿矿石进行了S、Pb同位素分析。4件黄铁矿样品的δ~(34)S值介于0. 5‰~4. 5‰,平均值为2. 5‰,具有塔式分布特征,峰值在2‰~4‰之间,显示幔源硫特征。7件样品的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb的比值范围分别为15. 80~18. 32、15. 11~15. 68和35. 17~38. 39,它们的μ值、△α值、Δβ值和Δγ值的范围依次为8. 97~9. 85、32. 93~74. 31、-1. 98~30. 64和4. 10~50. 61。在~(206)Pb/~(204)Pb-~(207)Pb/~(204)Pb比值图解中,水地沟金矿样品点位于下地壳铅演化趋势线和上地壳铅演化趋势线之间,在~(206)Pb/~(204)Pb-~(208)Pb/~(204)Pb比值图解中,它们集中于上地幔和造山带铅演化趋势线两侧,铅同位素Δβ-Δγ图解表明它们位于地幔Pb、上地壳Pb和上地壳与地幔混合的俯冲带Pb三个源区内。S、Pb同位素特征表明水地沟金矿成矿物质来源于上地幔-下地壳,成矿过程中有上地壳物质加入。水地沟金矿床的形成与北秦岭燕山期陆内(板内)造山过程密切相关,它是区域岩石圈拆沉作用的产物。在这一区域岩石圈灾变过程中,不仅使水地沟岩石圈-软流圈系统内不同源区的流体混合,造成了"宽泛"的S、Pb同位素示踪结果,而且有利于深部流体的大规模快速释放,说明水地沟金矿及其邻区具有大的成矿潜力。  相似文献   

2.
龙山Au-Sb矿床是湘中Au、Sb矿集区的代表性矿床,本文对其不同类型矿石、矿区围岩和区域地层进行了S、Pb、Sr同位素组成对比研究。矿石中硫化物的δ~(34)S值为-3.0‰~5.1‰,平均值2.3‰;矿区围岩的δ~(34)S值为4.0‰~5.9‰,平均值5.2‰;区域地层的δ~(34)S值为9.3‰~13.3‰,平均值11.3‰。矿石与矿区围岩、区域地层的硫同位素组成差别较大,矿石硫具岩浆来源特征。矿石中硫化物的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb比值分别为16.992~18.457、15.392~15.722和37.586~38.960,矿区围岩的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb比值分别为17.630~17.993、15.522~15.644和37.981~38.366;区域地层的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb比值分别为17.566~18.092、15.430~15.630和37.988~38.710。矿石铅同位素组成变化较大,矿石铅的来源较复杂,赋矿地层、印支期岩浆岩和上地幔可能都为其提供了部分铅。石英流体包裹体的(~(87)Sr/~(86)Sr)_i比值为0.71540~0.72309,矿区围岩的(~(87)Sr/~(86)Sr)_i比值为0.71844~0.72153,区域地层的(~(87)Sr/~(86)Sr)_i比值为0.71792~0.71939,矿石、矿区围岩、区域地层的初始锶同位素值均较高,主要为壳源锶,部分锶来自赋矿地层,部分来自印支期岩浆岩。龙山矿床成矿物质具壳幔混合来源特征,矿化剂硫主要来源于岩浆,成矿物质部分来自江口组地层,部分来自印支期岩浆岩。  相似文献   

3.
滇西金厂河铁铜铅锌多金属矿床位于保山地块北部,是"三江"多金属成矿带内典型矿床之一。对该矿床开展硫铅同位素示踪研究,探讨成矿物质来源,并结合构造背景和成矿时代分析了矿床成矿机制。样品测试结果表明,矿石中硫化物的δ~(34)S值为+2.5‰~+11.1‰,平均值为+5.65‰,硫同位素来源为深部幔源岩浆和岩浆上侵混染壳源物质形成的多种硫源同位素组合;矿石矿物铅同位素组成中~(206)Pb/~(204)Pb为18.167~18.497,~(207)Pb/~(204)Pb为15.668~15.779,~(208)Pb/~(204)Pb为38.554~38.997,铅同位素总体较稳定,显示壳幔混染特征,以上地壳铅为主,可能来源有深部侵入岩浆及赋矿围岩。由矿床成矿物质来源表现出的多源、深源-浅源的特征推测,与成矿有关的中酸性岩体隐伏在区域深部。  相似文献   

4.
阿尔泰东南缘布尔根地区造山带型金矿床受韧性剪切带控制,有两种矿化类型:一为石英脉型,另一种为糜棱岩型。糜棱岩型金矿硫化物的δ~(34)S 值变化于-10.009‰~-2.819‰,平均值为-5.29‰,石英脉型金矿硫化物的δ~(34)S 值变化于-0.062‰~-1.688‰,平均值为-1.0575‰。布尔根地区金矿床的金属硫化物样品具有较窄的~(206)Pb/~(204)Pb 比值,变化于17.71~18.35;相对较高的~(207)Pb/~(204)Pb 比值为15.31~15.64和~(208)Pb/~(204)Pb 比值为37.13~38.07,铅同位素分析结果表明,该区金矿床成矿物质铅来源于地幔及下地壳。硫、铅同位素特征反映了布尔根地区金矿床成矿物质具有多来源特征。  相似文献   

5.
西藏申扎县雄梅铜矿床的硫、铅同位素特征及其成矿意义   总被引:1,自引:1,他引:0  
西藏雄梅斑岩型铜矿床位于班公湖-怒江成矿带中段的申扎县雄梅乡。矿区岩石类型由含矿花岗闪长斑岩、孔雀石化次生石英岩及含矿角岩化砂板岩组成。该矿床自2012年发现以来尚未开展成因方面的深入研究,作者旨在通过对矿区硫化物硫、铅同位素的系统研究,查明矿区的成矿物质来源,并通过与成矿带西段多龙矿集区斑岩铜矿成因的对比研究,对本地区的成矿潜力做出评价。测试结果表明,雄梅铜矿矿石硫化物的δ34S值为-2.5‰~6.1‰,硫同位素呈塔式分布,显示岩浆硫特征;铅同位素组成~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb、~(208)Pb/~(204)Pb比值分别为18.220~19.005、15.626~15.770、38.510~39.856,显示正常铅的特征。对铅同位素的源区分析,显示样品大致分布于上地壳端员。铅μ值在9.51~9.78之间,也表明硫化物样品具壳源的特征。与多龙矿集区成矿条件的对比研究,发现两者都是形成于造山带的碰撞后伸展环境,成矿物质来源上两者存在一些差异。良好的构造成矿环境,表明了本地区优越的找矿前景。  相似文献   

6.
大西洋洋中脊TAG热液区硫化物铅和硫同位素研究   总被引:18,自引:3,他引:18  
位于大西洋洋中脊26.08°N的 TAG 热液区是目前己知的赋存在无沉积物覆盖的洋中脊区的一个最大的海底热液硫化物矿床。新测得来自 ODP-158航次钻孔的9件热液硫化物的铅、硫同位素组成;2件铁锰氧化物和1件底盘玄武岩的铅同位素组成。结果表明,矿石硫化物的铅同位素组成~(206)Pb/~(204)Pb 为18.2343~18.3181,~(207)pb/~(204)Ph 为15.4717~15.5061,~(208)Pb/~(204)Pb 为37.7371~37.8417;它们位于该区底盘玄武岩(~(206)Pb/~(204)Pb=18.1454,~(207)Pb/~(204)Pb=15.4572,~(208)Pb/~(204)Pb=37.6534)和近洋底铁锰氧化物(~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb,~(208)Pb/~(204)Pb 分别为18.6907~18.9264,15.5615~15.6279,38.1164~38.3687)的铅同位素组成之间。三者呈线性相关关系,说明硫化物中铅来源于地幔(玄武岩)与海水(铁锰氧化物)的两端元混合。硫化物的硫同位素组成δ~(34)S 为6.2‰~9.5‰,它明显高于地幔玄武岩的硫同位素组成(δ~(34)S=±0‰),也高于东太平洋海隆 EPR21°N(δ~(34)S=0.9‰~4.0‰)和大西洋洋中脊 MAR23°N(δ~(34)S=1.2‰~2.8‰)等热液活动区硫化物的硫同位素组成,这一特征反映了 TAG 热液体系中硫来源于地幔玄武岩硫与海水硫酸盐无机还原作用产生的硫的两端元混合。此,铅硫同位素研究为现代大洋底热液硫化物矿床形成过程中矿质来源及流体混合作用提供了十分有益的信息。  相似文献   

7.
山西临汾下靳墓地为距今约4500年,分布于晋南陶寺文化范围内的一处史前墓地。本研究试用拉曼光谱仪、TIMS等仪器对出土于该墓地的绿松石制品进行物相、铅锶同位素等检测,实验显示:临汾下靳绿松石样品拉曼峰位于3474cm^(-1)、1038cm^(-1)、812cm^(-1)、641cm^(-1)、416cm^(-1)、229cm^(-1)处,样品强峰位于1038cm^(-1)附近。同位素比值^(87)Sr/^(86)Sr位于0.71011~0.71270之间,^(207)Pb/^(204)Pb位于15.37757~5.83400之间。经过与绿松石矿源比较得出:临汾下靳绿松石制品矿源至少有三处,目前已知的矿源有湖北竹山喇嘛洞和陕西洛南辣子崖。陕西洛南辣子崖、湖北竹山喇嘛洞出产的绿松石料出现在下靳墓地,表明这两处绿松石矿的开采年代可早至新石器时代晚期,这为今后古绿松石矿找矿工作有一定的指示意义。  相似文献   

8.
川滇黔铅锌成矿域位于扬子克拉通的西南缘,是我国十分重要的铅锌成矿区带之一,相关成矿物质来源认识长期存在较大争议。本文以该区研究程度较低的黔西北云炉河坝矿集区为研究对象,对矿集区内典型的铅锌矿床(包括,昊星、富强、顺达和狮子洞等)进行了硫、铅同位素研究,以探讨其成矿物质的来源。硫同位素分析结果表明,昊星矿区硫化物的δ34S值变化范围很小(-1.5‰~2.7‰),且集中于零值附近,暗示矿区硫可能主要来自于幔源岩浆硫的贡献,另外还发现一件黄铁矿样品具有较低的δ34S值(-18.1‰),反映矿区可能还存在细菌还原硫的贡献。铅同位素数据表明,不同矿区不同类型矿石的Pb同位素组成十分均一,206Pb/204Pb介于18.196~18.525,207Pb/204Pb为15.645~15.731,208Pb/204Pb为38.415~39.058,且不同样品之间的Pb同位素不存在明显差别,表明云炉河坝矿集区中的众多铅锌矿床(点)可能具有统一的铅金属来源,且后期的氧化淋滤作用并未导致明显的铅同位素分馏。通过与区域上不同时代地层以及邻区铅锌矿床综合对比,我们初步认为矿区铅可能主要源于该区基底岩石,而非其赋矿地层和二叠纪玄武岩。  相似文献   

9.
蓬莱金矿区位于胶东三大金矿带中的栖霞-蓬莱金矿带内。本文系统研究了该金矿化集中区内的黑岚沟、大柳行和河西金矿的 S、Pb、Rb-Sr 同位素地球化学特征,并与招远-掖县成矿带中的玲珑金矿化集中区内的大型-超大型金矿床进行了对比研究。蓬莱金矿区δ~(34)S 值总体变化为6.3‰~9.5‰,平均值为7.5‰。其中河西金矿δ~(34)S 值为7.4‰~8.5‰,黑岚沟金矿δ~(34)S 值为6.3‰~9.5‰,大柳行金矿δ~(34)S 值为6.4‰~8.2‰。不同矿床的硫同位素组成差异十分小,并与玲珑金矿区的硫同位素组成相近(δ~(34)S=6.4‰~8.6‰,平均值为7.6‰)。蓬莱金矿区的铅同位素组成变化小,其中河西金矿~(206)Pb/~(204)Pb 为17.3086~17.4799,~(207)Pb/~(204)Pb 为15.5264~15.5543,~(208)pb/~(204)Pb 为38.0642~38.3698;大柳行金矿~(206)Pb/~(204)Pb 为17.3653~ 17.5037.~(207)Pb/~(204)Pb 为15.5142~15.5355,~(208)Pb/~(204)Pb 为38.1249~38.31 36:黑岚沟金矿~(206)Pb/~(204)Pb 为17.3558~17.5958,~(207)Ph/~(204)Pb 为15.5105~15.5746,~(208)Pb/~(204)Pb为38.0749~38.4361。投影到 Zartman and Doe(1981)铅构造模式图上,成分点落在造山带演化线附近。蓬莱金矿区与玲珑金矿区的铅同位素组成基本一致,部分数据与矿区内煌斑岩的铅同位素组成相近,而与赋矿围岩郭家岭花岗岩相差甚远,表明矿体中的铅可能与煌癍岩有相同的源区。矿石铅呈线性趋势分布,它正好位于煌斑岩与一个极具放射成因铅的胶东群地层的铅同位素组成之间,很可能说明矿石铅是壳幔混合的产物。对蓬莱金矿区黄铁矿的 Rb-Sr 同位素分析结果表明,河西金矿的成矿年龄为122.3±3.1Ma(MSWD=1.7),初始~(87)Sr/~(86)Sr 比值为0.71208;黑岚沟和大柳行金矿的成矿年龄为117.8±6.5Ma(MSWD=17),初始~(87)Sr/~(86)Sr 比值为0.71085。说明蓬莱金矿区具有与玲珑金矿区相近的成矿时代,两者均为120Ma 左右。锶同位素初始比值也说明成矿物质具有壳慢混合的特征。从蓬莱金矿区具有与玲珑金矿区一致的地质、地球化学和年代学特征可知,蓬莱金矿区具有产出大型一超大型金矿的巨大远景。  相似文献   

10.
贵州友能铅锌矿床位于黔东南从江县境内,毗邻地虎—九星铜多金属矿床和那哥铜铅多金属矿床,是一个以Pb为主的多金属矿床。对该矿床铅锌矿石进行了稀土元素和Pb同位素地球化学研究,结果表明,铅锌矿石的REE总量较高,ΣREE变化范围为30.4×10~(-6)~240×10~(-6),Eu负异常明显(δEu=0.52~0.81),Ce异常不显著(δCe=0.95~1.04,除1个样品为0.55外)。对比发现,友能铅锌矿石的REE配分特征与赋矿围岩(浅变质岩)较为相似,而与研究区出露的基性-超基性和中酸性岩浆岩差异明显。总体上,铅锌矿石的REE特征及相关参数表明,围岩参与了友能矿床的成矿,铅锌成矿流体中的REE可能是在还原环境下通过水/岩相互作用继承源区岩石的。此外,矿床中铅锌矿石的~(208)Pb/~(204)Pb比值为38.074~38.823,~(207)Pb/~(204)Pb比值为15.631~15.895和~(206)Pb/~(204)Pb比值为17.875~18.224,而围岩的~(208)Pb/~(204)Pb比值为38.003~38.457,~(207)Pb/~(204)Pb比值为15.548~15.650和~(206)Pb/~(204)Pb比值为17.774~18.181,两者Pb同位素比值较为相似,进一步表明围岩为成矿提供了物质。综合研究认为,友能铅锌矿床属于构造控制的热液矿床,铅锌等金属元素来源与赋矿围岩(浅变质岩)关系密切。  相似文献   

11.
皖北地区地处安徽淮河以北,是先秦时期南北文化交流的重要通道,也是长江中下游铜矿北进中原的必经区域之一,该地区的青铜器对于探讨长江中下游铜矿与中原青铜文化的关系至关重要.本工作采用X射线荧光光谱仪(XRF)和激光剥蚀多接收器等离子体质谱(LA-MC-ICP-MS)对出土于皖北地区4件青铜器及湖北吉家院战国楚墓出土的青铜器...  相似文献   

12.
探讨了利用青铜器内残留的陶范或泥芯示踪青铜器产地的可行性。采用偏光显微镜、XRD、XRF、NAA等技术手段,测试分析了湖北九连墩楚墓青铜器内的泥芯,发现九连墩外来风格青铜器的泥芯,在物相、微观结构、化学成分、植硅体组合等方面与本地风格青铜器的泥芯有较大差异。外来风格青铜器的泥芯,其CaO含量很高,达6%以上,而Na2O的含量相对较低,这一富钙、贫钠的特点,与中国黄土的典型特征极为吻合。结合泥芯中的植硅体组合特征,推测九连墩外来风格的青铜器很可能来自中国北方黄土堆积地区,系当地铸造后输入到楚国的。本研究表明利用青铜器内的泥芯或陶范残留,可望有效地示踪青铜器的产地。  相似文献   

13.
Using the high-precision technique of MC-ICP mass spectrometry, the isotope composition of lead was studied for the first time in sulfides of different mineral associations at the Verninskoe deposit that belong to large gold deposits of the Lena Province. In 23 monofractions of sulfides (pyrite, arsenopyrite, galena, and sphalerite), the Pb-Pb data showed a pronounced heterogeneity of the isotope composition of ore lead (206Pb/204Pb = 18.21–18.69, 207Pb/204Pb = 15.59–15.67, and 208Pb/204Pb = 37.98–38.63) for the deposit as a whole. This heterogeneity is also seen to a lesser degree within individual samples. In this case, a correlation takes place between the isotope composition of ore Pb and the type of mineral association: the sulfides in earlier associations are characterized by lower contents of the 206Pb, 207Pb, and 208Pb radiogenic isotopes compared to the minerals of later parageneses. The comparison of Pb-Pb isotope characteristics of ore mineralization of the Verninskoe deposit to those of the Sukhoi Log deposit (the greatest in the Lena Province) testifies to the geochemical similarity of the sources of ore Pb involved in the formation of these deposits. The sources as such were terrigenous rocks of the Bodaibo synclinorium formed mainly as a result of the disintegration of Precambrian rocks of the Siberian craton.  相似文献   

14.
Lead isotope analyses of galena from five ore deposits and six prospects in the Aysén region of southern Chile are reported. Most of the deposits are either low sulfidation epithermal gold–silver veins or skarn and manto deposits; the majority are either suspected to be, or dated as, Late Jurassic to mid-Cretaceous. Galena lead isotope data for most of the deposits from southern Chile cluster near the “orogene” within a “plumbotectonic” model framework. Average values (206Pb/204Pb=18.53, 207Pb/204Pb=15.63, and 208Pb/204Pb=38.50) are near Jurassic to Cretaceous model ages on the “orogene” curve of Zartman and Doe (1981) and the second-stage curve of Stacey and Kramers (1975) on a 206Pb/204Pb versus 207Pb/204Pb plot. These model ages are compatible with absolute ages as currently known. The elongate trends in the general cluster indicate mainly an orogenic model fit, suggesting variable mixing of lead from different sources, mainly model upper crust and lesser model mantle and lower crust reservoirs. Galena lead associated with one deposit (El Faldeo) is relatively radiogenic, and lies near a Jurassic age on the “upper crustal” curve of Zartman and Doe (1981), which is compatible with the Ar/Ar age of the deposit. Galena lead isotope clusters define three main groups of deposits. These three groups appear to be related to three mineralizing events, dated by K–Ar and Ar/Ar, in the Late Jurassic (group 3), and in the Early and mid-Cretaceous (groups 1 and 2 respectively). Averages for group 1, the northern group including El Toqui and Katerfeld, are 206Pb/204Pb=18.51, 207Pb/204Pb=15.62, 208Pb/204Pb=38.48. Averages for group 2, the southern group with Fachinal and Mina Silva, are 206Pb/204Pb = 18.56, 207Pb/204Pb=15.63, 208Pb/204Pb=38.52. Averages for group 3, the southernmost group with the El Faldeo, Lago Chacabuco and Lago Cochrane prospects, are 206Pb/204Pb=18.83, 207Pb/204Pb=15.65, 208Pb/204Pb=38.63. The Cretaceous deposits (groups 1 and 2) contain orogene-type lead that becomes increasingly radiogenic southward. Lead from the Late Jurassic deposits (group 3) appears to reflect mixing of orogene lead with highly radiogenic lead. The observed linear array of lead in group 3 probably reflects mixing of orogene lead with highly radiogenic lead, which was likely extracted by selective leaching of mineralizing hydrothermal solutions from the metamorphic basement. Received: 10 July 1999 / Accepted: 15 July 2000  相似文献   

15.
《Chemical Geology》2004,203(1-2):75-90
The lead isotopic composition of river sediments is reported in the present work for the Earth's major river basins, from old cratonic to young orogenic areas and from subarctic to tropical climates. Sediment samples from these large river basins provide a useful tool to calculate the average upper crustal composition because they are large-scale integrated samples of the weathering products of the present-day Upper Continental Crust (UCC). Two different and complementary calculations were done to estimate the average lead isotopic composition of the UCC. The first, based on the flux weighted average of particulate lead delivered by the rivers, gave values of 19.07, 15.74 and 39.35 for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios, respectively. To avoid over-estimating the contribution of orogenic areas, which produces a bias (because the flux of particulate lead depends strongly on the physical erosion rate), a second calculation was done by averaging with drainage areas of each river basin. This gave values of 18.93, 15.71 and 39.03 for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios, respectively. These direct calculations of the lead isotopic composition of the UCC are similar and are in agreement with previous estimates made using an indirect approach.  相似文献   

16.
28 samples of Cenozoic volcanic rocks collected from Shandong Province have been dated by K-Ar method. They are mainly Neogene with an age range of 4–19 m. y. The basalts from Linqu and Yishui in west Shandong Province are Miocene and those from Penglai and Qixia in east Shandong Province are Miocene and Pliocene in age. The basalts from Wudi in north Shandong Province are Middle-Early Pleistocene in age. In each area the duration of volcanic eruption was estimated at about 2–3 m. y. Pb and Sr isotopic compositions and U, Th, Pb, Rb, Sr, and major elements in most of the samples were determined. The isotopic compositions are:206Pb/204Pb—16.92-18.48,207Pb/204Pb—15.30-15.59,208Pb/204Pb—37.83-38.54, and (87Sr/86Sr)i—0.70327-0.70632. There are some positive or negative linear correlations between206Pb/204Pb and207Pb/204Pb, Pb isotopes and Pb content, Pb isotopes and Sr isotopes, and Sr isotopes and other elements. The basaltic rocks from east and west Shandong Province have somewhat differences in isotopic composition and element content. The basalts probably are products of multi-stage evolution of the mantle. They have preserved the primary features of the source, although they were influenced, to some extent, by the contamination of crustal materials.  相似文献   

17.
Lead isotope signatures (207Pb/206Pb, 208Pb/206Pb, 208Pb/204Pb, 206Pb/204Pb), determined by magnetic sector ICP-MS in river channel sediment, metal ores and mine waste, have been used as geochemical tracers to quantify the delivery and dispersal of sediment-associated metals in the lower Danube River catchment. Due to a diverse geology and range of ore-body ages, Pb isotope signatures in ore-bodies within the lower Danube River catchment show considerable variation, even within individual metallogenic zones. It is also possible to discriminate between the Pb isotopic signatures in mine waste and river sediment within river systems draining individual ore bodies. Lead isotopic data, along with multi-element data; were used to establish the provenance of river sediments and quantify sedimentary contributions to mining-affected tributaries and to the Danube River. Data indicate that mining-affected tributaries in Serbia and Bulgaria contribute up to 30% of the river channel sediment load of the lower Danube River. Quantifying relative sediment contributions from mining-affected tributaries enables spatial patterns in sediment-associated metal and As concentrations to be interpreted in terms of key contaminant sources. Combining geochemical survey data with that regarding the provenance of contaminated sediments can therefore be used to identify foci for remediation and environmental management strategies.  相似文献   

18.
The Bajiazi deposits of western Liaoning Province, northeastern China, are aligned approximately west-east in an 8-× 15-km district. The Zn-Pb-Ag-FeS2 sulfide ores are hosted in intensively folded and faulted Early Proterozoic carbonates and minor clastic rocks, near their contact with Late Jurassic-Early Cretaceous Bajiazi granite. The ore-bearing strata on both limbs of the Bajiazi syncline can be correlated throughout the district. Orebodies are stratigraphically conformable with the host rocks and mostly parallel the contact metamorphic halo of the granite, in the skarn mineralizing zone. The ores are composed of stratabound and stratiform sulfide lenses and layers, are associated with sediments formed in local depressions of a tectonically active, shallow-marine environment, and are limited to dolomitized tidal flat and lagoonal facies with cryptalgal lamination and to adjacent oolitic grainstones of barrier facies. The ores consist of fine- to medium-grained intergrowths of sulfides in dolomite and locally skarn gangues. Sulfides are intensely recrystallized and annealed in the contact metamorphic halo. Isotopes of sulfur, carbon, oxygen, and lead were examined for genetic interpretation of the sulfides and host rocks. Sulfur isotope values range from ?9.1 to 13.0 per mil for sulfides, suggesting sedimentary exhalative origin, though they were, to some extent, homogenized during late overprinting events. The δ18O values range between ?6 and ?15 per mil PDB, and the δ13C values between +1 and ?5 per mil PDB. Late crystallization generations are enriched in the light isotopes of oxygen and carbon compared to primary ones. Lead isotope ratios in galenas from all Bajiazi ores have means of 206Pb/204Pb = 16.23, 207Pb/204Pb = 15.23, and 208Pb/204Pb = 36.51. These isotope ratios, characterized by a model age of about 1350 Ma, suggest an early Proterozoic, crustal source for the lead in the ores, unrelated to the lead in the Mesozoic granite. All evidence identified in this study suggests that the Bajiazi polymetallic sulfide deposits formed as sedimentary exhalative accumulations in a Lower Proterozoic, shallow-marine sedimentary basin. The present distribution of the ores and their distinctive textures indicate overprinting by. contemporaneous and/or post-depositional tectonic processes, as well as contact metamorphism during the emplacement of the Mesozoic Bajiazi granite.  相似文献   

19.
The Xujiashan antimony deposit is hosted by marine carbonates of the Upper Sinian Doushantuo and Dengying Formations in Hubei Province, South China. Our Sr isotopic data from pre‐ and syn‐mineralization calcites that host the mineralization show that the pre‐mineralization calcite displays a narrow range of 87Sr/86Sr ratios (0.7096 to 0.7097), similar to the ratios of the Sinian seawater, and high Sr concentrations (2645 to 8174 ppm). In contrast, the syn‐mineralization calcite exhibits low Sr concentrations (785 to 2563 ppm) and high 87Sr/86Sr ratios (0.7109 to 0.7154), which is interpreted as the result of addition of radiogenic strontium during the antimony mineralization. The study of Sr isotopes suggests that their Sr component to the pre‐mineralization calcite derived directly from the host rocks (i.e. the Sinian marine carbonates), while radiogenic 87Sr for the syn‐mineralization calcite derived from the underlying Mesoproterozoic Lengjiaxi Group basement through hydrothermal fluid circulation along the major fault that hosts the mineralization. The Pb isotopic ratios of stibnite are subdivided into two groups (Group A and Group B), Group A is characterized by higher radiogenic lead, with 206Pb/204Pb = 18.874 to 19.288, 207Pb/204Pb = 15.708 to 15.805, and 208Pb/204Pb = 38.642 to 39.001. Group B shows lower lead isotope ratios (206Pb/204Pb = 17.882 to 18.171, 207Pb/204Pb = 15.555 to 15.686, and 208Pb/204Pb = 37.950 to 38.340). The single‐stage model ages of Group A are mainly negative or slightly positive values (‐258 to 3 Ma), while those of Group B range from 636 to 392 Ma, with an average of 495 ± 65 Ma. In addition, there are positive linear correlations among Pb isotopic ratios. These results suggest that the lead of Group A stibnite was mainly derived from the Sinian marine carbonates, and that of Group B stibnite from the underlying Lengjiaxi Group basement. This conclusion is consistent with the results of the Sr isotopes. These results indicate that the Xujiashan deposit is not syngenetic sedimentary and in situ reworked origin as previously considered. The metal (mainly Sb) of this deposit was not only derived from the Sinian host rocks, but also partly derived from the underlying Mesoproterozoic Lengjiaxi Group basement.  相似文献   

20.
The Austin Glen Member of the upper Middle Ordovician Normanskill Formation is a sandstone-shale flysch succession deposited in the foreland of the Taconian Orogen. Petrographic, major and trace element, and Nd–Pb isotopic data provide substantial constraints on its provenance. Lack of K-feldspar and paucity of plagioclase, in addition to the dominance of sedimentary rock fragments, indicate that the source was dominated by recycled, sedimentary components. Major and trace element data support this conclusion and indicate that the provenance of both shales and sandstones was the same. No evidence of an ophiolitic or volcanic component was observed. Interpretation of Nd isotopic characteristics are complicated by a partial resetting of the Nd isotope system at about the time of sedimentation but indicate that the provenance of the Austin Glen Member had a long-term history of light rare earth element (LREE) enrichment (average TDM = 1·8 Ga). Furthermore, Nd isotopic compositions are extremely homogeneous (?Nd = –8·1 ± 0·6; 1 s.d.; n = 23) at 450 Ma, the approximate depositional age, indicating either a single source or very well-mixed sources. 207Pb/204Pb ratios are variable but within the range of Pb isotopic compositions typically described as Grenvillian. The range of 207Pb/204Pb is greater than expected for the range of 206Pb/204Pb and suggests an additional component of Pb, possibly introduced during diagenesis. The immediate source of the Austin Glen Member may have been the accretionary prism that developed as older sediments of the Laurentian margin were scraped off the basin floor, incorporated within the accretionary prism and shed into the basin. No evidence indicating the arrival of an undifferentiated island arc or continental fragment during the Taconian Orogeny has been found. The data acquired during this study can be explained almost exclusively by Grenville Province source components but with possible additional contributions from older Laurentian terranes and Late Proterozoic rift volcanics that are not readily quantified but likely to have been minor. Accordingly, we conclude that the Taconian Orogeny in New England involved either: (1) a continental arc that involved exclusively Laurentia; (2) collision of a continental block with identical geochemical characteristics as Laurentia; or (3) essentially no detritus from any exotic colliding block (island arc or continental fragment) reached the foreland basin at the time of Austin Glen deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号