首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of characteristic period τc and peak displacement amplitude Pd of the initial P wave in earthquake early warning (EEW) was proposed by Wu and Kanamori 1, 2, 3 and 4. Here we apply this approach to strong-motion records from a building sensor array installed in Taitung County, Taiwan. This building was damaged during the 2006 Mw=6.1 Taitung earthquake with a peak ground velocity (PGV) of up to 38.4 cm/s at an epicentral distance of 14.5 km. According to our analysis, the peak displacement amplitude Pd is a better indicator for the destructiveness of an earthquake than τc because τc is more sensitive to the signal-to-noise ratio (SNR) than Pd. In accordance with previous studies, only the structurally damaging Taitung earthquake generated a Pd value larger than 0.5 cm (a threshold for identifying damaging events). Using Pd as an indicator for destructive earthquakes does not lead to missing or false alarms for EEW purposes.  相似文献   

2.
Earthquake early warning system (EEWS) is one of the effective ways to mitigate earthquake damage and can provide few seconds to tens of seconds of advanced warning time of impending ground motions, allowing for mitigation measures to be taken in the short term. After the devastating Ms8.0 Wenchuan earthquake, hundreds of M4-6 earthquakes occurred with depth range of 2–24 km. We explore a practical approach to earthquake early warning in Wenchuan area by determining a ground-motion period parameter τc and a high-pass filtered vertical displacement amplitude parameter Pd from the initial 3 s of the P waveforms of these aftershocks with M≥4.0. The empirical relationships both between τc and M, and between Pd and peak ground velocity PGV for the Wenchuan area are presented. The τc result shows that it is systematically greater for slow earthquakes, leading to a possible false alarm. The moment rate function is used to handle the fact that the Pd parameter alone miss the M=8.0 mainshock. These two relationships can be used to detect the occurrence of a major earthquake and provide onsite warning in the area around the station where onset of strong ground motions is expected within seconds after the arrival of the P wave. The robustness of onsite early warning can be increased by using multistation data when the station density is high or by combing τc and Pd as a single indicator.  相似文献   

3.
We analyze the waveforms generated by the January 12, 2010 Haiti earthquake (Mw=7.0) for its source characteristics. A 60 to 25 km source model is retrieved by the Kikuchi and Kanamori finite source inversion technique that uses broadband teleseismic body wave records. The derived rupture model points out unilateral rupture propagation commenced at the eastern side of the fault plane where the major seismic moment release occurred. The rupture front propagated westward and terminated at a site where the largest aftershocks occurred. Our estimates yield a seismic moment of Mo=8.17×1019 N m released on a 60 km-long fault plane. A patch at the eastern side of the ruptured fault plane inferred as a region of maximum moment release.  相似文献   

4.
Ground motion intensity measures such as the peak ground acceleration (PGA) and the pseudo-spectral acceleration (PSA) at two sites due to the same seismic event are correlated. The spatial correlation needs to be considered when modeling ground-motion fields for seismic loss assessments, since it can have a significant influence on the statistical moments and probability distribution of aggregated seismic loss of a building portfolio.Empirical models of spatial correlation of ground motion intensity measures exist only for a few seismic regions in the world such as Japan, Taiwan and California, since for this purpose a dense observation network of earthquake ground motion is required. The Istanbul Earthquake Rapid Response and Early Warning System (IERREWS) provides one such dense array with station spacing of typically 2 km in the urban area of Istanbul. Based on the records of eight small to moderate (Mw3.5–Mw5.1) events, which occurred since 2003 in the Marmara region, we establish a model of intra-event spatial correlation for PGA and PSA up to the natural period of 1.0 s.The results indicate that the correlation coefficients of PGA and short-period PSA decay rapidly with increasing interstation distance, resulting in correlation lengths of approximately 3–4 km, while correlation lengths at longer natural periods (above 0.5 s) exceed 6 km. Finally, we implement the correlation model in a Monte Carlo simulation to evaluate economic loss in Istanbul's district Zeytinburnu due to a Mw7.2 scenario earthquake.  相似文献   

5.
Most of the present earthquake early warning systems are based on broadband or strong motion recordings. How-ever, the short-period instruments are still deployed. It is well-known that short-period recordings have saturation problems for large earthquakes when estimating the size of an earthquake. Thus, it is necessary to make clear the magnitude at which saturation starts to occur for the commonly used τc and Pd measurements, respectively. To investigate the possibility of using short-period seismic recordings for earthquake early warning, we conducted a simulated experiment using the strong motion data of the 1999 Chi-Chi earthquake sequence including its main shock and 31 aftershocks, with magnitude span from 4 to 7.6. The strong motion acceleration recordings were convolved with the instrument response of short-period seismographs in northern China to simulate short-period seismograms. Parameters τc and Pd from the first-three-second seismograms were calculated for the simulated short-period recordings and compared with that obtained by the original strong ground motion recordings. The result showed that to some extent, short-period recordings can be used for threshold earthquake early warning, while the magnitude saturation of Pd estimation can be up to 6.5, better than τc estimation.  相似文献   

6.
Earthquake early warning (EEW) systems are one of the most effective ways to reduce earthquake disaster. Earthquake magnitude estimation is one of the most important and also the most difficult parts of the entire EEW system. In this paper, based on 142 earthquake events and 253 seismic records that were recorded by the KiK-net in Japan, and aftershocks of the large Wenchuan earthquake in Sichuan, we obtained earthquake magnitude estimation relationships using the τ c and P d methods. The standard variances of magnitude calculation of these two formulas are ±0.65 and ±0.56, respectively. The P d value can also be used to estimate the peak ground motion of velocity, then warning information can be released to the public rapidly, according to the estimation results. In order to insure the stability and reliability of magnitude estimation results, we propose a compatibility test according to the natures of these two parameters. The reliability of the early warning information is significantly improved though this test.  相似文献   

7.
The Vrancea seismogenic zone in Romania represents a peculiar source of seismic hazard, which is a major concern in Europe, especially to neighboring regions of Bulgaria, Serbia and Republic of Moldavia. Earthquakes in the Carpathian–Pannonian region are confined to the crust, except the Vrancea zone, where earthquakes with focal depth down to 200 km occur. One of the cities most affected by earthquakes in Europe is Bucharest. Situated at 140–170 km distance from Vrancea epicenter zone, Bucharest encountered many damages due to high energy Vrancea intermediate-depth earthquakes; the March 4, 1977 event (Mw=7.2) produced the collapse of 36 buildings with 8–12 levels, while more than 150 old buildings were seriously damaged. A dedicated set of applications and a method to rapidly estimate magnitude in 4–5 s from detection of P wave in the epicenter were developed. They were tested on all recorded data. The magnitude error for 77.9% of total considered events is in the interval [−0.3, +0.3] magnitude units. This is acceptable taking into account that the magnitude is computed from only 3 stations in a 5 s time interval (1 s delay is caused by data packing). The ability to rapidly estimate the earthquake magnitude combined with powerful real-time software, as parts of an early warning system, allows us to send earthquake warning to Bucharest in real time, in about 5 s after detection in the epicenter. This allows 20–27 s warning time to automatically issue preventive actions at the warned facility.  相似文献   

8.
Istanbul Earthquake Rapid Response and the Early Warning System   总被引:13,自引:0,他引:13  
One hundred strong motion accelerometers have been placed in populated areas of Istanbul, within an area of approximately 50×30 km, to constitute a network that will enable rapid shake map and damage assessment after a damaging earthquake. After triggered by an earthquake, each station will process the streaming strong motion to yield the spectral accelerations at specific periods and will send these parameters in the form of SMS messages to the main data center through available GSM network services. A shake map and damage distribution will be automatically generated. The shake and damage maps will be available on the Internet and will also be pushed to several end users. For earthquake early warning information ten strong motion stations were located as close as possible to the Marmara Fault. The continuous on-line data from these stations will be used to provide near-real time warning for emerging potentially disastrous earthquakes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Tsunamis are most destructive at near to regional distances, arriving within 20–30 min after a causative earthquake; effective early warning at these distances requires notification within 15 min or less. The size and impact of a tsunami also depend on sea floor displacement, which is related to the length, L, width, W, mean slip, D, and depth, z, of the earthquake rupture. Currently, the primary seismic discriminant for tsunami potential is the centroid-moment tensor magnitude, M w CMT , representing the product LWD and estimated via an indirect inversion procedure. However, the obtained M w CMT and the implied LWD value vary with rupture depth, earth model, and other factors, and are only available 20–30 min or more after an earthquake. The use of more direct discriminants for tsunami potential could avoid these problems and aid in effective early warning, especially for near to regional distances. Previously, we presented a direct procedure for rapid assessment of earthquake tsunami potential using two, simple measurements on P-wave seismograms—the predominant period on velocity records, T d , and the likelihood, T 50 Ex , that the high-frequency, apparent rupture-duration, T 0, exceeds 50–55 s. We have shown that T d and T 0 are related to the critical rupture parameters L, W, D, and z, and that either of the period–duration products T d T 0 or T d T 50 Ex gives more information on tsunami impact and size than M w CMT , M wp, and other currently used discriminants. These results imply that tsunami potential is not directly related to the product LWD from the “seismic” faulting model, as is assumed with the use of the M w CMT discriminant. Instead, information on rupture length, L, and depth, z, as provided by T d T 0 or T d T 50 Ex , can constrain well the tsunami potential of an earthquake. We introduce here special treatment of the signal around the S arrival at close stations, a modified, real-time, M wpd(RT) magnitude, and other procedures to enable early estimation of event parameters and tsunami discriminants. We show that with real-time data currently available in most regions of tsunami hazard, event locations, m b and M wp magnitudes, and the direct, period–duration discriminant, T d T 50 Ex can be determined within 5 min after an earthquake occurs, and T 0, T d T 0, and M wpd(RT) within approximately 10 min. This processing is implemented and running continuously in real-time within the Early-est earthquake monitor at INGV-Rome (http://early-est.rm.ingv.it). We also show that the difference m b  ? log10(T d T 0) forms a rapid discriminant for slow, tsunami earthquakes. The rapid availability of these measurements can aid in faster and more reliable tsunami early warning for near to regional distances.  相似文献   

10.
Turkey was struck by two major events on August 17th and November 12th, 1999. Named Kocaeli (Mw=7.4) and Düzce (Mw=7.2) earthquakes, respectively, the two earthquakes provided the most extensive strong ground motion data set ever recorded in Turkey. The strong motion stations operated by the General Directorate of Disaster Affairs, the Kandilli Observatory and Earthquake Research Institute of Bogazici University and Istanbul Technical University have produced at least 27 strong motion records for the Kocaeli earthquake within 200 km of the fault. Kocaeli earthquake has generated six motions within 20 km of the fault adding significantly to the near-field database of ground motions for Mw>=7.0 strike–slip earthquakes. The paper discusses available strong motion data, studies their attenuation characteristics, analyses time domain, as well as spectral properties such as spectral accelerations with special emphasis on fault normal and fault parallel components and the elastic attenuation parameter, kappa. A simulation of the Kocaeli earthquake using code FINSIM is also presented.  相似文献   

11.
This work generalizes the results of tomographic imaging performed by the authors for epicentral zones. Seismic events in North Africa (the M w = 5.8 earthquake of 1985 near the town of Constantine), eastern Anatolia (the Erzincan M w = 6.7 earthquake of 1992), the Lesser and Greater Caucasus (the 1988 Spitak M w = 6.8 and the 1991 Racha M w = 7.0 earthquakes), and northern Sakhalin (the 1995 Neftegorsk M w = 7.1 earthquake) are examined. It is shown how various morphokinematic types of active faults differ in the resulting tomographic images at various depths. A classification of tomographic images of strong earthquake source zones is proposed in accordance with the rank of their generating faults. The sources of the Spitak, Racha, and Erzincan earthquakes are confined to large boundary faults separating tectonic zones. Lower velocity bands are revealed in the tomographic images, and low velocity “pockets” 1–2 km or somewhat more in width penetrating to a depth of up to 15 km are observed near the fault zones. The Constantine and Neftegorsk earthquakes were generated by faults of a lower rank. The source zones of these events are imaged tomographically as narrow gradient zones.  相似文献   

12.
—A moderately strong earthquake (M w = 6.2) occurred in the town of Dinar at 17.57 UT on October 1, 1995, taking the lives of 90 people and damaging about 4500 buildings. Its epicenter is located near the Dinar-Çivril fault and its focal mechanism is linked to a northeast-southwesterly tensional stress field arising from the interaction between the subducting African plate and the overriding Aegean-Anatolian plate in the eastern Mediterranean.¶Surface cracks of the October 1 earthquake have been observed 10 km continuously along the Dinar-Çivril fault. The cracks have displayed a mode of dip-slip; however, some have also indicated lateral slip. The different modes of slip are generally in agreement with the fault plane solution and are indicators of the complex nature of the rupture process.¶In investigating the earthquake hazard of the Dinar-Çivril fault and proximity, the maximum likelihood method was used to estimate seismic hazard parameters of b-value, seismicity activity rate λ m and the expected maximum magnitude M max?. The data consisted of the historical data covering the period between 1800–1900 and instrumental data between 1900 and 1992. This method, allowing use of the mixed earthquake catalogue containing both historical and instrumental earthquake data, yielded values of 0.70, 1.92 and 7.14 for b, λ m and M max?, respectively. The recurrence time estimated for an earthquake of a magnitude of M w = 6.2 is 123 years. The non-occurrence probabilities of such an earthquake in 1 and 50 years are 0.21 and 0.04, respectively.  相似文献   

13.
The quality of earthquake prediction is usually characterized by a two-dimensional diagram n versus τ, where n is the rate of failures-to-predict and τ is a characteristic of space–time alarm. Unlike the time prediction case, the quantity τ is not defined uniquely. We start from the case in which τ is a vector with components related to the local alarm times and find a simple structure of the space–time diagram in terms of local time diagrams. This key result is used to analyze the usual 2-d error sets {n, τ w } in which τ w is a weighted mean of the τ components and w is the weight vector. We suggest a simple algorithm to find the (n, τ w ) representation of all random guess strategies, the set D, and prove that there exists the unique case of w when D degenerates to the diagonal n + τ w  = 1. We find also a confidence zone of D on the (n, τ w ) plane when the local target rates are known roughly. These facts are important for correct interpretation of (n, τ w ) diagrams when we discuss the prediction capability of the data or prediction methods.  相似文献   

14.
T. Kuo 《Ground water》2014,52(2):217-224
Both studies at the Antung hot spring in eastern Taiwan and at the Paihe spring in southern Taiwan confirm that groundwater radon can be a consistent tracer for strain changes in the crust preceding an earthquake when observed in a low‐porosity fractured aquifer surrounded by a ductile formation. Recurrent anomalous declines in groundwater radon were observed at the Antung D1 monitoring well in eastern Taiwan prior to the five earthquakes of magnitude (Mw): 6.8, 6.1, 5.9, 5.4, and 5.0 that occurred on December 10, 2003; April 1, 2006; April 15, 2006; February 17, 2008; and July 12, 2011, respectively. For earthquakes occurring on the longitudinal valley fault in eastern Taiwan, the observed radon minima decrease as the earthquake magnitude increases. The above correlation has been proven to be useful for early warning local large earthquakes. In southern Taiwan, radon anomalous declines prior to the 2010 Mw 6.3 Jiasian, 2012 Mw 5.9 Wutai, and 2012 ML 5.4 Kaohsiung earthquakes were also recorded at the Paihe spring. For earthquakes occurring on different faults in southern Taiwan, the correlation between the observed radon minima and the earthquake magnitude is not yet possible.  相似文献   

15.
We propose a method that employs the squared displacement integral (ID2) to estimate earthquake magnitudes in real time for use in earthquake early warning (EEW) systems. Moreover, using τ c and P d for comparison, we establish formulas for estimating the moment magnitudes of these three parameters based on the selected aftershocks (4.0 ≤ M s  ≤ 6.5) of the 2008 Wenchuan earthquake. In this comparison, the proposed ID2 method displays the highest accuracy. Furthermore, we investigate the applicability of the initial parameters to large earthquakes by estimating the magnitude of the Wenchuan M s 8.0 mainshock using a 3-s time window. Although these three parameters all display problems with saturation, the proposed ID2 parameter is relatively accurate. The evolutionary estimation of ID2 as a function of the time window shows that the estimation equation established with ID2 Ref determined from the first 8-s of P wave data can be directly applicable to predicate the magnitudes of 8.0. Therefore, the proposed ID2 parameter provides a robust estimator of earthquake moment magnitudes and can be used for EEW purposes.  相似文献   

16.
Predictive equations based on the stochastic approach are developed for earthquake ground motions from Garhwal Himalayan earthquakes of 3.5≤Mw≤6.8 at a distance of 10≤R≤250 km. The predicted ground motion parameters are response spectral values at frequencies from 0.25 to 20 Hz, and peak ground acceleration (PGA). The ground motion prediction equations (GMPEs) are derived from an empirically based stochastic ground motion model. The GMPEs show a fair agreement with the empirically developed ground motion equations from Himalaya as well as the NGA equation. The proposed relations also reasonably predict the observed ground motion of two major Himalayan earthquakes from Garhwal Himalayan region. For high magnitudes, there is insufficient data to satisfactorily judge the relationship; however it reasonably predicts the 1991 Uttarkashi earthquake (Mw=6.8) and 1999 Chamoli earthquake (Mw=6.4) from Garhwal Himalaya region.  相似文献   

17.
Two zones of seismicity (ten events with M w = 7.0–7.7) stretching from Makran and the Eastern Himalaya to the Central and EasternTien Shan, respectively, formed over 11 years after the great Makran earthquake of 1945 (M w = 8.1). Two large earthquakes (M w = 7.7) hit theMakran area in 2013. In addition, two zones of seismicity (M ≥ 5.0) occurred 1–2 years after theMakran earthquake in September 24, 2013, stretching in the north-northeastern and north-northwestern directions. Two large Nepal earthquakes struck the southern extremity of the “eastern” zone (April 25, 2015, M w = 7.8 and May 12, 2015, M w = 7.3), and the Pamir earthquake (December 7, 2015, M w = 7.2) occurred near Sarez Lake eastw of the “western” zone. The available data indicate an increase in subhorizontal stresses in the region under study, which should accelerate the possible preparation of a series of large earthquakes, primarily in the area of the Central Tien Shan, between 70° and 79° E, where no large earthquakes (M w ≥ 7.0) have occurred since 1992.  相似文献   

18.
This paper presents the review of the experience in applying the approach based on the limiting distributions of the extreme value theory (the generalized Pareto distribution, GPS, and generalized extreme value distribution, GEV) for deriving the distributions of maximal magnitudes and related ground accelerations from the earthquakes on the future time intervals of a given duration. The results of analyzing the global and regional earthquake catalogs and the ground peak accelerations during the earthquakes are described. It is shown that the magnitude of the strongest possible earthquake M max (and analogous characteristics for other types of data), which is often used in seismic risk assessment, is potentially unstable. We suggest a stable alternative for M max in the form of quantiles Q q (τ) of the maximal possible earthquake, which could occur during the future time interval of length τ. The quantity of the characteristic maximal event M c, which has been introduced in our previous publications, is another helpful robust scalar parameter. All the cases of approximation of the tails of empirical distributions, which were studied in our works, turned out to be finite (bounded); however, the rightmost point of these distributions, M max, is often poorly detectable and unstable. Therefore, the M max parameter has a low practical value.  相似文献   

19.
The Northern Aegean Earthquake (Mw=6.9\ML=6.5) took place on May 24, 2014 between the islands of Gokceada, Turkey and Samothraki, Greece. The tremors were felt as far as in Istanbul, about 300 km on the East – Northeast (ENE) side of the epicenter. Kandilli Observatory and Earthquake Research Institute (KOERI) of Bogazici University, Turkey operate three downhole arrays in Istanbul, namely Atakoy (ATK), Fatih (FTH) and Zeytinburnu (ZYT) arrays. In this study, waveforms and site response observed at the KOERI operated seismic downhole arrays during the May 2014 Northern Aegean Earthquake (NAE2014) are analyzed in detail and presented. Evaluation of the acceleration records have shown low amplitude but long period and long duration motions at Istanbul. Furthermore, the analyses of the recordings suggest that Vs30 alone may not be a sufficient parameter for the characterization of site amplification.  相似文献   

20.
On 6 April 2009, 01:32 GMT, an Mw 6.3 earthquake hit the Abruzzi region of central Italy causing widespread damage in the City of L’Aquila and its nearby villages. The mainshock of this earthquake was recorded by 57 digital strong-motion instruments, four of which are located on the hanging wall of the Paganica Fault near L’Aquila. These stations are no more than 6 km from the epicentre. We use accelerometric data from these four stations to estimate permanent ground displacements caused by the mainshock. Our numerical results reveal south-east and downwards directed permanent co-seismic displacements which are in fair agreement with the outcomes of GPS and InSAR measurements reported in preliminary Istituto Nazionale di Geofisica e Vulcanologia (INGV) reports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号