首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
近年来,强度折减法在岩土工程静、动力稳定性分析领域快速发展。基于该方法,相关学者研究了边坡和隧道的动力稳定安全系数。隧道洞口段是围岩、边坡和衬砌结构相互作用的三维复杂结构体,当前对其地震稳定性研究多集中于定性描述,尚不能给出量化的指标。依托振动台试验,建立相应的洞口段三维数值模型,采用强度折减法,引入结合突变理论的塑性区应变能和其他判据,获得洞口段的动力稳定安全系数。结果表明:结合突变理论的塑性区应变能和其他判据得到的安全系数的最大相对误差较小,在洞口段的地震稳定性分析中采用该判据具有简便、量化等优势;计算出的洞口段的动力安全系数与动力加载降低结构稳定性的一般规律相一致;安全系数为1.52说明洞口段有较高的地震稳定性,与振动台试验的实验现象符合。  相似文献   

2.
《震灾防御技术》2022,17(4):727-734
采用平面应变模型对地下结构进行地震反应分析时,其核心问题是中柱的二维等效简化。常用的简化方法是将中柱的材料性质(如弹性模量和密度)进行折减。在此基础上,进一步引入空间约束影响系数和三维还原系数,提出新的中柱二维等效简化方法。针对不同简化方法,分别建立对应的地下结构地震反应分析平面应变模型,计算各模型的地震反应。通过与三维模型计算结果进行对比分析,研究不同简化方法的合理性。计算结果表明,本研究建议的方法可有效提高地下结构平面应变模型的计算精度。  相似文献   

3.
根据结构变形特点,提出基于Timoshenko理论的基础隔震分布参数体系模型,推导隔震结构高宽比限值计算公式,分析各参数对隔震结构高宽比限值的影响规律。分析表明,隔震结构和非隔震结构基本周期比值在一定范围内变化时,剪力系数、弯矩系数与周期比呈稳定曲线关系;高宽比限值随结构宽度方向布置支座个数增加而降低;在隔震支座总面积确定时,选择大直径隔震支座大间距布置方式可提高隔震层变形能力及高宽比限值;高宽比限值受竖向地震作用影响较小,随竖向地震系数增大高宽比限值略有降低;降低隔震层刚度、增大隔震层阻尼可提高结构高宽比限值;容许支座出现拉应力可在一定程度上提高结构高宽比限值。最后结合20层框剪结构工程算例,验证隔震结构高宽比限值公式的有效性。  相似文献   

4.
大高宽比隔震结构地震反应的实用分析方法   总被引:6,自引:1,他引:5  
本文提出了高层隔震结构等大高宽比隔震结构体系地震反应分析的单质点、2质点和3质点剪切型简化计算模型,同时还提出了高宽比影响系数的概念和计算式。这种纯剪切的简化计算模型成功地模拟了剪切加转动多质点计算模型的动力特性,通过高宽比影响系数对剪切型计算模型得到的剪力系数进行非线性放大,使数十质点的隔震结构体系都能够简化成单质点、2质点和3质点体系进行地震反应分析。文末对22层高宽比为5.01的某22层隔震结构进行了算例分析,简化计算理论的计算结果和时程分析法计算结果一致性良好。  相似文献   

5.
采用西安理工大学研发的EFES3D程序,运用等价粘弹性模型的三维有效应力有限元法,对河南洛南西板岔沟尾矿坝进行了地震永久残余变形、液化分析和边坡稳定分析,求得残余变形、孔压水平分布场和边坡安全系数。计算得到的坝坡的静力稳定最小的安全系数Fs为1.9,地震反应结束时的动力边坡稳定安全系数为1.19。计算结果表明西板岔沟尾矿坝在静力状态及动力作用下都是稳定的。  相似文献   

6.
地震作用下单层球面网壳结构的动力稳定性   总被引:19,自引:0,他引:19  
本文以具有实际工种意义的40m跨度K8型单层球面网壳结构为研究对象,研究了其在地震作用下的动力失稳特点,提出了动力稳定性判别方法。系统分析了各种因素对网壳结构动力稳定性临界荷载的影响,其中包括:水平地震作用、竖向地震作用和三向地震作用的影响;考虑材料弹塑性的影响;不同地震输入的影响;初始几何缺陷的影响;不同矢跨比和不同杆件截面的影响。  相似文献   

7.
中国是一个地震多发国家,特别是在中西部地区。地震的发生为偶然事件,发生频率并不大,但一旦发生所造成的破坏却是灾难性的,对于高等级公路也不例外。在以前的研究中,很少涉及路基填土的动力学特性以及路基结构在地震荷载作用下的稳定性,现行《公路工程抗震设计规范》对地震动力荷载作用主要是以区域地震烈度作为惟一的参考依据,没有考虑地震振动频率和地震持续时间等特性,因此无法真实反映路基结构在地震作用时的特性。针对以上问题,对路基结构的动力稳定性通过拟静力方法进行研究,对路基结构动力稳定性计算的拟静力公式进行了改进。对于挡土墙在地震荷载作用下挡墙加速度受到影响,在计算挡土墙土压力时考虑地震加速度分布系数的影响;对于路基通过引入加速度分布系数对地震惯性力进行了改进,并对路基边坡拟静力稳定计算的公式进行了改进。  相似文献   

8.
中国是一个地震多发国家,特别是在中西部地区。地震的发生为偶然事件,发生频率并不大,但一旦发生所造成的破坏却是灾难性的,对于高等级公路也不例外。在以前的研究中,很少涉及路基填土的动力学特性以及路基结构在地震荷载作用下的稳定性,现行《公路工程抗震设计规范》对地震动力荷载作用主要是以区域地震烈度作为惟一的参考依据,没有考虑地震振动频率和地震持续时间等特性,因此无法真实反映路基结构在地震作用时的特性。针对以上问题,对路基结构的动力稳定性通过拟静力方法进行研究,对路基结构动力稳定性计算的拟静力公式进行了改进。对于挡土墙在地震荷载作用下挡墙加速度受到影响,在计算挡土墙土压力时考虑地震加速度分布系数的影响;对于路基通过引入加速度分布系数对地震惯性力进行了改进,并对路基边坡拟静力稳定计算的公式进行了改进。  相似文献   

9.
目前地震边坡和隧道稳定性分析方法尚有一些不尽如人意的地方,如地震边坡的破裂面假定为剪切破裂面,这与汶川地震边坡破坏现象不符;地震边坡稳定性分析采用时程分析法,假定在某一时刻加速度作用下,将其作为静力问题来计算边坡稳定安全系数,没有充分考虑加载的动力效应;同样,未考虑地震作用下隧洞围岩的拉破坏,对隧洞围岩破坏缺少动力稳定性标准,也不能充分考虑隧洞围岩与衬砌的动力效应。为此,基于有限元强度折减法,提出了一种完全的动力分析方法——强度折减动力分析法,计算中同时考虑剪切强度和抗拉强度参数的折减,并采用计算不收敛和位移突变综合判断边坡和隧道是否动力失稳破坏,以极限状态时的强度折减系数作为地震边坡和隧道的动力稳定系数,由此获得拉、剪组合破裂面与全动力稳定安全系数,充分考虑了动力效应。  相似文献   

10.
《地震研究》2021,44(4)
为探讨三维地震下层间隔震结构考虑土-结构相互作用(SSI效应)时的地震响应,建立了考虑SSI效应的层间隔震结构模型,分别输入一维、二维、三维地震动,比较层间隔震结构在不同维度地震波输入工况下的地震响应。针对三维地震动输入下隔震支座拉压应力超限问题,添加三维隔震装置,并与传统水平隔震结构地震响应结果进行对比分析。结果表明:三维地震动输入下的结构地震响应大于一维和二维;加入三维隔震支座后,竖向地震动被有效隔离,结构地震响应减小,优化了支座受力,支座拉压破坏问题得以解决,地基土体应力小于设置传统水平隔震支座下的土体应力,对地基和基础设计有利。  相似文献   

11.
An attempt has been made to study the behavior of nailed vertical excavations in medium dense to dense cohesionless soil under seismic conditions using a pseudo-dynamic approach. The effect of several parameters such as angle of internal friction of soil(Φ), horizontal(k_h) and vertical(k_v) earthquake acceleration coefficients, amplification factor(f_a), length of nails(L), angle of nail inclination(α) and vertical spacing of nails(S_v) on the stability of nailed vertical excavations has been explored. The limit equilibrium method along with a planar failure surface is used to derive the formulation involved with the pseudo-dynamic approach, considering axial pullout of the installed nails. A comparison of the pseudo-static and pseudo-dynamic approaches has been established in order to explore the effectiveness of the pseudo-dynamic approach over pseudo-static analysis, since most of the seismic stability studies on nailed vertical excavations are based on the latter. The results are expressed in terms of the global factor of safety(FOS). Seismic stability, i.e., the FOS of nailed vertical excavations is found to decrease with increase in the horizontal and vertical earthquake forces. The present values of FOS are compared with those available in the literature.  相似文献   

12.
A stress plasticity solution is proposed for evaluating the gravitational and dynamic active earth pressures on cantilever retaining walls with long heel. The solution takes into account the friction angle of the soil, wall roughness, backfill inclination and horizontal and vertical seismic accelerations. It is validated by means of the comparison with both traditional limit equilibrium methods (e.g. Mononobe–Okabe equations) and static and pseudostatic numerical FLAC analyses. For numerical analyses the soil is modelled as an elasto-plastic non-dilatant medium obeying the Mohr–Coulomb yield criterion, while the wall is elastic. The solutions for the horizontal and vertical seismic coefficients are proposed, which allow one to determine the intensity of the active thrust and its inclination δ with respect to the horizontal. It is demonstrated that the latter also depends on the soil friction angle φ. The inclination in seismic conditions δE is greater than the one in static conditions, δS, usually adopted in both cases. As a matter of fact, since wall stability conditions improve with the increase of inclination δ, the present method gives solutions that are less onerous than traditional ones, producing less conservative wall designs. Finally pseudostatic results are compared with proper dynamic analyses (by FLAC code) performed utilising four Italian accelerometric time-histories as input ground motion.  相似文献   

13.
Dynamic properties of municipal solid waste (MSW) from two dump sites located at Delhi, India are evaluated from field and large scale laboratory tests. Shear wave velocity (Vs) profiles of MSW, measured at these two sites using surface wave techniques, are in range of Vs data reported for MSW landfills worldwide. Representative bulk MSW samples were collected from large test pits excavated at the two dump sites to determine the near surface unit weight. Large scale undrained cyclic triaxial (CTX) tests were conducted on reconstituted MSW specimens to investigate the effect of various parameters such as composition, confining pressure, number of loading cycles, loading frequency and saturation on the dynamic properties. Undrained CTX tests, conducted on the specimens with and without fibrous materials demonstrated the effect of fibrous waste constituents on the stiffness and damping behavior of MSW. Specimens consisting of fibrous waste constituents such as plastics and textiles exhibited significantly less modulus reduction compared to specimens with negligible amount of fibrous content. The modulus reduction (G/Gmax) and material damping ratio curves derived from the present study are in the range reported for MSW in the literature. The G/Gmax curves from present study are in good agreement with curves recommended for MSW at Tri-Cities landfill in USA and Tianziling landfill in China. Dynamic properties evaluated from the present study add to the growing database of the worldwide dataset and can be useful for evaluating the seismic stability and associated permanent deformations of the existing dumps in and around Delhi.  相似文献   

14.
2022年1月8日,青海省门源县发生MS6.9地震,造成震中附近的兰新高铁大梁隧道受损,导致高铁长时停运。文章通过建立二维平面应变模型,加载双向门源波进行动力时程分析,得到了大梁隧道的地震动响应结果,并对模型在震后的受力变形及震害特征进行详细分析。结果表明:在门源波双向加载下,大梁隧道的地震动响应受水平地震荷载影响很大;沿着y轴正向,隧道的截面形状对纵向位移和加速度的地震动响应有加强作用;拱顶处地震动响应最大,其竖向及横向地震动响应加速度分别为5.206 4 m/s2、4.534 8 m/s2,竖向及横向位移分别为7.070 9 cm、0.641 5 cm;拱底处地震动响应最小,其竖向及横向地震动响应加速度分别为3.287 6 m/s2、4.511 2 m/s2,竖向及横向位移分别为4.851 6 cm、0.625 2 cm;拱肩、拱脚处存在明显的应力集中现象,拱顶、拱底、拱肩及拱脚处内力的受力形式发生变化,但是衬砌应力和内力的极值均发生在拱腰及拱脚处,说明拱腰及拱脚处为震害严...  相似文献   

15.
The design provisions of current seismic codes are generally not very accurate for assessing effects of near-fault ground motions on reinforced concrete(r.c.)spatial frames,because only far-fault ground motions are considered in the seismic codes.Strong near-fault earthquakes are characterized by long-duration(horizontal)pulses and high values of the ratio α_(PGA)of the peak value of the vertical acceleration,PGA_V,to the analogous value of the horizontal acceleration,PGA_H,which can become critical for girders and columns.In this work,six- and twelve-storey r.c.spatial frames are designed according to the provisions of the Italian seismic code,considering the horizontal seismic loads acting(besides the gravity loads)alone or in combination with the vertical ones.The nonlinear seismic analysis of the test structures is performed using a step-by-step procedure based on a two-parameter implicit integration scheme and an initial stress-like iterative procedure.A lumped plasticity model based on the Haar-Karman principle is adopted to model the inelastic behaviour of the frame members.For the numerical investigation,five near-fault ground motions with high values of the acceleration ratio α_(PGA) are considered.Moreover,following recent seismological studies,which allow the extraction of the largest(horizontal) pulse from a near-fault ground motion,five pulse-type(horizontal)ground motions are selected by comparing the original ground motion with the residual motion after the pulse has been extracted.The results of the nonlinear dynamic analysis carried out on the test structures highlighted that horizontal and vertical components of near-fault ground motions may require additional consideration in the seismic codes.  相似文献   

16.
The responses, re, given by several multicomponent combination rules used in seismic codes for determining peak responses to three ground motion components are evaluated for elastic systems and compared with the critical response rcr; this is defined as the largest response for all possible incident angles of the seismic components and obtained by means of the CQC3‐rule when a principal seismic component is vertical, or the GCQC3‐rule when it departs from the vertical direction. The combination rules examined are the SRSS‐, 30%‐, 40%‐ and IBC‐rules, considering different alternatives for the design horizontal spectrum. Assuming that a principal seismic component is along the vertical direction, the upper and lower bounds of the ratio re/rcr for each combination rule are determined as a function of the spectral intensity ratio of the horizontal seismic components and of the responses to one seismic component acting alternately along each structural axis. Underestimations and overestimations of the critical response are identified for each combination rule and each design spectrum. When a component departs from the vertical direction, the envelopes of the bounds of the ratio re/rcr for each combination rule are calculated, considering all possible values of the spectral intensity ratios. It is shown that the inclination of a principal component with respect to the vertical axis can significantly reduce the values of re/rcr with respect to the case when the component is vertical. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
Following an overview of pertinent literature, this paper presents a new methodology for estimating seismic coefficients for the performance-based design of earth dams and tall embankments. The methodology is based on statistical regression of (decoupled) numerical data for 1084 potential sliding masses, originating from 110 non-linear seismic response analyses of 2D cross sections with height ranging from 20 to 120 m. At first, the methodology estimates the peak value of the seismic coefficient khmax as a function of: the peak ground acceleration at the free field, the predominant period of the seismic excitation, the non-linear fundamental period of dam vibration, the stiffness of the firm foundation soil or rock layer, as well as the geometrical characteristics and the location (upstream or downstream) of the potentially sliding mass. Then, it proceeds to the estimation of an effective value of the seismic coefficient khE, as a percentile of khmax, to be used with a requirement for pseudo-static factor of safety greater or equal to 1.0. The estimation of khE is based on allowable permanent down-slope deviatoric displacement and a conservative consideration of sliding block analysis.  相似文献   

18.
On 6 April 2009 a Mw=6.1 earthquake produced severe destruction and damage over the historic center of L’Aquila City (central Italy), in which the accelerometer stations AQK and AQU recorded a large amount of near-fault ground motion data. This paper analyzes the recorded ground motions and compares the observed peak accelerations and the horizontal to vertical response spectral ratios with those revealed from numerical simulations. The finite element method is considered herein to perform dynamic modeling on the soil profile underlying the seismic station AQU. The subsurface model, which is based on the reviewed surveys that were carried out in previous studies, consists of 200–400 m of Quaternary sediments overlying a Meso-Cenozoic carbonate bedrock. The Martin-Finn-Seed's pore-water pressure model is used in the simulations. The horizontal to vertical response spectral ratio that is observed during the weak seismic events shows three predominant frequencies at about 14 Hz, 3 Hz and 0.6 Hz, which may be related to the computed seismic motion amplification occurring at the shallow colluvium, at the top and base of the fluvial-lacustrine sequence, respectively. During the 2009 L’Aquila main shock the predominant frequency of 14 Hz shifts to lower values probably due to a peculiar wave-field incidence angle. The predominant frequency of 3 Hz shifts to lower values when the earthquake magnitude increases, which may be associated to the progressive softening of soil due to the excess pore-water pressure generation that reaches a maximum value of about 350 kPa in the top of fluvial-lacustrine sequence. The computed vertical peak acceleration underestimates the experimental value and the horizontal to vertical peak acceleration ratio that is observed at station AQU decreases when the earthquake magnitude increases, which reveals amplification of the vertical component of ground motion probably due to near-source effects.  相似文献   

19.
In this study, the evaluation of static and seismic bearing capacity factors for a shallow strip footing was carried out by using the method of characteristics, which was extended to the seismic condition by means of the pseudo-static approach. The results, for both smooth and rough foundations, were checked against those obtained through finite element analyses.Under seismic conditions the three bearing capacity problems for Nc, Nq and Nγ were solved independently and the seismic bearing capacity factors were evaluated accounting separately for the effect of horizontal and vertical inertia forces arising in the soil, in the lateral surcharge and in the superstructure.Empirical formulae approximating the extensive numerical results are proposed to compute the static values of Nγ and the corrective coefficients that can be introduced in the well-known Terzaghi׳s formula of the bearing capacity to extend its applicability to seismic design of foundations.  相似文献   

20.
A non-hydrostatic model in cross-sectional form with an idealized sill is used to examine the influence of sill depth (h s) and aspect ratio upon internal motion. The model is forced with a barotropic tide and internal waves and mixing occurs at the sill. Calculations using a wide sill and quantifying the response using power spectra show that for a given tidal forcing namely Froude number F r as the sill depth (h s) increases the lee wave response and vertical mixing decrease. This is because of a reduction in across sill velocity U s due to increased depth. Calculations show that the sill Froude number F s based on sill depth and across sill velocity is one parameter that controls the response at the sill. At low F s (namely F s ≪ 1) in the wide sill case, there is little lee wave production, and the response is in terms of internal tides. At high F s, calculations with a narrow sill show that for a given F s value, the lee wave response and internal mixing increase with increasing aspect ratio. Calculations using a narrow sill with constant U s show that for small values of h s, a near surface mixed layer can occur on the downstream side of the sill. For large values of h s, a thick well-mixed bottom boundary layer occurs due to turbulence produced by the lee waves at the seabed. For intermediate values of h s, “internal mixing” dominates the solution and controls across thermocline mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号