首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A half‐space finite element and a transmitting boundary are developed for a water‐saturated layered half‐space using a paraxial boundary condition. The exact dynamic stiffness of a half‐space in plane strain is derived and a second‐order paraxial approximation of the stiffness is obtained. A half‐space finite element and a transmitting boundary are then formulated. The development is verified by comparison of the dynamic stiffness of impermeable and permeable rigid strip foundations with other published results. The advantage of using the paraxial boundary condition in comparison with the rigid boundary condition is examined. It is shown that the paraxial boundary condition offers significant gain and the resulting half‐space finite element and transmitting boundary can represent the effects of a water‐saturated layered half‐space with good accuracy and efficiency. In addition, the numerical method described herein maintains the strengths and advantages of the finite element method and can be easily applied to demanding problems of soil–structure interaction in a water‐saturated layered half‐space. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
A half-space finite element and a consistent transmitting boundary in a cylindrical coordinate system are developed for analysis of rigid circular (or cylindrical) foundations in a water-saturated porous layered half-space. By means of second-order paraxial approximations of the exact dynamic stiffness for a half-space in plane-strain and antiplane-shear conditions, the corresponding approximation for general three-dimensional wave motion in a Cartesian coordinate system is obtained and transformed in terms of cylindrical coordinates. Using the paraxial approximations, the half-space finite element and consistent transmitting boundary are formulated in a cylindrical coordinate system. The development is verified by comparison of dynamic compliances of rigid circular foundations with available published results. Examination of the advantage of the paraxial condition vis-á-vis the fixed condition shows that the former achieves substantial gain in computational effort. The developed half-space finite element and transmitting boundary can be employed for accurate and effective analysis of foundation dynamics and soil–structure interaction in a porous layered half-space.  相似文献   

3.
This investigation deals with non‐linear seismic responses of free‐standing rectangular rigid bodies on horizontally and vertically accelerating rigid foundations. The responses are classified into two initial responses and four subsequent responses, accordingly the equations of motion governing the liftoff, slip and liftoff–slip interaction motions and boundary conditions corresponding to commencement and termination of the motions are defined. The time histories of responses presented herein show that the body is sensitive to small changes in the friction coefficient and slenderness, and to the wave properties and intensity of ground motions. Systematic trends are observed: the bodies on the low‐grip foundation avoid overturning while they are allowed to slip regardless of details of ground motions; the long period earthquakes tend to make the body overturn and slip largely. In contrast, the timing when liftoff and slip commences and terminates and their directions do not directly correspond with intensity of ground motions. Moreover, the vertical ground motion adds irregularities on the responses, since it excites or damps the responses. It is concluded that governing equations of motion and boundary conditions in view of discontinuous non‐linear systems are necessary to analyse actual motions of the rectangular rigid bodies subjected to horizontal and vertical ground motion. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a formulation for estimation of the frequency and damping of a soil‐structure interaction system based on the classical modal analysis and solving the system eigenvalue problem. Without loss of generality, the structure is represented by a single degree of freedom oscillator, while the soil effects are included through impedance functions for in‐plane motion of a 2D rigid foundation. For the results presented in this paper, the impedance functions were computed by the indirect boundary element method for a rectangular foundation embedded in a soil layer over elastic bedrock. The study shows that the classical modal‐analysis approach works well, with the exception of squat, stiff structures, even though the impedance functions are frequency‐dependent and the soil‐structure interaction system does not possess normal modes. The study also shows that system frequency and damping are independent of the wave passage effects, contrary to findings of some previous studies, and that the site conditions, represented by the soil‐layer thickness and stiffness contrast between bedrock and soil layer, have significant influences on both system frequency and system damping. Finally, the paper examines the accuracy of some of the simple methods for estimation of these two system parameters and comments on some conflicting conclusions of previous studies about the effects of foundation embedment.  相似文献   

5.
A hybrid analytical and FEM is proposed to investigate the nonlinear sloshing in a floating‐roofed oil storage tank under long‐period seismic ground motion. The tank is composed of a rigid cylindrical wall and a flat bottom, whereas the floating roof is treated as an elastic plate undergoing large deflection. The contained liquid is assumed to be inviscid and incompressible, and the flow is assumed to be irrotational. The method of analysis is based on representation of the liquid motion by superposing the analytical modes that satisfy the Laplace equation and the rigid wall and bottom boundary conditions. The FEM is then applied to solve the remaining kinematic and dynamic boundary conditions at the moving liquid surface coupled with the nonlinear equation of motion of the floating roof. This requires only the discretization of the liquid surface and the floating roof into finite elements, thus leading to a computationally efficient and accurate method compared with full numerical analysis. As numerical examples to illustrate the applicability of the proposed method, two oil storage tanks with single‐deck type floating roofs damaged during the 2003 Tokachioki earthquake are studied. It is shown that the nonlinear oscillation modes with the circumferential wave numbers 0, 2 and 3 caused by the finite liquid surface elevation as well as the membrane action due to large deflection of the deck produce excessively large stresses in the pontoon, which may cause the catastrophic failure of pontoon followed by the submergence of the roof. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
The dynamic soil–structure interaction of a rigid rectangular foundation with the subsoil represents a mixed-boundary value problem. This problem is formulated in terms of a system of coupled Fredholm integral equations of the first kind. The subsoil is modelled by a homogeneous, linear-elastic and isotropic half-space which is perfectly bonded to the rigid, rectangular foundation. An approximate solution for the resultant loads between the foundation and the half-space due to a unit forced displacement or rotation is obtained using the Bubnov–Galerkin method. Using this method the displacement boundary value conditions are exactly satisfied and the contact stress distributions between the foundation and the half-space are approximated by series expansions of Chebyshev polynomials. This method provides a simple means of studying the soil-structure interaction of rectangular foundations with different inertia properties.  相似文献   

7.
The finite‐difference method on rectangular meshes is widely used for time‐domain modelling of the wave equation. It is relatively easy to implement high‐order spatial discretization schemes and parallelization. Also, the method is computationally efficient. However, the use of finite elements on tetrahedral unstructured meshes is more accurate in complex geometries near sharp interfaces. We compared the standard eighth‐order finite‐difference method to fourth‐order continuous mass‐lumped finite elements in terms of accuracy and computational cost. The results show that, for simple models like a cube with constant density and velocity, the finite‐difference method outperforms the finite‐element method by at least an order of magnitude. Outside the application area of rectangular meshes, i.e., for a model with interior complexity and topography well described by tetrahedra, however, finite‐element methods are about two orders of magnitude faster than finite‐difference methods, for a given accuracy.  相似文献   

8.
The scaled boundary finite‐element method is extended to simulate time‐harmonic responses of non‐homogeneous unbounded domains with the elasticity modulus and mass density varying as power functions of spatial coordinates. The unbounded domains and the elasticity matrices are transformed to the scaled boundary coordinates. The scaled boundary finite‐element equation in displacement amplitudes are derived directly from the governing equations of elastodynamics. To enforce the radiation condition at infinity, an asymptotic expansion of the dynamic‐stiffness matrix for high frequency is developed. The dynamic‐stiffness matrix at lower frequency is obtained by numerical integration of ordinary differential equations. Only the boundary is discretized yielding a reduction of the spatial dimension by one. No fundamental solution is required. Material anisotropy is modelled without additional efforts. Examples of two‐ and three‐dimensional non‐homogeneous isotropic and transversely isotropic unbounded domains are presented. The results demonstrate the accuracy and simplicity of the scaled boundary finite‐element method. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
A new transmitting boundary in a cylindrical coordinate system has been developed for modeling the elastic waves radiating out to an infinite boundary in water-saturated transversely isotropic soil strata over a rigid bedrock. The saturated soil strata are assumed to consist of a porous material and modeled as a transversely isotropic two-phase medium, based on the uU formulation. The newly developed transmitting boundary is combined with the finite-elements model of the near-field region, using the same uU formulation, and applied to the study of the dynamics of a rigid circular foundation in porous isotropic or transversely isotropic layered strata, either fully or partly saturated with water. The verification and application examples give valuable insights into new and interesting aspects of the dynamic behavior of rigid circular foundations in fully or partly saturated two-phase ground in terms of permeability, transverse anisotropy, and ground-water table level.  相似文献   

10.
The scaled boundary finite‐element method has been developed for the dynamic analysis of unbounded domains. In this method only the boundary is discretized resulting in a reduction of the spatial dimension by one. Like the finite‐element method no fundamental solution is required. This paper extends the scaled boundary finite‐element method to simulate the transient response of non‐homogeneous unbounded domains with the elasticity modulus and mass density varying as power functions of spatial coordinates. To reduce the number of degrees of freedom and the computational cost, the technique of reduced set of base functions is applied. The scaled boundary finite‐element equation for an unbounded domain is reformulated in generalized coordinates. The resulting acceleration unit‐impulse response matrix is obtained and assembled with the equation of motion of standard finite elements. Numerical examples of non‐homogeneous isotropic and transversely isotropic unbounded domains demonstrate the accuracy of the scaled boundary finite‐element method. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Performance‐based engineering (PBE) methodologies allow for the design of more reliable earthquake‐resistant structures. Nonetheless, to implement PBE techniques, accurate finite element models of critical components are needed. With these objectives in mind, initially, we describe an experimental study on the seismic behaviour of both beam‐to‐column (BTC) and column‐base (CB) joints made of high‐strength steel S590 circular columns filled with concrete. These joints belonged to moment‐resisting frames (MRFs) that constituted the lateral‐force‐resisting system of an office building. BTC joints were conceived as rigid and of partial strength, whereas CB joints were designed as rigid and of full strength. Tests on a BTC joint composed of an S275 steel composite beam and high‐strength steel concrete‐filled tubes were carried out. Moreover, two seismic CB joints were tested with stiffeners welded to the base plate and anchor bolts embedded in the concrete foundation as well as where part of a column was embedded in the foundation with no stiffeners. A test programme was carried out with the aim of characterising these joints under monotonic, cyclic and random loads. Experimental results are presented by means of both force–interstory drift ratio and moment–rotation relationships. The outcomes demonstrated the adequacy of these joints to be used for MRFs of medium ductility class located in zones of moderate seismic hazard. Then, a numerical calibration of the whole joint subassemblies was successfully accomplished. Finally, non‐linear time‐history analyses performed on 2D MRFs provided useful information on the seismic behaviour of relevant MRFs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This study is concerned with the dynamic response of an arbitrary shaped rigid strip foundation embedded in an orthotropic elastic soil. The foundation is subjected to time-harmonic vertical, horizontal and moment loadings. The boundary-value problem related to an embedded foundation is analysed by using the indirect boundary integral equation method. The kernel functions of the integral equations are displacement and traction Green's functions of an anisotropic elastic half plane. Exact analytical solutions are used for the Green's functions. The boundary integral equation is solved by using numerical techniques. Selected numerical results are presented for the impedances of rectangular and semi-circular rigid strip foundations embedded in four types of anisotropic soils. A discussion on the influence of soil anisotropy and frequency of excitation on the impedances is presented. The versatility of the analysis is demonstrated by considering the through soil interaction between two semi-circular strip foundations.  相似文献   

13.
A direct finite element method for nonlinear earthquake analysis of 2‐dimensional dam–water–foundation rock systems has recently been presented. The analysis procedure uses standard viscous‐damper absorbing boundaries to model the semi‐unbounded foundation‐rock and fluid domains and specifies the seismic input as effective earthquake forces at these boundaries. Presented in this paper is a generalization of the direct finite element method with viscous‐damper boundaries to 3‐dimensional dam–water–foundation rock systems. Step‐by‐step procedures for determining the effective earthquake forces starting from a ground motion specified at a control point on the foundation‐rock surface is developed, and several numerical examples are computed and compared with independent benchmark solutions to demonstrate the effectiveness of the analysis procedure for modeling 3‐dimensional systems.  相似文献   

14.
The scaled boundary finite‐element method is a powerful semi‐analytical computational procedure to calculate the dynamic stiffness of the unbounded soil at the structure–soil interface. This permits the analysis of dynamic soil–structure interaction using the substructure method. The response in the neighbouring soil can also be determined analytically. The method is extended to calculate numerically the response throughout the unbounded soil including the far field. The three‐dimensional vector‐wave equation of elasto‐dynamics is addressed. The radiation condition at infinity is satisfied exactly. By solving an eigenvalue problem, the high‐frequency limit of the dynamic stiffness is constructed to be positive definite. However, a direct determination using impedances is also possible. Solving two first‐order ordinary differential equations numerically permits the radiation condition and the boundary condition of the structure–soil interface to be satisfied sequentially, leading to the displacements in the unbounded soil. A generalization to viscoelastic material using the correspondence principle is straightforward. Alternatively, the displacements can also be calculated analytically in the far field. Good agreement of displacements along the free surface and below a prism foundation embedded in a half‐space with the results of the boundary‐element method is observed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a method for coupled arch dam–foundation–reservoir seismic behaviour analysis. The dam is discretized by finite elements (FE) and the foundation and reservoir are discretized by boundary elements (BE). The opening of contraction joints and the spatial variability of the seismic action is taken into account. The study of Pacoima dam by this method is also presented. The computed results show that no cracks were to be expected due to the vibrations induced during the Feb. 9, 1971 San Fernando earthquake. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

16.
To reduce the numerical errors arising from the improper enforcement of the artificial boundary conditions on the distant surface that encloses the underground part of the subsurface, we present a finite‐element–infinite‐element coupled method to significantly reduce the computation time and memory cost in the 2.5D direct‐current resistivity inversion. We first present the boundary value problem of the secondary potential. Then, a new type of infinite element is analysed and applied to replace the conventionally used mixed boundary condition on the distant boundary. In the internal domain, a standard finite‐element method is used to derive the final system of linear equations. With a novel shape function for infinite elements at the subsurface boundary, the final system matrix is sparse, symmetric, and independent of source electrodes. Through lower upper decomposition, the multi‐pole potentials can be swiftly obtained by simple back‐substitutions. We embed the newly developed forward solution to the inversion procedure. To compute the sensitivity matrix, we adopt the efficient adjoint equation approach to further reduce the computation cost. Finally, several synthetic examples are tested to show the efficiency of inversion.  相似文献   

17.
With a simplified model and Galerkin's weighted residual procedure, two simple differential equations of dynamic behavior of a bounded rectangular medium are established along the boundaries in the x- and y-direction in the medium. Solutions of these equations yield closed form expressions of soil stiffnesses for various cases of a partially embedded rigid foundation, including the stiffnesses per depth of foundation with rectangular base area and the stifnesses of strip foundation. The developed procedure provides the definition of the weight functions, which are used in Galerkin's method for weighted residual. In addition to these weight functions, their conjugators are also suitable for weight functions. When the soil depth is finite, the original weight functions fail to produce physically meaningful results in some frequency range but the conjugators do not fail at any frequencies. The developed equations to compute soil stiffnesses for embedded foundations are simple yet capable of calculating the responses close to those computed by the much more elaborated finite element method.  相似文献   

18.
基于混合边界条件的有限单元法GPR正演模拟   总被引:6,自引:6,他引:0       下载免费PDF全文
从Maxwell方程组出发,推导了探地雷达(GPR)有限元波动方程.阐述了透射边界条件和Sarma边界条件的原理,推导了这两种边界条件的理论公式;通过在衰减层内加入过渡带优化了Sarma边界条件的加载方法,压制了介质区和衰减层交界面处的人为反射.考虑到透射边界条件与Sarma边界条件不同的理论机制,提出了一种结合透射边界条件和Sarma边界条件的混合边界条件,它利用Sarma边界条件对到达边界区域的GPR波能量衰减功能和透射边界对GPR波能量的透射功能,使GPR波经过Sarma边界条件的衰减吸收后,再通过透射边界条件将剩余能量透射出去,集成了二者的优势.并以二维均匀模型中的中心脉冲激励源方式为例,通过Matlab程序实现,以GPR的全波场快照的直观方式,对比了有、无边界条件及不同边界条件对人工截断边界的处理效果,说明了该混合边界条件对到达截断边界处的GPR波的处理优于单一边界条件.最后,以基于混合边界条件的有限单元法对两个典型的GPR地电模型进行了正演模拟,指导了GPR数据处理与工程实践.  相似文献   

19.
Finite‐difference frequency‐domain modelling of seismic wave propagation is attractive for its efficient solution of multisource problems, and this is crucial for full‐waveform inversion and seismic imaging, especially in the three‐dimensional seismic problem. However, implementing the free surface in the finite‐difference method is nontrivial. Based on an average medium method and the limit theorem, we present an adaptive free‐surface expression to describe the behaviour of wavefields at the free surface, and no extra work for the free‐surface boundary condition is needed. Essentially, the proposed free‐surface expression is a modification of density and constitutive relation at the free surface. In comparison with a direct difference approximate method of the free‐surface boundary condition, this adaptive free‐surface expression can produce more accurate and stable results for a broad range of Poisson's ratio. In addition, this expression has a good performance in handling the lateral variation of Poisson's ratio adaptively and without instability.  相似文献   

20.
波动数值模拟中透射边界的稳定实现   总被引:21,自引:0,他引:21  
从波动能量在计算区内累积增大的观点出发,通过简单的一维弹性波模型,系统地阐明了在近场波动数值模拟中透射边界两类数值失稳--"高频振荡"和"零频飘移"的机理:前者源于对波动数值模拟无意义的高频波动在人工边界上的放大和波在有限计算区内多次反射产生的反复放大;后者则源于透射边界允许零频和接近零频的分量不断进入计算区. 由此提出了稳定实现透射边界的完整方案包括两项简单措施:第一,在全部计算区内按文中建议的方法注入小阻尼,以消除高频振荡;第二, 给出一种具有明确物理意义的消除零频飘移的算子算法. 最后,提供了三维波源问题和散射问题的详细数值试验结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号