首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
太行山南缘断裂带新构造活动及其区域运动学意义   总被引:3,自引:0,他引:3       下载免费PDF全文
张岳桥  马寅生  杨农 《地震地质》2003,25(2):169-182
基于TM遥感影像的构造地貌解译和野外活动断层滑动矢量的测量和分析 ,阐述了太行山南缘断裂带第四纪左旋走滑活动的构造和地貌标志 ,反演了断裂变形的构造应力场 ,探讨了太行山南缘断裂带左旋走滑活动的区域运动学意义。研究表明 ,第四纪时期太行山南缘断裂带是一条斜张左旋走滑断裂。断层滑动矢量观测显示新近纪以来有 2期引张应力作用 :早期为NE -SW向引张 ,晚期为NNW -SSE向引张 ,这个观测结果与渭河地堑盆地的新近纪—第四纪 2期引张构造应力场一致。根据华北盆地构造资料推断 ,太行山南缘断裂带向东延伸与盆地内的泌阳 -开封 -商丘断陷带相接 ,共同构成了南华北和北华北 2个断陷区的构造边界。指出该断裂带作为南华北块体北缘 ,其新构造时期的斜张左旋走滑活动与南部秦岭断裂系左旋走滑活动一致 ,它们组成了一个宽阔的、向东撒开的、弥散型分布的左旋走滑形变带 ,调节着华南地块相对于华北地块向SEE方向的构造挤出  相似文献   

2.
前人对位于青藏块体北部与阿拉善块体接触带的金塔南山断裂是否存在左旋走滑新活动一直存在争议。文中基于航空照片和高分辨率遥感影像解译、地质地貌调查与填图、差分GPS测图、开挖剖面等方法,详细研究了金塔南山断裂的地质、地貌表现,分析是否存在左旋走滑的新活动特征。结果表明:金塔南山断裂晚第四纪以来有左旋走滑活动,地貌上表现为正、反向交替的断层陡坎、冲沟和微地貌的左旋位错、拉分盆地和挤压隆起等现象;地质剖面上表现为高倾角的断层面、倾向和性质不固定的断层面、花状构造。通过对比分析,得到金塔南山断裂晚更新世以来的左旋走滑速率约为(0.19±0.05)mm/a,与倾滑速率以及地表抬升速率相当,但远小于阿尔金断裂的走滑速率。综合分析认为,祁连山逆冲断裂系向NE的挤压扩展与应变分配可能是金塔南山断裂左旋走滑运动的动力学来源。  相似文献   

3.
青藏高原东北隅弧束断裂与南鄂尔多斯环形构造   总被引:7,自引:0,他引:7       下载免费PDF全文
李建华  申旭辉 《地震地质》2001,23(1):116-121
卫星图像分析显示 ,青藏高原东北隅存在非常清晰的毛毛山 -南华山 -六盘山、香山 -天景山、烟筒山、牛首山 -罗山 4条弧形断裂带和南鄂尔多斯环形构造。分析了弧形构造的运动特征和南鄂尔多斯环形构造的形态 ,认为青藏高原东北隅弧束断裂的成因是印度板块向NNE俯冲导致青藏高原NEE向移动所产生的推挤力 ,受到南鄂尔多斯环形构造的阻挡 ,形成了 4条向固原、泾原收敛 ,向NWW、NW方向撒开的弧束断裂。造成撒开部分NWW—NNW向断裂左旋走滑、NW—SN向断裂右旋走滑、收敛部分逆冲挤压的特  相似文献   

4.
酒泉盆地北侧金塔南山北缘断裂西段全新世活动特征   总被引:9,自引:0,他引:9  
金塔南山北缘断裂是酒泉盆地北侧的一条重要的活动断裂, 断裂西起梧桐墩西北, 向东经长山、 瓜勾山、 鸳鸯池水库、 大口子山到红墩以西, 长约60 km, 走向近东西, 倾向北或南, 倾角60°~80°。 断裂活动方式以挤压逆冲为主, 兼有左旋走滑特征。 通过对现场断错地貌的调查和探槽开挖, 发现金塔南山北缘断裂西段晚第四纪活动强烈, 并有古地震发生。  相似文献   

5.
通过对构造变形、构造空间展布关系、断面产状变化以及构造应力场等的综合分析研究认为,阿尔金北缘活动断裂带在第四纪内的运动方式经历了由挤压逆掩为主(早更新世—中更新世初期)到左旋走滑兼具挤压逆冲(中更新世中、晚期)直至纯左旋走滑运动(晚更新世—现今)的逐渐转变过程.作用于这种转变,研究区内区域构造应力场的演变大致可以划分为三期,其主压应力轴方向由老至新依次为近南北向、北北东向和北东向.构造应力场和断裂带运动方式的这些变化主要是由于印度板块持续向北推挤导致青藏高原内部次级块体向东滑动、岩石圈物质向东流展而造成的.  相似文献   

6.
阿尔金断裂带中段区域新构造应力场分析   总被引:24,自引:1,他引:24  
本文采用由断层擦痕资料反演构造应力张量的方法估算出阿尔金断裂带中段区域自上新世以来的两期主要构造作用:第Ⅰ期,上新世至早更新世,构造应力张量的最大主应力方向为近SN向,造成阿尔金断裂以逆断层运动为主,兼有左旋滑动;第Ⅱ期,早更新世末期至今,构造应力张量的最大主应力方向为NE—SW,造成阿尔金断裂以左旋走滑运动为主,兼有逆断层运动分量。  相似文献   

7.
阿尔金断裂在河西走廊西端的酒西盆地附近左旋走滑特征逐渐消失,而其东侧的宽滩山断裂和黑山北缘断裂表现为逆冲构造。在宽滩山北侧分布的2条断裂,分别是塔尔湾-池家刺窝断裂和干峡山断裂,这2条断裂也表现出明显的活动特征。前人认为塔尔湾-池家刺窝断裂是1条低活动速率的逆冲断裂,并未对其水平运动进行详细研究。宽滩山北缘断裂带是否存在水平走滑运动,对于进一步探讨阿尔金走滑断裂和祁连山北缘逆冲断裂的构造转换模式,具有非常重要的意义。文中通过无人机Sf M摄影测量等野外工作,对宽滩山北缘的塔尔湾-池家刺窝断裂和干峡山断裂的走滑运动特征进行研究,并获得了2点初步认识:1)宽滩山北缘断裂是具有右旋兼有逆冲的活动断裂,通过对宽滩山北缘断裂带的河流冲沟和阶地的位错量进行统计,初步估计其晚更新世右旋走滑速率为0.2~0.25mm/a,全新世右旋走滑速率为0.5~1.5mm/a;2)宽滩山北缘断裂所在的河西走廊西端位置的构造主要驱动力来自于祁连山向北的挤压作用,造成了宽滩山北缘断裂的右旋走滑和酒西盆地内多条断裂的逆冲运动性质。  相似文献   

8.
利用断层滑动资料反演构造应力张量从而确定出海原、六盘山断裂带至银川断陷的第四纪两期构造应力场 :早更新世末期以前 ,为北东—南西挤压型构造应力场 ,由此造成该地区断裂活动主要以逆断为主 ;早更新世末期至中更新世以后 ,构造应力场发生了调整 ,主压应力方向由早期的北东—南西改变为北东东—南西西 ,应力结构由挤压型转变为走滑型 ,并导致断裂活动由早期的逆断为主变为走滑为主 ,这种应力场格局一直持续至今。研究区现代构造应力场可划分为 :海原断裂带走滑应力区、六盘山逆断 -走滑混合应力区和银川断陷拉张应力区  相似文献   

9.
《地震地质》2021,43(3)
青藏高原东北缘地区的构造变形以NE向挤压缩短、顺时针旋转和向E挤出为主要特征,在NE向挤压作用下形成了NNW向的右旋走滑断裂,进一步将东北缘地区分为多个次级块体。其中,鄂拉山断裂与东昆仑断裂围限形成的柴达木次级块体整体以向NW方向的旋转挤出为主要特征,但处于这2条边界断裂交会部位的柴达木盆地东缘都兰地区的构造变形方式却不清楚。近期在针对都兰地区的野外地质调查中,发现了一条NW走向、长60~70km的右旋走滑断裂带,即夏日哈断裂带。该断裂带位于鄂拉山断裂西侧,由2条近平行的断裂组成,分别为夏日哈断裂和英德尔康断裂。经遥感解译与野外地质调查发现,该断裂线性特征明显,断错了多期冲积扇、河流阶地等晚第四纪地质地貌体,发现了多个断错晚第四纪沉积物的剖面,显示该断裂带为晚更新世—全新世活动断裂。综合分析认为,该断裂与前期发现的近EW走向的热水-桃斯托河全新世左旋走滑断裂,分别在鄂拉山断裂和东昆仑断裂的影响下共同调节柴达木块体端部的挤出旋转变形。同时,该断裂为该区新发现的活动断裂,具有中强地震的潜在发震能力,这不仅对理解区域构造变形模式具有重要意义,也导致对该区域地震危险性的认识发生较大改变。因此,亟待在该区域开展更进一步研究工作,以增进对区域应变分配模式的理解,为区域地震安全问题提供参考。  相似文献   

10.
在高分辨率SPOT卫星数字影像和大比例尺航片处理、断错地貌制图、野外核实与位移测量基础上, 利用宇宙成因核素(10Be, 26Al)、碳十四(14C)和热释光(TL)等多种测年手段, 厘定了各断错地貌面的形成年龄, 得到了阿尔金断裂带不同段落全新世左旋走滑速率: 阿克赛以西的中、西段左旋走滑速率可达(17.5±2) mm/a, 肃北-石包城段为(11±3.5) mm/a左右, 疏勒河口段减少到(4.8±1) mm/a左右, 东端宽滩山段仅约(2.2±0.2) mm/a, 左旋走滑速率突变点位于阿尔金断裂带中东段存在分支活动逆断层向南东扩展的肃北、石包城和疏勒河等三联点上. 矢量分析表明, 三联点东、西两侧左旋滑动速率的减少量转换成了阿尔金断裂带中东段南盘北西向活动逆断层上的地壳缩短和上盘推覆体抬升, 形成了党河南山、大雪山、祁连山等条块山地. 因此, 青藏高原北部物质向东挤出的速率和幅度是有限的, 符合“叠瓦状逆冲转换——有限挤出模型”.  相似文献   

11.
Pangusi-Xinxiang Fault is a great-scale, deep-incising buried active fault in the southern margin of the Taihang Mountains. In order to find out the location, characteristics, structure and activities of Pangusi-Xinxiang Fault, shallow reflection profiles with six lines crossing the buried faults were carried out. In this paper, based on the high-resolution seismic data acquisition technology and high-precision processing technology, we obtained clear images of underground structures. The results show that Pangusi-Xinxiang Fault is a near EW-trending Quaternary active fault and its structural features are different in different segment. The middle part of the fault behaves as a south-dipping normal fault and controls the north boundary of Jiyuan sag; The eastern part of the fault is a north-dipping normal fault and a dividing line of Wuzhi uplift and Xiuwu sag. The shallow seismic profiles reveal that the up-breakpoint of the Pangusi-Xinxiang Fault is at depth of 60~70m, which offsets the lower strata of upper Pleistocene. We infer that the activity time of this fault is in the lower strata of late Pleistocene. In this study, not only the location and characteristics of Pangusi-Xinxiang Fault are determined, but also the reliable geological and seismological evidences for the fault activity estimation are provided.  相似文献   

12.
Running across the urban areas of Changzhou, Wuxi and Suzhou, the NW-trending Su-Xi-Chang Fault is an important buried fault in Yangtze River Delta. In the respect of structural geomorphology, hilly landform is developed along the southwest side of the Su-Xi-Chang Fault, and a series of lakes and relatively low-lying depressions are developed on its northeast side, which is an important landform and neotectonic boundary line. The fault controlled the Jurassic and Cretaceous stratigraphic sedimentary and Cenozoic volcanic activities, and also has obvious control effects on the modern geomorphology and Quaternary stratigraphic distribution. Su-Xi-Chang Fault is one of the target faults of the project "Urban active fault exploration and seismic risk assessment in Changzhou City" and "Urban active fault exploration and seismic risk assessment in Suzhou City". Hidden in the ground with thick cover layer, few researches have been done on this fault in the past. The study on the activity characteristics and the latest activity era of the Su-Xi-Chang Fault is of great significance for the prevention and reduction of earthquake disaster losses caused by the destructive earthquakes to the cities of Changzhou, Wuxi and Suzhou. Based on shallow seismic exploration and drilling joint profiling method, Quaternary activities and distribution characteristics of the Su-Xi-Chang Fault are analyzed systematically. Shallow seismic exploration results show that the south branch of the Su-Xi-Chang Fault in Suzhou area is dominated by normal faulting, dipping to the north-east, with a dip angle of about 60° and a displacement of 3~5m on the bedrock surface. The north branch of the Su-Xi-Chang Fault in Changzhou area is dominated by normal faulting, dipping to the south, with a dip angle of about 55°~70° and a displacement of 4~12m on the bedrock surface. All breakpoints of Su-Xi-Chang Fault on the seismic exploration profiles show that only the bedrock surface was dislocated, not the interior strata of the Quaternary. On the drilling joint profile in the Dongqiao site of Suzhou, the latest activity of the south branch of Su-Xi-Chang Fault is manifested as reverse faulting, with maximum displacement of 2.9m in the upper part of Lower Pleistocene, and the Middle Pleistocene has not been dislocated by the fault. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 3.7m in the Neogene stratum. On the drilling joint profile in the Chaoyang Road site of Changzhou, the latest activity of the north branch of Su-Xi-Chang Fault is manifested as reverse faulting too, with maximum displacement of 2.8m in the bottom layer of the Middle Pleistocene. The fault acts as normal fault in the Pre-Quaternary strata, with a displacement of 10.2m in the bedrock surface. Combining the above results, we conclude that the latest activity era of Su-Xi-Chang Fault is early Middle Pleistocene. The Su-Xi-Chang Fault was dominated by the sinistral normal faulting in the pre-Quaternary period, and turned into sinistral reverse faulting after the early Pleistocene, with displacement of about 3m in the Quaternary strata. The maximum magnitude of potential earthquake on the Su-Xi-Chang Fault is estimated to be 6.0.  相似文献   

13.
Beijing plain area has been always characterized by the tectonic subsidence movement since the Pliocene. Influenced and affected by the extensional tectonic environment, tensional normal faulting occurred on the buried NE-trending faults in this area, forming the "two uplifts and one sag" tectonic pattern. Since Quaternary, the Neocathaysian stress field caused the NW-directed tensional shear faulting, and two groups of active faults are developed. The NE-trending active faults include three major faults, namely, from west to east, the Huangzhuang-Gaoliying Fault, Shunyi Fault and Xiadian Fault. The NW-trending active faults include the Nankou-Sunke Fault, which strikes in the direction of NW320°~330°, with a total length of about 50km in the Beijing area. The northwestern segment of the fault dips SW, forming a NW-directed collapse zone, which controls the NW-directed Machikou Quaternary depression. The thickness of the Quaternary is more than 600 meters; the southeastern segment of the fault dips NE, with a small vertical throw between the two walls of the fault. Huangzhuang-Gaoliying Fault is a discontinuous buried active fault, a boundary line between the Beijing sag and Xishan tectonic uplift. In the Beijing area, it has a total length of 110km, striking NE, dipping SE, with a dip angle of about 50~80 degrees. It is a normal fault, with the maximum fault throw of more than 1 000m since the Tertiary. The fault was formed in the last phase of Yanshan movement and controls the Cretaceous, Paleogene, Neogene and Quaternary sediments.There are four holes drilled at the junction between Nankou-Sunhe Fault and Huangzhuang-Gaoliying Fault in Beijing area. The geographic coordinates of ZK17 is 40°5'51"N, 116°25'40"E, the hole depth is 416.6 meters. The geographic coordinates of ZK18 is 40°5'16"N, 116°25'32"E, the hole depth is 247.6 meters. The geographic coordinates of ZK19 is 40°5'32"N, 116°26'51"E, the hole depth is 500.9 meters. The geographic coordinates of ZK20 is 40°4'27"N, 116°26'30"E, the hole depth is 308.2 meters. The total number of paleomagnetism samples is 687, and 460 of them are selected for thermal demagnetization. Based on the magnetostratigraphic study and analysis on the characteristics of sedimentary rock assemblage and shallow dating data, Quaternary stratigraphic framework of drilling profiles is established. As the sedimentation rate of strata has a good response to the activity of the basin-controlling fault, we discussed the activity of target fault during the Quaternary by studying variations of deposition rate. The results show that the fault block in the junction between the Nankou-Sunhe Fault and the Huangzhuang-Gaoliying Fault is characteristic of obvious differential subsidence. The average deposition rate difference of fault-controlled stratum reflects the control of the neotectonic movement on the sediment distribution of different tectonic units. The activity of Nankou-Sunhe Fault shows the strong-weak alternating pattern from the early Pleistocene to Holocene. In the early Pleistocene the activity intensity of Huangzhuang-Gaoliying Fault is stronger than Nankou-Sunhe Fault. After the early Pleistocene the activity intensity of Nankou-Sunhe Fault is stronger than Huangzhuang-Gaoliying Fault. The activity of the two faults tends to consistent till the Holocene.  相似文献   

14.
龙陵-瑞丽断裂(南支)北段晚第四纪活动性特征   总被引:5,自引:0,他引:5       下载免费PDF全文
遥感影像解译和野外地质地貌调查表明,龙陵-瑞丽断裂(南支)北段是以左旋走滑为主兼张性正断的区域性活动断裂。根据一些断错地貌点的大比例尺填图、实地测量及其年代学分析,确定了该断裂为全新世活动断裂,断裂晚更新世以来的平均水平滑动速率为2.2mm/a,平均垂直滑动速率为0.6mm/a;全新世以来的平均水平滑动速率为1.8~3.0mm/a,平均垂直滑动速率为0.5mm/a。断裂晚更新世以来的滑动速率在不同的时间尺度上变化不大,反映了该断裂晚更新世以来的活动强度比较平稳  相似文献   

15.
南黄海北部千里岩断裂活动性初探   总被引:3,自引:1,他引:2  
在南黄海北部海域首次针对千里岩断裂进行了声波探测。根据声波反射剖面所显示的晚第四纪断裂活动性差异,大致以朝连岛断裂为界,可把千里岩断裂分为2段,南段晚更新世以来不活动,在日照东南海域跨断裂的声波剖面上晚更新世地层没有受到断层错断的影响;北段在晚更新世晚期活动,从千里岩岛西侧至石岛湾以东海域,在声波剖面上可见多处上更新统中上部地层错断现象。虽然自建立测震台网以来沿千里岩断裂及附近海域内尚未发生5级及以上地震,也未见小震丛集现象,但是,千里岩断裂的晚更新世活动段长度>100km,具有发生6·5级左右地震的可能性,在地震预报和地震危险性分析中值得进一步研究  相似文献   

16.
山西中条山断裂带的晚第四纪分段模型   总被引:9,自引:0,他引:9       下载免费PDF全文
程绍平  杨桂枝 《地震地质》2002,24(3):289-302
山西南部的中条山断裂是鄂尔多斯断块周边活动断裂系东南部分的 1条断裂。有关断层活动性的最新研究结果表明 ,中条山断裂的活动性水平较低且重复间隔较长。在这个认识的基础上 ,根据构造不连续性、构造地貌学、探槽古地震学和断层运动学证据 ,进一步提出了晚第四纪中条山断裂的分段模型及其定量参数  相似文献   

17.
A series of NWW striking faults are obliquely intersected by the NEE striking Altyn Tagh fault zone in the western Qilian Mountains. These faults were mostly active in late Quaternary and play an important role in accommodating regional lateral extrusion by both reverse and sinistral slip. Detailed studies on late Quaternary activity, tectonic transformation, paleoseismology, and strain partitioning not only significantly affect our recognition on seismogenic mechanism and zones of potential large earthquakes, but also provide useful information for exploring tectonic deformation mechanism in the northern Tibetan plateau. The Danghenanshan Fault, Yemahe-Daxueshan fault, and Altyn Tagh Fault form a triplet junction point at southwest of Subei county. The Yemahe-Daxueshan fault is one important branch fault in the western Qilian Mountains that accommodated eastward decreasing slip of the Altyn Tagh Fault, which was active in late Holocene, with a length up to 170km. Based on geometry and late Quaternary activity, the Yemahe-Daxueshan fault was subdivided into 3 segments, i.e. the Subei fault, Yemahe fault and Daxueshan Fault. The Yemahe Fault has the most prominent appearance among them, and is dominated by left-lateral slip with a little normal component. The heights of fresh scarps on this fault are only several tens of centimeters. We dug 2 trenches at the Zhazhihu site, and cleaned and reinterpreted one trench of previous studies. Then we interpreted trench profiles and paleoseismic events, and collected 14C and Optical Stimulated Luminescence samples to constrain event ages. Finally, we determined 3 events on the Yemahe fault with ages(6 830±30) a BP-(6 280±40) a BP, (5 220±30) a BP, (2 010±30) a BP, respectively. The elapsed time of most recent earthquake is(2 010±30) years before present, which is very close to the recurrence interval, so the possibility of major earthquakes on the Yemahe fault is relatively large.  相似文献   

18.
The Daxing Fault is an important buried fault in the Beijing sub-plain, which is also the boundary fault of the structural unit between Langgu sub-sag and Daxing sub-uplift. So far, there is a lack of data on the shallow tectonic features of the Daxing Fault, especially for the key structural part of its northern section where it joins with the Xiadian Fault. In this paper, the fine stratigraphic classifications and shallow tectonic features of the northern section in the main Daxing Fault are explored by using three NW-trending shallow seismic reflection profiles. These profiles pass through the Daxing earthquake(M6¾)area in 1057AD and the northern section of the main Daxing Fault. The results show that seven strong reflection layers(T01—T03, TQ and T11—T13)are recognized in the strata of Neogene and Quaternary beneath the investigated area. The largest depth of strong reflection layer(T13)is about 550~850ms, which is interpreted as an important surface of unconformity between Neogene and Paleogene or basement rock. The remaining reflection layers, such as T01 and TQ, are interpreted as internal interfaces in Neogene to Quaternary strata. There are different rupture surfaces and slip as well as obviously different structural features of the Daxing Fault revealed in three shallow seismic reflection profiles. The two profiles(2-7 and 2-8)show obvious rupture surfaces, which are the expression of Daxing Fault in shallow strata. Along the profile(2-6), which is located at the end of the Daxing fault structure, a triangle deformation zone or bending fracture can be identified, implying that the Daxing Fault is manifested as bending deformation instead of rupture surfaces at its end section. This unique structural feature can be explained by a shearing motion at the end of extensional normal fault. Therefore, the Daxing Fault exhibits obviously different tectonic features of deformation or displacement at different structural locations. The attitude and displacement of the fault at the shallow part are also different to some extent. From the southwest section to the northeast section of the fault, the dip angle gradually becomes gentler(80°~60°), the upper breakpoint becomes deeper(160~600m), and the fault displacement in Neogene to Quaternary strata decreases(80~0m). Three shallow seismic reflection profiles also reveal that the Daxing Fault is a normal fault during Neogene to early Quaternary, and the deformation or displacement caused by the activity of the fault reaches the reflection layer T02. This depth is equivalent to the sedimentary strata of late Early-Pleistocene. Therefore, the geometry and morphology of the Daxing Fault also reveal that the early normal fault activity has continued into the Early Pleistocene, but the evidence of activity is not obvious since the late Pleistocene. The earthquakes occurring along the Daxing Fault, such as Daxing earthquake(M6¾)in 1057AD, may not have much relation with this extensional normal fault, but with another new strike-slip fault. A series of focal mechanism solutions of modern earthquakes reveal that the seismic activity is closely related to the strike-slip fault. The Daxing Fault extends also downwards into the lower crust, and may be cut by the steeply dipping new Xiadian Fault on deep seismic reflection profile. The northern section of the Daxing Fault strikes NNE, with a length of about 23km, arranged in a right step pattern with the Xiadian Fault. Transrotational basins have been developed in the junction between the northern Daxing Fault and the southern Xiadian Fault. Such combined tectonic features of the Daxing Fault and Xiadian Fault evolute independently under the extensional structure background and control the development of the Langgu sub-sag and Dachang sub-sag, respectively.  相似文献   

19.
Abstract The Korean peninsula is widely regarded as being located at the relatively stable eastern margin of the Asian continent. However, more than 10 Quaternary faults have recently been discovered in and reported from the southeastern part of the Korean Peninsula. One of these, the Eupchon Fault, was discovered during the construction of a primary school, and it is located close to a nuclear power plant. To understand the nature and characteristics of the Quaternary Eupchon Fault, we carried out two trench surveys near the discovery site. The fault system includes one main reverse fault (N20°E/40°SE) with approximately 4 m displacement, and a series of branch faults, cutting unconsolidated Quaternary sediments. Structures in the fault system include synthetic and antithetic faults, hanging‐wall anticlines, drag folds, back thrusts, pop‐up structures, flat‐ramp geometries and duplexes, which are very similar to those seen in thrust systems in consolidated rocks. In the upper part of the fault system, several tip damage zones are observed, indicating that the fault system propagates upward and terminates in the upper part of the section. Pebbles along the main fault plane show a preferred orientation of long axes, indicating the fault trace. The unconformity surface between the Quaternary deposits and the underlying Tertiary andesites or Cretaceous sedimentary rocks is displaced by this fault with a reverse movement sense. The stratigraphic relationship shows normal slip sense at the lower part of the section, indicating that the fault had a normal slip movement and was reversely reactivated during the Quaternary. The inferred length of the Quaternary thrust fault, based on the relationship between fault length and displacement, is 200–2000 m. The current maximum horizontal compressive stress direction in this area is generally east‐northeast–west‐southwest, which would be expected to produce oblique slip on the Eupchon Fault, with reverse and right‐lateral strike‐slip components.  相似文献   

20.
越南红河断裂活动性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
通过中越两国对越南红河断裂带开展的联合野外考察,获取了地震、地质、地貌和年代学等反映该断裂最新活动的相关证据。综合研究表明,越南红河断裂带第四纪以来的右旋走滑活动延续和保持了在中国境内自北向南逐渐减弱的总体趋势。其第四纪主要活动时代为中更新世中晚期,且总体活动水平明显低于中国云南境内部分,特别是自晚更新世以来越南红河断裂带的活动已表现得十分微弱。结合断裂现今地震活动和区域GPS大地形变特征分析认为,自晚第四纪以来,来自青藏高原的"侧向挤出"动力作用对红河断裂右旋走滑活动在时间、空间和强度等方面的影响可能非常有限。文中还探讨了造成这一有限影响可能的大地构造和深部构造原因  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号