首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
In order to understand and simulate site effects on strong ground motion records of recent earthquakes in Mexico City, it is fundamental to determine the in situ elastic and anelastic properties of the shallow stratigraphy of the basin. The main properties of interest are the shear wave velocities and Q-quality factors and their correlation with similar parameters in zones of the city. Despite population density and paved surfaces, it is feasible to gather shallow refraction data to obtain laterally homogeneous subsoil structures at some locations. We focused our analysis in the Texcoco Lake region of the northeastern Mexico City basin. This area consists of unconsolidated clay sediments, similar to those of the lake bed zone in Mexico City, where ground motion amplification and long duration disturbances are commonly observed. We recorded Rayleigh and Love waves using explosive and sledgehammer sources and 4.5 Hz vertical and horizontal geophones, respectively. Additionally, for the explosive source, we recorded three-component seismograms using 1 Hz seismometers. We obtained phase velocity dispersion curves from ray parameter-frequency domain analyses and inverted them for vertical distribution of S wave velocity. The initial model was obtained from a standard first-break refraction analysis. We also obtained an estimation of the QS shear wave quality factor for the uppermost stratigraphy. Results compare well with tilt and cone penetrometer resistance measurements at the same test site, emphasizing the importance of these studies for engineering purposes.  相似文献   

2.
We analysed in detail three earthquakes recorded in a small-aperture accelerometric array in Mexico City, using the correlation of the records as a function of time along the accelerogram and frequency. Ground response is strongly conditioned by the fundamental period of the soft soils at the site of the array (T0). Energy at periods longer than 2T0 is guided by the crustal structure (with a thickness of 45 km). The wave field at periods between T0 and 2T0 also consists of surface waves but guided by the upper 2–3 km of volcanic sediments in central Mexico. For periods smaller than T0, ground motion is uncorrelated among the stations. Our results indicate that seismic response of Mexico City, including its very long duration, results from deeply guided surface waves (between 2 and 45 km depth) interacting with the very local response of the soft surficial clay layer.  相似文献   

3.
The large amplification experienced at Mexico City during the earthquake of September 1985 is shown to be due to a standing shear wave set up in the clay layer. The frequency and amplitude of this wave were controlled by the properties of the clay which led directly to such high accelerations. The response curve due to the clay layer is calculated from field and laboratory measurements of the properties of the clay. There is good agreement with that obtained from field observations of ground motion.  相似文献   

4.
2008年11月10日在青海柴达木盆地北缘发生了大柴旦M_W6.3地震,为了研究该地震的区域地震波传播与地面运动特征,本文利用地质资料和地壳速度结构研究成果,构建了柴达木盆地及周边区域三维传播介质模型,采用有限差分方法模拟了大柴旦地震波场传播过程以及地面运动分布特征.结果表明,柴达木盆地对波场传播有明显影响,表现为地震波传入盆地后在边界产生次生面波,盆地沉积物对地震波具有围陷作用,地震地面运动在盆地内振幅增大、持时延长.模拟结果给出的地震地面运动峰值速度分布以及理论地震图均和观测结果符合较好,反映数值模拟较好地给出了观测地面运动的主要特征以及传播介质模型的合理性.  相似文献   

5.
Regional high-precision velocity models of the crust are an important foundation for examining seismic activity, seismogenic environments, and disaster distribution characteristics. The Hefei-Chao Lake area contains the main geological units of Hefei Basin, with thick sediments and the Chao Lake depression. Several major concealed faults of the southern NNE-trending Tanlu Fault Zone cross this area. To further explore the underground distribution characteristics of the faults and their tectonic evolutionary relationship with adjacent tectonic units, this study used ambient noise data recorded by a seismic array deployed in Hefei City and Chao Lake, constructing a 3-D velocity model at the depth of 1–8 km. Then a multi-scale high-resolution 3-D velocity model of this area was constructed by this new upper crustal velocity model with the previous middle and lower crustal model. The new model reveals that a high-velocity belt is highly consistent with the strike of the Tanlu Fault Zone, and a low-velocity sedimentary characteristic is consistent with the Hefei Basin and Chao Lake depression. The distribution morphology of high and low velocity bodies shows that the sedimentary pattern of Hefei-Chao Lake area is closely related to the tectonic evolution of the Tanlu Fault Zone since the Mesozoic. This study also identifies multiple low-velocity anomalies in the southeastern Hefei City. We speculate that strong ground motion during the 2009 Feidong earthquake (magnitude of 3.5) was related to amplification by the thick sediments in the Hefei Basin. We also discuss further applications of multi-scale high-resolution models of the shallow layer to strong ground motion simulations in cities and for earthquake disaster assessments.  相似文献   

6.
Soil–structure interaction (SSI) effects on building dynamic behaviour have been studied extensively. In comparison, the radiation of waves away from the soil–foundation interface has received little attention. Recent studies point out that SSI in an urban environment can modify the ground motion recorded in the free-field. These modifications will be important when two conditions are met: structures founded on soft soils and coincidence between the vibration periods of the structure and those of the superficial layers. Both conditions are met in Mexico City lake zone. In this study, we investigate SSI effects on ‘free-field’ motion. The data we use consist of microtremors recorded on soft soils in Mexico City, a densely built environment. Our objective was to identify the modifications to free-field ground motion caused by neighbouring structures. Data were analysed using H/V spectral ratios. Large variations in the level of amplification and resonant frequency were determined from microtremors in very closely spaced stations. Our results suggest consistently that free-field ground motion is significantly affected by the presence of neighbouring structures.  相似文献   

7.
To estimate the amplification characteristics of ground motions in the heavily damaged belt zone in Kobe City during the 1995 Hyogo-ken Nanbu earthquake, 3D wave propagation analyses of a 2D deep irregular underground structure model with a vertical discontinuity were performed at an early stage as a preliminary and qualitative study. The hyperelement method was applied to the analyses for incident plane waves expected from the wavefields due to the source mechanism. The observation records at Kobe University of the rock site were used as control motions. The ground motions on the engineering bedrock (assumed to be on the free surface of the Osaka group layers having a shear velocity of 500 m/s) and at ground surface were calculated. The effects of the deep irregular underground structure and shallow surface layers on the ground motion amplification are discussed. Although there are qualifications due to the uncertain characteristics of the input rock motion and shear wave velocities of the underground structure, the analytical results show that the ground motion in the heavily damaged belt zone were amplified due to the focusing effect of the deep irregular underground structure as well as the shallow surface layers, and that the calculated peak ground acceleration (PGA) distribution coincided closely with the distributions of structural damage. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
Our previous studies show that site effects (amplification of rock motions), source and path effects are coupled when response spectra are used to characterize the amplification ratios for a soil site modelled as nonlinear or elastic. The coupling is referred to as a “side effect” of using response spectral amplification ratios. In the present study we use a suite of rock site records, well distributed with respect to magnitude and source distance, from crustal, subduction interface and slab earthquakes to evaluate the response spectral amplification ratio for soft soil sites. We compare these side-effects for ground motions generated by three types of earthquakes, and we find that, at periods much shorter or much longer than the natural period of a soil site modelled as elastic, the average amplification ratios with respect to rock site ground motions from three types of earthquakes are moderately different and are very similar for other spectral periods. These differences are not statistically significant because of the moderately large scatter of the amplification ratios. However, the extent of magnitude- and source-distance-dependence of amplification ratios differs significantly. After the effects of magnitude and source distance on the amplification ratios are accounted for, the differences in amplification ratios between crustal and subduction earthquake records are very large in some particular combinations of source distance and magnitude range. These findings may have potential impact in establishing design spectra for soft soil sites using strong motion attenuation models or numerical modelling.  相似文献   

9.
Site effects in Mexico City are discussed in terms of simple 1D, one-layer, linear models. The analysis is focussed on two parameters: dominant period and maximum amplification relative to a firm site within the city. The data used is a compilation of strong motion data and microtremor measurements. Strong motion data consist of digital acceleration records for nine events recorded by the Accelerographic Network of Mexico City. The authors analyzed spectral ratios of horizontal components of soft soil sites relative to an average of firm site observations for this data set. Dominant period, maximum relative amplification and an estimate of material damping were computed from the empirical transfer functions thus obtained. Microtremor data were compiled from measurement of different groups during the period 1985–1992. In all, 409 measurement points were analyzed. Values of dominant period obtained from microtremor measurements are in excellent agreement with those obtained from empirical transfer functions for strong motion data. The synthesis of results allows us to draw a detailed and robust map of dominant period for Mexico City. Based on this map, the authors propose some modifications to the current microzonation of Mexico City and evaluate a proposed model to account for site effects in this city.  相似文献   

10.
The purpose of this paper is to take a comprehensive look at site effects in Mexico City for the 1985 Michoacan earthquake. We examine, successively, 1D and 2D models. For the latter, we consider in detail both large scale and small scale heterogeneities, using extensively the Aki-Larner wave propagation method, in the version given by Bard and Gariel. In particular, we make a critical review of the different explanations proposed for the large duration of strong ground motion in the lake zone. Our purpose is two-sided. We first outline the difference between what is well established and what remains still unexplained regarding the seismic response of Mexico City basin. On the other hand, we wish to make explicit the conditions that the proposed models require to explain strong motion duration. Our results allow us to qualify the models proposed to date and to point out what could be the experiments and the new data required to find a truly satisfactory explanation of strong ground motion at Mexico City.  相似文献   

11.
Realistic Modeling of Seismic Wave Ground Motion in Beijing City   总被引:5,自引:0,他引:5  
— Algorithms for the calculation of synthetic seismograms in laterally heterogeneous anelastic media have been applied to model the ground motion in Beijing City. The synthetic signals are compared with the few available seismic recordings (1998, Zhangbei earthquake) and with the distribution of observed macroseismic intensity (1976, Tangshan earthquake). The synthetic three-component seismograms have been computed for the Xiji area and Beijing City. The numerical results show that the thick Tertiary and Quaternary sediments are responsible for the severe amplification of the seismic ground motion. Such a result is well correlated with the abnormally high macroseismic intensity zone in the Xiji area associated with the 1976 Tangshan earthquake as well as with the ground motion recorded in Beijing city in the wake of the 1998 Zhangbei earthquake.  相似文献   

12.
Strong-motion networks have been operating in the Caribbean region since the 1970s, however, until the mid-1990s only a few analogue stations were operational and the quantity of data recorded was very low. Since the mid-1990s, digital accelerometric networks have been established on islands within the region. At present there are thought to be about 160 stations operating in this region with a handful on Cuba, 65 on the French Antilles (mainly Guadeloupe and Martinique), eight on Jamaica, 78 on Puerto Rico (plus others on adjacent islands) and four on Trinidad.After briefly summarising the available data from the Caribbean islands, this article is mainly concerned with analysing the data that has been recorded by the networks operating on the French Antilles in terms of their distribution with respect to magnitude, source-to-site distance, focal depth and event type; site effects at certain stations; and also with respect to their predictability by ground motion estimation equations developed using data from different regions of the world. More than 300 good quality triaxial acceleration time-histories have been recorded on Guadeloupe and Martinique at a large number of stations from earthquakes with magnitudes larger than 4.8, however, most of the records are from considerable source-to-site distances. From the data available it is found that many of the commonly-used ground motion estimation equations for shallow crustal earthquakes poorly estimate the observed ground motions on the two islands; ground motions on Guadeloupe and Martinique have smaller amplitudes and are more variable than expected. This difference could be due to regional dependence of ground motions because of, for example, differing tectonics or crustal structures or because the ground motions so far recorded are, in general, from smaller earthquakes and greater distances than the range of applicability of the investigated equations.  相似文献   

13.
Amplification of in-plane seismic ground motion by underground group cavities in layered half-space is studied both in frequency domain and time domain by using indirect boundary element method (IBEM), and the effect of cavity interval and spectrum of incident waves on the amplification are studied by numerical examples. It is shown that there may be large interaction between cavities, and group cavities with certain intervals may have significant amplification to seismic ground motion. The amplification of PGA (peak ground acceleration) and its PRS (peak response spectrum) can be increased up to 45.2% and 84.4%, for an example site in Tianjin, under the excitation of Taft wave and El Centro wave; and group cavities may also affect the spectra of the seismic ground motion. It is suggested that the effect of underground group cavities on design seismic ground motion should be considered.  相似文献   

14.
As part of the effort to assess the seismic hazards of Singapore and the Malay Peninsula, representative ground motion prediction models have to be established. Seven existing attenuation relationships developed for shallow crustal earthquakes in stable continent and active tectonic regions are examined, and they are found to consistently over‐predict the ground motions of Sumatran‐fault earthquakes recently recorded in Singapore. This may be attributed to the differences in the regional crustal structures and distance ranges considered. Since the number of recorded ground motions in the region is very limited, a new set of attenuation relationships is derived based on synthetic seismograms. The uncertainties in rupture parameters, such as stress drop, focal depth, dip and rake angles, are defined according to the regional geological and tectonic settings as well as the ruptures of previous earthquakes. Ground motions are simulated for earthquakes with Mw ranging from 4.0 to 8.0, within a distance range from 174 to 1379km. Besides magnitude and distance, source‐to‐station azimuth is found to influence the amplitudes of the ground motions simulated. Thus, the azimuth is taken as an independent variable in the derived ground motion attenuation relationships. The Sumatran‐fault segments that have the potential to generate a specified level of response spectral accelerations in Singapore and Kuala Lumpur are identified based on the newly derived ground motion models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Site effects are a major factor affecting seismic risk at Mexico City conurbation and have been carefully studied. However, most of the studies and instrumentation concentrate in Mexico City. We present an evaluation of site effects in the counties of Estado de Mexico, to the North of Mexico City, that have been incorporated into Mexico City conurbation. We measured microtremors at 67 points and operated a temporal digital seismograph network. Our results allow us to extend the dominant period map of Mexico City to the heavily populated and industrialized counties of Estado de Mexico. Additionally, we propose a map of maximum relative amplification. Both maps are consistent with local geology, and could be useful for microzonation of this region.  相似文献   

16.
The seismological model was developed initially from the fundamental relationship between earthquake ground motion properties and the seismic moment generated at the source of the earthquake. Following two decades of continuous seismological research in the United States, seismological models which realistically account for both the source and path effects on the seismic shear waves have been developed and their accuracy rigorously verified (particularly in the long and medium period ranges). An important finding from the seismological research by Atkinson and Boore and their co‐investigators is the similarity of the average frequency characteristics of seismic waves generated at the source between the seemingly very different seismic environments of Eastern and Western North America (ENA and WNA, respectively). A generic definition of the average source properties of earthquakes has therefore been postulated, referred to herein as the generic source model. Further, the generic ‘hard rock’ crustal model which is characteristic of ENA and the generic ‘rock’ crustal model characteristic of WNA have been developed to combine with the generic source model, hence enabling simulations to be made of the important path‐related modifications to ground motions arising from different types of crustal rock materials. It has been found that the anelastic contribution to whole path attenuation is consistent between the ENA and WNA models, for earthquake ground motions (response spectral velocities and displacements) in the near and medium fields, indicating that differences in the ENA and WNA motions arise principally from the other forms of path‐related modifications, namely the mid‐crust amplification and the combined effect of the upper‐crust amplification and attenuation, both of which are significant only for the generic WNA ‘rock’ earthquake ground motions. This paper aims to demonstrate the effective utilization of the latest seismological model, comprising the generic source and crustal models, to develop a response spectral attenuation model for direct engineering applications. The developed attenuation model also comprises a source factor and several crustal (wave‐path modification) component factors, and thus has also been termed herein the component attenuation model (CAM). Generic attenuation relationships in CAM, which embrace both ENA and WNA conditions, have been developed using stochastic simulations. The crustal classification of a region outside North America can be based upon regional seismological and geological information. CAM is particularly useful for areas where local strong motion data are lacking for satisfactory empirical modelling. In the companion paper entitled ‘response spectrum modelling for rock sites in low and moderate seismicity regions combining velocity, displacement and acceleration predictions’, the CAM procedure has been incorporated into a response spectrum model which can be used to effectively define the seismic hazard of bedrock sites in low and moderate seismicity regions. This paper and the companion paper constitute the basis of a long‐term objective of the authors, to develop and effectively utilize the seismological model for engineering applications worldwide.  相似文献   

17.
In this article, the spatial variation of ground motion in Imphal City has been estimated by the finite-fault seismological model coupled with site response analysis. The important seismic sources around Imphal City have been identified from the fault map and past seismicity data. The rock level acceleration time histories at Imphal City for the 1869 Cachar (Mw 7.5) earthquake and a hypothetical Mw 8.1 event in the Indo-Burma subduction zone have been estimated by a stochastic finite-fault model. Soil investigation data of 122 boreholes have been collected from several construction projects in Imphal City. Site response analysis has been carried out and the surface level ground motion has been determined for Imphal City for these two earthquake events. The results are presented in the form of peak ground acceleration (PGA) contour map. From the present study it has been ascertained that the maximum amplification for PGA over Imphal City is as high as 2.5. The obtained contour maps can serve as guidelines for identifying vulnerable areas and disaster mitigation in Imphal City.  相似文献   

18.
建立包含震源、沉积盆地和表层低速沉积层的二维模型,采用交错网格有限差分/伪谱混合方法求解地震波传播,讨论沉积层厚度和速度对地震地面运动的作用。结果表明:沉积层内产生的地震波的多重反射以及转换会引起地面运动持续时间的延长,它们的相干叠加会造成地面运动峰值的放大;随着沉积层速度的增加,多重反射与转换波的能量减小,地面运动持续时间减小,但是不同速度或者不同厚度的低速层模型均显示出一致的地面运动峰值放大特征。结果说明,在包含震源、沉积盆地和沉积层的模型中,沉积层对地面运动的作用机理更复杂。在实际应用中有必要同时考虑这些因素的综合作用。  相似文献   

19.
俯冲带地震动特征及其衰减规律探讨   总被引:4,自引:0,他引:4       下载免费PDF全文
随着我国南海不断开发建设,海洋工程的抗震问题日益受到重视.我国南海东部区域位于大陆板块与海洋板块共同作用的俯冲带地区,地震活动频繁,震级较大,潜在地震对南海开发建设有重要影响.为了研究俯冲带地震的地震动特征及其衰减规律,本文基于实际俯冲带地震数据,并结合数值模拟方法,分析和探讨了俯冲带板内、板缘地震与浅地壳地震的地震动特征和衰减规律的差异.研究结果表明:俯冲带地震动存在区域性差异,在地震动衰减特征方面,同一区域的俯冲带板缘地震要比浅地壳地震衰减慢,俯冲带板内地震要比浅地壳地震衰减得快;数值模拟分析不同深度海水对海底地震动的影响表明,海底地震动水平分量几乎不受海水介质的影响,但是竖向分量随海水深度的增加有减小的趋势.最终,基于数值模拟和经验关系的混合方法建立了南海俯冲带地震动衰减关系模型,其结果可为海域区划等相关研究和海域工程建设提供参考.  相似文献   

20.
Strong ground motion prediction based on finite-fault simulation requires the identification of the fault (strike, dip, length and width), source kinematics parameters (stress drop, rupture velocity and slip distribution), regional crustal properties (geometrical spreading, anelastic structure, and upper crustal amplification and attenuation parameters) and the determination of amplification effects due to the local site geology. The general purpose of this study is to understand source and attenuation properties in the Azores, by the determination of stress drop, quality factor and kappa, through records obtained by the Portuguese digital seismic and accelerometer network. Source Spectra were obtained, for each record, after correcting observed spectra from geometrical spreading and anelastic attenuation effect: quality factor was estimated based on coda decay in the time domain and the kappa parameter was estimated by fitting the high-frequency decay of the acceleration spectrum with a straight line in a log-linear scale. Mean stress drop value was obtained considering that ω-squared model for the source spectra prevails. Parameters kappa, k, and quality factor, Q, have been estimated to be k = (0.075 ± 0.02)s and \(Q(f) = (76 \pm 11)f^{0.69 \pm 0.09}\), respectively. A mean value of stress drop was estimated to be around 90–130 bars for the earthquakes in analysis. The knowledge of source and path parameters, in association with other ground motion parameters, allows improving ground-motion estimates for the Azores and, consequently, will lead to more accurate seismic hazard assessment for the Azores and better characterization of seismic scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号