首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Precise long-range kinematic GPS positioning requires the use of carrier phase measurements, the data processing of which suffers from the technical challenges of ambiguity resolution and cycle slip repair. In this paper, the combination of an ambiguity recovery technique and a linear bias correction method has been used to overcome such problems. An experiment was conducted to test the utility of this technique to determine aircraft height to high accuracy, over very long baselines (of the order of one thousand kilometres), in support of the Laser Airborne Depth Sounder (LADS). From a comparison of four independently derived trajectories, this airborne GPS kinematic positioning experiment has confirmed that the sea surface can be determined to centimetre accuracy. The sea surface profiles thus obtained can be used to correct the errors introduced by long period ocean swells.  相似文献   

2.
Precise, long-range GPS kinematic positioning to centimeter accuracy requires that carrier phase ambiguities be resolved correctly during an initialization period, and subsequently to recover the “lost" ambiguities in the event of a cycle slip. Furthermore, to maximize navigational efficiency, ambiguity resolution and carrier phase-based positioning need to be carried out in real-time. Due to the presence of the ionospheric signal delay, satellite orbit errors, and the tropospheric delay, so-called absolute ambiguity resolution “on-the-fly” for long-range applications becomes very difficult, and largely impossible. However, all of these errors exhibit a high degree of spatial and temporal correlation. In the case of short-range ambiguity resolution, because of the high spatial correlation, their effect can be neglected, but their influence will dramatically increase as the baseline length increases. On the other hand, between discrete trajectory epochs, they will still exhibit a large degree of similarity for short time spans. In this article, a method is described in which similar triple-differenced observables formed between one epoch with unknown ambiguities and another epoch with fixed ambiguities can be used to derive relative ambiguity values, which are ordinarily equal to zero (or to the number of cycles that have slipped when loss-of-lock occurred). Because of the temporal correlation characteristics of the error sources, the cycle slips can be recovered using the proposed methodology. In order to test the performance of this algorithm an experiment involving the precise positioning of an aircraft, over distances ranging from a few hundred meters up to 700 kilometres, was carried out. The results indicate that the proposed technique can successfully resolve relative ambiguities (or cycle slips) over long distances in an efficient manner that can be implemented in real-time.  相似文献   

3.
Precise, long-range GPS kinematic positioning to centimeter accuracy requires that carrier phase ambiguities be resolved correctly during an initialization period, and subsequently to recover the “lost" ambiguities in the event of a cycle slip. Furthermore, to maximize navigational efficiency, ambiguity resolution and carrier phase-based positioning need to be carried out in real-time. Due to the presence of the ionospheric signal delay, satellite orbit errors, and the tropospheric delay, so-called absolute ambiguity resolution “on-the-fly” for long-range applications becomes very difficult, and largely impossible. However, all of these errors exhibit a high degree of spatial and temporal correlation. In the case of short-range ambiguity resolution, because of the high spatial correlation, their effect can be neglected, but their influence will dramatically increase as the baseline length increases. On the other hand, between discrete trajectory epochs, they will still exhibit a large degree of similarity for short time spans. In this article, a method is described in which similar triple-differenced observables formed between one epoch with unknown ambiguities and another epoch with fixed ambiguities can be used to derive relative ambiguity values, which are ordinarily equal to zero (or to the number of cycles that have slipped when loss-of-lock occurred). Because of the temporal correlation characteristics of the error sources, the cycle slips can be recovered using the proposed methodology. In order to test the performance of this algorithm an experiment involving the precise positioning of an aircraft, over distances ranging from a few hundred meters up to 700 kilometres, was carried out. The results indicate that the proposed technique can successfully resolve relative ambiguities (or cycle slips) over long distances in an efficient manner that can be implemented in real-time.  相似文献   

4.
Among the fastest‐growing applications of high‐precision GPS positioning are those which are kinematic in nature. Carrier phase‐based GPS positioning of a moving antenna—for example, attached to a ship, an aircraft, or a land vehicle—is now commonplace. Recent software innovations make use of advanced ambiguity resolution “on the fly” and real‐time kinematic data processing algorithms to emulate the ease of operation of conventional differential GPS (DGPS) based on transmitted pseudo‐range corrections. However, as much higher accuracy must now be assured compared to DGPS, greater attention must be focused on the quality control aspects of GPS positioning. This study describes two methods for detecting failures or changes of small magnitude in real time in GPS measurements. Examination of the overlap or disjointedness of robust and conventional confidence intervals and studentized normal variates have been used as failure detection tools. These methods are based on testing the performance of the differences between the conventional (nonrobust) Kalman state estimates and the robust Kalman filler estimates. Detection of cycle slips in carrier phase data, outliers in phase rate or in code ranges, or any other type of disorder in the measurements of the GPS system can be addressed with these failure detection methods. Application and evaluation of the algorithms has been carried out using raw carrier‐phase and phase‐rate GPS measurements. It has been demonstrated that these failure detection tools provide powerful and efficient diagnostics for detecting small changes in the measurements of the GPS system.  相似文献   

5.
Wanshan area has been chosen to be the specified field to calibrate and validate(Cal/Val) the HY-2 altimeter and its follow-on satellites. In March 2018, an experiment has been conducted to determine the sea surface height(SSH) under the HY-2 A ground track(Pass No. 203). A GPS towing-body(GPS-TB) was designed to measure the SSH covering an area of about 6 km×28 km wide centered on the HY-2 A altimeter satellite ground track. Three GPS reference stations, one tide gauge and a GPS buoy were placed in the research area, in order to process and resolve the kinematic solution and check the precision of the GPS-TB respectively. All the GPS data were calculated by the GAMIT/GLOBK software and TRACK module. The sea surface was determined by the GPS-TB solution and the tide gauge placed on Zhiwan Island. Then the sea surface of this area was interpolated by Arc GIS10.2 with ordinary Kriging method. The results showed that the precision of the GPS-TB is about 1.10 cm compared with the tide gauge placed nearby, which has an equivalent precision with the GPS buoy. The interpolated sea surface has a bias of –1.5–4.0 cm with standard deviation of 0.2–2.4 cm compared with the checking line. The gradient of the measured sea surface is about 1.62 cm/km along the HY-2 orbit which shows a good agreement compared with the CLS11 mean sea surface(MSS). In the Cal/Val of satellites, the sea surface between the tide gauge/GPS buoy and the footprint of altimeter can be improved by this work.  相似文献   

6.
The accuracy of GPS/Acoustic positioning is crucial for monitoring seafloor crustal deformation. However, the slant range residual is currently the only indicator used to evaluate the precision of positioning seafloor transponders. This study employs a unique Seafloor Acoustic Transponder System (SATS) to evaluate the accuracy of GPS/Acoustic seafloor positioning. The SATS has three transponders and an attitude sensor in a single unit, which provides true lengths of transponder baselines and true attitude of the SATS to ensure assessment reliability and validity. The proposed approach was tested through a GPS/Acoustic experiment, in which an off-the-shelf acoustic system was used to collect range measurements. Using GPS/Acoustic geodetic observations, the positions of three transponders on the SATS were estimated by an optimization technique combined with ray-tracing calculations. The accuracy of the GPS/Acoustic seafloor positioning is assessed by comparing the true baselines and attitude with the results derived from the position estimates of the three transponders. A sensitivity analysis is conducted to investigate the robustness of the GPS/Acoustic positioning results to changes of sound speed. Experimental results demonstrate that the use of the SATS can help to assess the validity of the GPS and acoustic travel time measurements in the GPS/Acoustic seafloor positioning.  相似文献   

7.
Abstract

Using GPS phase observations in the kinematic mode, we are able to achieve centimeter accuracy in relative three‐dimensional coordinates. This could be verified even for fast‐moving sensors in aircraft, such as airborne photogrammetric cameras, at the time of exposure. Sophisticated kinematic software has been developed resolving cycle slips and carrier‐phase ambiguities during motion. To determine the instantaneous sea surface, the GPS receiver is placed in a free‐drifting buoy with the antenna on top. Differencing the 1‐Hz observations, wave heights can be determined as well as velocity and direction of ocean (tidal) currents.

This article deals with the experiences from a test for the practical realization of this proposal. Hardware installation, software, and data analysis are described. Plans to use such an observational scenario of a GPS buoy array in the North Sea for the calibration of the radar altimeter of the European satellite ERS‐1 are presented.  相似文献   

8.
Comparing to single BeiDou Navigation Satellite System (BDS) Precise Point Positioning (PPP), a method which can more quicklydetermine the ambiguity parameters of BDS through applying the contribution of GPS observations is proposed and analyzed in this article. The numerical examples and analysis show that the ionosphere-free ambiguities of BDS satellites can be determined and converged more quickly because of the contribution of GPS observations. The average improvement of the convergent speed of positioning is 18.5% and its positioning accuracy in N, E, and U components are improved by 29.4, 30.3, and 34.4%, respectively, with the contribution of the a priori coordinates obtained from GPS observations. This method is useful for single BDS system positioning when there is a priori information provided by GPS or other sensors which be replaced by and can be applied at the beginning of the computation.  相似文献   

9.
一种优化模糊度搜索方法的研究   总被引:1,自引:0,他引:1  
刘立龙  文鸿雁  唐诗华 《海洋测绘》2006,26(1):37-39,53
对于高精度测量和导航,GPS载波相位整周模糊度的快速求解仍然是一个难点,尤其对于单频接收机。提出一种快速求解整周模糊度的方法,其基本思想采用分步求解,首先应用最小二乘模糊去耦调节法(LAMBDA)搜索出来的模糊度作为初始值,然后应用卫星分组方法降低搜索维数,并应用极大似然准则,构造搜索函数,最后应用最优化原理,搜索出最优的模糊度参数,并从三个方面对其进行检验,即RATIO检验,OVT检验,多项式拟合残差检验。为验证该算法,我们用单频GPS接收机进行了实验,利用本文方法在11 S以内正确确定了模糊度,其基线长误差小于3MM,表明该方法不但可以改进模糊度的搜索速度,而且可以进一步提高其可靠性和成功率。该方法可广泛应用于定向及姿态测量。  相似文献   

10.
探讨了组合多系统的精密单点定位(PPP),通过MGEX实测数据进行多系统PPP解算,分析了不同系统组合PPP定位精度和收敛速度,以及多系统组合对GPS模糊度首次固定时间的影响。实验结果表明,在静态和仿动态条件下,组合系统PPP的收敛速度和短时间定位精度明显优于单系统PPP,同时多系统组合PPP能够加快浮点模糊度收敛,缩短GPS PPP模糊度的首次固定时间。  相似文献   

11.
为实现多频多模GNSS浮标在远距离海洋潮汐测量中的应用,基于精密单点定位(precision pointing positioning,PPP)数据处理策略获取潮位信息,以压力验潮仪为参考,对GNSS浮标测量海面高进行经验模态分解(empirical mode decomposition,EMD),滤去高频波浪和噪声,获取潮位进行精度分析。结果表明:多系统可以提高PPP解算潮位精度。GPS/GLONASS双系统和GPS/GLONASS/Bei Dou三系统PPP提取潮位与验潮仪潮位差值的最大误差均小于18cm,RMSE小于6. 5cm。因此,多系统PPP解算GNSS浮标海面高可以实现远离海岸的潮位获取与监测,能够提高海上潮位测量的效率。  相似文献   

12.
Due to limit of coverage in TOPEX/Poseidon (T/P) satellite and sparseness of in-situ tide gauges around Antarctica, the accuracy of global ocean tide models in Antarctic seas is relatively poorer than in low- and mid-latitude regions. To better understand ocean tides in Prydz Bay, east Antarctica, a GPS receiver was deployed on floating sea ice to measure tide-induced ice motion in multiple campaigns. Four online Precise Point Positioning (PPP) services are used to process the GPS data in the kinematic PPP mode, and UTide software is used to separate the major tidal constituents. Comparison between results from different processing methods (relative processing solutions from Track, kinematic PPP solutions from online services) and with bottom pressure gauge (BPG) shows that, high-accuracy tidal information can be obtained from GPS observations on floating sea ice, the root-sum-square (RSS) for the eight major constituents (O1, K1, P1, Q1, M2, S2, N2, K2) is below 4 cm. We have also studied the impacts of data span and filter edge effects at daily boundaries on the accuracy of tide estimates, and found that to obtain reliable tide estimates and neglect the filter edge effects, continuous observation longer than 30 days is necessary. Our study suggests that GPS provides an independent method to estimate tides in Prydz Bay, and can be an alternative to tidal gauges, which are costly and hard to maintain in Antarctica.  相似文献   

13.
GPS反射信号的海洋应用   总被引:1,自引:0,他引:1  
本文描述了全球定位导航系统(GPS)的在海面的反射信号在海洋领域的应用,同时建立了利用GPS前向散射信号测量海面粗糙度和海面地形(Topography)的反演算法;海面粗糙度与风速和风向有直接的关系,回波功率的前缘形状及时延与海面地形相关;利用卫星主动雷达和国外机载数据的结果分析比较表明,GPS反射计作为遥感工具有两个优点:即比传统微波主动雷达高的空间分辨率和快速的时间分辨率。  相似文献   

14.
2011年3月11日日本宫城县以东太平洋海域发生Mw9.0级特大地震,造成了地表的严重错位并引发海啸。文中利用位于日本及周边国家的IGS站和国家海洋局GPS业务站观测数据,采用作者研制的精密单点定位(PPP)软件UniP,对此次地震的GPS数据响应进行了研究。结果表明:(1)GPS观测数据能清晰、连续地记录震时地表形变的过程,我国CHAN,NCST等站点水平方向的震时最大位移在10 cm以内,高程方向的震时最大位移在15 cm以内,且形变以可恢复性的弹性形变为主。(2)我国距震中较远,受此次日本地震的影响较小,且大部分站点是在东坐标方向出现不同程度的震后永久性位移。其中CHAN站点的震后位移最为明显,东向形变量为(1.8±0.11)cm;NCST、NLHT站点次之,东向形变量分别为(1.1±0.26)cm和(1.0±0.18)cm。(3)地震波传输到国家海洋局GPS业务站NCST、NLHT等的时间约为10 min,比海啸在深海的传播速度快约14倍,可为海啸预警提供所需的时间差。这些结果显示出GPS能够为地震监测和动力学特征研究提供有价值的基础资料,也表明中国沿海GPS业务观测系统在海底地震监测、海啸预警服务中的应用潜力。  相似文献   

15.
回顾了卫星多普勒定位和GPS卫星定位技术在我国海洋测绘中的应用,进而展望了GNSS在下述几方面将成为海洋测绘未来应用的新亮点:导航卫星将为海洋强国建设发挥重大作用;GNSS三频接收机将为海域测量开创新篇章;GNSS导航卫星能够为机载激光测深系统提供更高精度的在航7维状态参数和3维姿态参数.  相似文献   

16.
The measurement of atmospheric water vapor(WV) content and variability is important for meteorological and climatological research. A technique for the remote sensing of atmospheric WV content using ground-based Global Positioning System(GPS) has become available, which can routinely achieve accuracies for integrated WV content of 1–2 kg/m2. Some experimental work has shown that the accuracy of WV measurements from a moving platform is comparable to that of(static) land-based receivers. Extending this technique into the marine environment on a moving platform would be greatly beneficial for many aspects of meteorological research, such as the calibration of satellite data, investigation of the air-sea interface, as well as forecasting and climatological studies. In this study, kinematic precise point positioning has been developed to investigate WV in the Arctic Ocean(80°–87°N) and annual variations are obtained for 2008 and 2012 that are identical to those related to the enhanced greenhouse effect.  相似文献   

17.
为实现远岸潮汐精确监测,基于GPS PPK技术开展了远距离高精度GPS验潮方法研究。研究给出了GPS潮位测量方法,其次联合GPS定位信息和IMU姿态信息,通过坐标转换原理得到瞬时水面的精确高程。在此基础上,研究利用基于FFT的低通滤波技术提取潮位信息。最后在烟台港进行了实际工程试验。试验结果表明,当GPS PPK验潮距离达98km时,潮位误差可控在!15cm以内,验潮精度仍可优于10cm。  相似文献   

18.
A tide height measurement technique usingS-band radio waves in an oblique incidence interferometer is reviewed. Generalization of the technique is described which reduces the required bandwidth of the radio frequency adjustment and increases its efficiency. This generalization, however, introduces an ambiguity in the height determination and also requires specification of the phase shift of the radio waves specularly reflected from the sea surface. The ambiguity is shown to be easily removable given coarse information about the expected time derivative of tidal height. The influence of the phase shift which contains sea-wave information is studied analytically and requirement in its specification is evaluated to have an accuracy ofpm1deg. This corresponds to a tide height determination accuracy ofpm1cm. The method is designed for coastal regions where a bistatic experiment geometry is feasible.  相似文献   

19.
无人直升机海洋航空磁力测量工作需要为磁力数据提供精确的位置和高程.根据无人直升机海洋航空磁力测量的实际工作环境和对定位精度的要求,设计了该机载单频GPS定位系统,并进行了模拟试验和野外试验,处理GPS数据采用商业软件.试验结果表明:该机载GPS定位系统满足定位精度要求,可应用于无人直升机海洋航空磁力测量.  相似文献   

20.
To better monitor the vertical crustal movements and sea level changes around Greenland, multiple data sources were used in this paper, including global positioning system(GPS), tide gauge, satellite gravimetry, satellite altimetry, glacial isostatic adjustment(GIA). First, the observations of more than 50 GPS stations from the international GNSS service(IGS) and Greenland network(GNET) in 2007–2018 were processed and the common mode error(CME) was eliminated with using the principal component analysis(PCA). The results show that all GPS stations show an uplift trend and the stations in southern Greenland have a higher vertical speed. Second, by deducting the influence of GIA, the impact of current Gr IS mass changes on GPS stations was analysed, and the GIA-corrected vertical velocity of the GPS is in good agreement with the vertical velocity obtained by gravity recovery and climate experiment(GRACE). Third, the absolute sea level change around Greenland at 4 gauge stations was obtained by combining relative sea level derived from tide gauge observations and crustal uplift rates derived from GPS observations, and was validated by sea level products of satellite altimetry. The results show that although the mass loss of Gr IS can cause considerable global sea level rise, eustatic movements along the coasts of Greenland are quite complex under different mechanisms of sea level changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号