首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
地震构造是强震发生的必要基础,强震的孕育和发生与构造密切相关。强震的孕育和发生不仅与震中周围构造有关,而且与孕震区所在的整个构造带有关。这就表明整个构造带的地震活动性与未来强震都有关联,因此,我们在做测震学参数异常预测地震时,必须考虑整个构造带的地震活动。过去我们常以震中周围地区的地震活动资料来做测震学参数的异常分析,可能会丢失部分信息。本文进行了地震构造分区和构造单元的划分,把加卸载响应比参数和张家口一渤海边界带有机结合,对基于活动地块边界带的加卸载响应比参数在海城地震预测中的应用进行了研究,结果预测效果很好。这种方法对边界带的地震危险性判定有某种参考价值。  相似文献   

2.
强震的孕育和发生不仅与震中附近构造有关,而且与孕震区所在的整个构造带有关,因此在利用测震学参数异常预测地震时必须考虑整个构造带的地震活动.过去以震中周围地区的地震活动资料来做测震学参数的异常分析,可能会丢失部分信息.本文进行了地震构造分区和构造单元的划分,以D、C、Mf值和河套断陷边界带的结合为例,对基于活动地块边界带的测震学参数预测地震进行了探索,结果对河套断陷边界带发生的4次6级地震预测效果很好.  相似文献   

3.
薛丁 《地震》2008,28(2):74-78
地震构造是强震发生的必要基础,强震的孕育和发生与构造密切相关。强震的孕育和发生不仅与震中周围构造有关,而且与孕震区所在的整个构造带有关。这就表明整个构造带的地震活动性与未来强震都有关联。因此,在做测震学参数异常预测地震时,必须考虑整个构造带的地震活动。过去人们常以震中周围地区的地震活动资料来做测震学参数的异常分析,可能会丢失部分信息。文中以金沙江—红河边界带和地震学参量Mf值的结合为例,对基于活动地块边界带的测震学参数强震预测进行了探索,其结果对丽江地震预测效果很好,这对边界带的地震危险性判定有某种参考价值。  相似文献   

4.
系统地总结分析了巴颜喀拉地块北、东、南边界带的构造特征、各个边界带上的强震活动、部分强震的震源机制解和区域地震活动,从而探讨了2010年玉树7.1级地震发生前巴颜喀拉地块地震活动特征。从2008年玉树地区地震活动变化、巴颜喀拉块体北边界和南边界强震呼应及块体动力学过程进行了地震趋势预测的思考。  相似文献   

5.
中国大陆活动地块边界带最大震级分布特征研究   总被引:3,自引:0,他引:3  
中国大陆活动地块边界带是强震活动的集中带,也是地震预测研究与防灾减灾的主要目标区,而最大地震震级是描述区域地震活动性的一个基本参数,被广泛应用于地震危险性分析研究中,因此有必要开展各活动地块边界带最大震级分布特征研究.本文利用广义极值(GEV)分布对各边界带作极值统计分析,对于分布参数进行估计,比较极值分布99%分位数和b值截距法最大震级、历史最大震级,并计算各震级水平下地震平均复发周期与发震次数,探讨活动地块各边界带未来强震活动的危险性.  相似文献   

6.
利用中国地震台网中心提供的1970—2019年8月全国地震目录,在分析青藏块体最小完备震级的基础上,应用PI算法,选取空间网格尺度0.2°×0.2°,截止震级为ML3.0,目标震级≥MS6.0,预测时间窗设定为10 a、5 a、3 a不同时间尺度进行回溯性研究,并对预测结果进行ROC检验。结果表明,预测时间窗内的强震基本发生在PI算法所得异常区域附近,且预测结果明显优于随机概率法;PI算法对青藏块体中长时间尺度的强震具有一定的预测效能,而且将预测时间窗设定为3 a时,预测效能较好。此外,定性分析了活动块体边界带“目标”地震与地震热点丛集间的关系,发现青藏块体MS≥6.0地震与活动块体边界带地震热点间的对应关系较好。在实际应用中,将PI算法计算结果与活动块体边界带结合起来考虑强震相对危险区域时,该研究结果具有一定的参考价值。  相似文献   

7.
由中国科学家提出的"中国大陆强震受控于活动地块运动与变形"的假说,不仅可用于解释中国大陆强震的空间分布,同时基于其理论和定义可将中国大陆划分为6个Ⅰ级活动地块和22个Ⅱ级活动地块。活动地块之间的边界带往往由活动构造带组成,一般宽约几km至百余km,是强烈地震的多发区。活动地块假说指出,已发生的近100%的8级以上强震、约80%的7级以上强震震中均位于地块边界带上。近年来,中国大陆几次7级以上强震也都发生在活动地块边界带,这不仅验证了活动地块假说的理论模型,同时还预测了未来强震就发生在活动地块边界带内某些有利于应力集中的部位。活动地块假说经过近20a的发展,已建立并逐步完善了其理论框架,奠定了中国活动构造与强震预测的理论基础,正推动着强震预测由概率预测向物理预测过渡。但就活动地块的概念和理论框架而言,还存在的诸多问题需进一步回答和解释。众所周知,强震是活动地块边界带特殊构造部位应变逐渐积累、介质突发失稳和能量释放的结果,地震预测的突破性进展需要建立在充分理解其整个物理过程的基础之上。因此,以边界带断裂的活动性、现今的变形状态、深浅构造的耦合关系、强震孕育环境及震源物理模型为主要研究内容,开展针对活动地块边界带强震活动机理与预测的研究,是活动地块理论完善和研究未来关注的重要内容和重要科学问题。  相似文献   

8.
1988年第三季度,全球地震活动回升。亚欧带打破了长期的平静,发生了缅印边界地震和尼(泊尔)印边界地震。美洲西海岸地震带地震活动趋向减弱。亚欧带地震活动中心的西移有可能推迟。  相似文献   

9.
对山西地震带的中长地震趋势进行了探讨。并从华北第3、4地震活动期的对比、山西地震带地震活动的参与以及活动规律等方面进行了研究,确定出山西地震带目前所处的活动阶段,并对可能发生地震的3要素作出了初步预测。  相似文献   

10.
阴山地震带中强地震的活动特征   总被引:2,自引:1,他引:2  
阴山地震带是中国内蒙古自治区的一条主要地震带,根据多年从事地震预报的工作经验,对阴山地震带与鄂尔多斯其他3个边缘的地震活动特征进行了对比分析,研究了阴山地震带自身地震活动演化、周期性、月分布地震及包头西震情窗口等方面的特征,并对阴山地震带的地震危险性作了预测。  相似文献   

11.
基于构造的测震学参数在鲁东-黄海地块的应用   总被引:1,自引:1,他引:0  
以基于构造的测震学参数分析为思路,利用地震构造分区和地质构造单元的划分结果,检验了基于活动边界带的测震学参数方法的可行性;将活动地块内部(地质构造复杂且地震活动频繁)构造单元与测震学参数相结合,研究中强震前震源区所在的构造单元测震学参数的变化特征,提取具有中期预测意义的震兆标志,为中强震的预测提供理论依据。结果显示:中强地震前,郯庐断裂带(鲁东-黄海地块西边界带)及扬子地块(鲁东-黄海地块内部构造单元)D、C值异常过程明显,且各有特点,证明了基于活动地块内部构造单元的测震学参数方法具有良好的可行性。  相似文献   

12.
The long-term earthquake prediction from 2021 to 2030 is carried out by researching the active tectonic block boundary zones in the Chinese mainland. Based on the strong earthquake recurrence model, the cumulative probability of each target fault in the next 10 years is given by the recurrence period and elapsed time of each fault, which are adopted from relevant studies such as seismological geology, geodesy, and historical earthquake records. Based on the long-term predictions of large earthquakes throughout the world, this paper proposes a comprehensive judgment scheme based on the fault segments with the seismic gap, motion strongly locked, sparse small-moderate earthquakes, and apparent Coulomb stress increase. This paper presents a comprehensive analysis of the relative risk for strong earthquakes that may occur in the coming 10 years on the major faults in the active tectonic block boundary zones in the Chinese mainland. The present loading rate of each fault is first constrained by geodetic observations; the cumulative displacement of each fault is then estimated by the elapsed time since the most recent strong earthquake.  相似文献   

13.
I suggest that earthquake precursors can be divided into two major categories, physical and tectonic. I define physical precursor to be a direct or indirect indication of initiation or progression of an irreversible rupture-generating physical process within the preparation zone of a forthcoming earthquake. Tectonic precursor is defined as a manifestation of tectonic movement which takes place outside the preparation zone of an impending earthquake as a link in a chain of particular local tectonism in each individual area preceding the earthquake.Most intermediate-term, short-term and immediate precursors of various disciplines within the source regions of main shocks are considered physical ones. Some precursory crustal deformations around the source regions are, however, possibly tectonic precursors, because they may be caused by episodic plate motions or resultant block movements in the neighboring regions of the fault segments that will break. A possible example of this phenomena is the anomalous crustal uplift in the Izu Peninsula, Japan, before the 1978 Izu-Oshima earthquake ofM s 6.8. Some precursory changes in seismicity patterns in wide areas surrounding source regions also seem to be tectonic precursors, because they were probably caused by the particular tectonic setting of each region. A typical example is a so-called doughnut pattern before the 1923 Kanto, Japan, earthquake ofM s 8.2.Although most studies on earthquake precursors so far seem to regard implicitly all precursory phenomena observed as physical ones, the two categories should be distinguished carefully when statistical analysis or physical modeling is carried out based on reported precursory phenomena. In active plate boundary zones, where a practical strategy for earthquake prediction may well be different from that in intraplate regions, tectonic precursors can be powerful additional tools for intermediate-term earthquake prediction.  相似文献   

14.
The hypothesis that strong earthquakes in China mainland are controlled by the movement and interaction of active-tectonic blocks was advanced by Chinese scientists, with the remarkable ability to encompass geological and geophysical observations. Application of the active-tectonic block concept can illustrate 6 active-tectonic block regions and 22 active-tectonic blocks in mainland China and its neighboring regions. Systems of active-tectonic block boundaries are characterized by a zone of decades or hundreds of strong earthquakes. One of the greatest strengths of the modern active-tectonic block hypothesis is its ability to explain the origin of virtually all the M8 and 80% M7 earthquakes on the main continent in eastern Asia. In other words, active-tectonic block boundary stands in strong causal interrelation with recurrence behaviors of strong earthquakes and thus, it is possible to predict an earthquake occurrence in principle. After nearly two decades of development and improvement, the active-tectonic block hypothesis has established its theoretical foundation for the active tectonics and earthquake prediction, and is promoting the transition from probabilistic prediction to physical prediction of strong earthquakes. The active-tectonic block concept was tested by application to a well-documented, high-frequent earthquake area, and was found to be an effective way of describing and interpreting the focal mechanism and seismogenic environment, but there are still many problems existing in the active-tectonic block hypothesis, which confronts with rigorous challenges. Future progress will continue to be heavily dependent on the high-precision synthetic seismogram, especially of critical poorly documented settings. It is well known that strong earthquakes occur anywhere in the interactions among the active-tectonic block boundaries where there is sufficient stored elastic strain energy driving fault propagation, and then releasing the stored energy. Therefore, future studies will focus on the mechanism and forecast of the strong earthquake activity in the active-tectonic block boundary zone, with fault activity within the active-tectonic block boundary zone, quantifying current crustal strain status, upper crust and deep lithosphere coupling relation, strong earthquake-generating process and its precursory variation mechanism in seismic geophysical model as the main research contents, which are the key issues regarding deepening the theory of active-tectonic block and developing continental tectonics and dynamics in the modern earth science.  相似文献   

15.
中国大陆活动地块边界带强震活动特征的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
在中国大陆及周边活动地块与活动地块边界带研究和划分的基础上,研究了中国陆区6个Ⅰ级活动地块区和22个Ⅱ级活动地块之间的共计24个活动边界带上的强震活动特征。从各边界带上强震活动的频次和单位时间、单位长度的地震应变能释放出发,讨论了各活动地块边界带的强震总体活动水平;并从震级频度关系出发,计算了各带的理论最大震级与复发周期。通过与实际地震记录对比发现,由中国大陆各主要活动地块边界带的地震活动参数(a/b)所推算的强震活动强度与实际地震活动强度总体上具有较好的一致性,强震复发期与构造活动速率则呈明显的反向变化关系,这也表明本研究给出的各边界带的a,b值具有一定的参考意义。文中还利用历史强震资料以及各带强震活动的离逝时间,基于泊松分布,探讨了各活动边界带的现今地震活动水平及其危险程度  相似文献   

16.
On the basis of summarizing the circulation characteristics and mechanism of earthquakes with magnitude 7 or above in continental China, the spatial-temporal migration characteristics, mechanism and future development trend of earthquakes with magnitude above 7 in Tibetan block area are analyzed comprehensively. The results show that there are temporal clustering and spatial zoning of regional strong earthquakes and large earthquakes in continental China, and they show the characteristics of migration and circulation in time and space. In the past 100a, there are four major earthquake cluster areas that have migrated from west to east and from south to north, i.e. 1)Himalayan seismic belt and Tianshan-Baikal seismic belt; 2)Mid-north to north-south seismic belt in Tibetan block area; 3)North-south seismic belt-periphery of Assam cape; and 4)North China and Sichuan-Yunnan area. The cluster time of each area is about 20a, and a complete cycle time is about 80a. The temporal and spatial images of the migration and circulation of strong earthquakes are consistent with the motion velocity field images obtained through GPS observations in continental China. The mechanism is related to the latest tectonic activity in continental China, which is mainly affected by the continuous compression of the Indian plate to the north on the Eurasian plate, the rotation of the Tibetan plateau around the eastern Himalayan syntaxis, and the additional stress field caused by the change of the earth's rotation speed.
Since 1900AD, the Tibetan block area has experienced three periods of high tides of earthquake activity clusters(also known as earthquake series), among which the Haiyuan-Gulang earthquake series from 1920 to 1937 mainly occurred around the active block boundary structural belt on the periphery of the Tibetan block region, with the largest earthquake occurring on the large active fault zone in the northeastern boundary belt. The Chayu-Dangxiong earthquake series from 1947 to 1976 mainly occurred around the large-scale boundary active faults of Qiangtang block, Bayankala block and eastern Himalayan syntaxis within the Tibetan block area. In the 1995-present Kunlun-Wenchuan earthquake series, 8 earthquakes with MS7.0 or above have occurred on the boundary fault zones of the Bayankala block. Therefore, the Bayankala block has become the main area of large earthquake activity on the Tibetan plateau in the past 20a. The clustering characteristic of this kind of seismic activity shows that in a certain period of time, strong earthquake activity can occur on the boundary fault zone of the same block or closely related blocks driven by a unified dynamic mechanism, reflecting the overall movement characteristics of the block. The migration images of the main active areas of the three earthquake series reflect the current tectonic deformation process of the Tibetan block region, where the tectonic activity is gradually converging inward from the boundary tectonic belt around the block, and the compression uplift and extrusion to the south and east occurs in the plateau. This mechanism of gradual migration and repeated activities from the periphery to the middle can be explained by coupled block movement and continuous deformation model, which conforms to the dynamic model of the active tectonic block hypothesis.
A comprehensive analysis shows that the Kunlun-Wenchuan earthquake series, which has lasted for more than 20a, is likely to come to an end. In the next 20a, the main active area of the major earthquakes with magnitude 7 on the continental China may migrate to the peripheral boundary zone of the Tibetan block. The focus is on the eastern boundary structural zone, i.e. the generalized north-south seismic belt. At the same time, attention should be paid to the earthquake-prone favorable regions such as the seismic empty sections of the major active faults in the northern Qaidam block boundary zone and other regions. For the northern region of the Tibetan block, the areas where the earthquakes of magnitude 7 or above are most likely to occur in the future will be the boundary structural zones of Qaidam active tectonic block, including Qilian-Haiyuan fault zone, the northern margin fault zone of western Qinling, the eastern Kunlun fault zone and the Altyn Tagh fault zone, etc., as well as the empty zones or empty fault segments with long elapse time of paleo-earthquake or no large historical earthquake rupture in their structural transformation zones. In future work, in-depth research on the seismogenic tectonic environment in the above areas should be strengthened, including fracture geometry, physical properties of media, fracture activity behavior, earthquake recurrence rule, strain accumulation degree, etc., and then targeted strengthening tracking monitoring and earthquake disaster prevention should be carried out.  相似文献   

17.
昆仑山口西8.1级地震前青藏块体边界断层异常活动   总被引:5,自引:0,他引:5  
范燕  车兆宏 《地震》2003,23(2):121-126
系统分析了青藏块体边界断层的形变资料,研究了断层活动的动态过程及空间分布。结果表明,昆仑山口西8.1级地震前孕震影响范围达到青藏块体的周边地区;发震断层所在的构造带震前断层活动最为剧烈;加强对构造块体断层整体活动的宏观动态比较和分析,有助于判定未来强震发生的危险地段;震后应力将转移并集中到西秦岭构造带及其邻近地区。  相似文献   

18.
青藏高原东缘龙门山构造带是研究青藏高原地壳物质向东侧向挤出的焦点地区.为探索龙门山构造带活动构造特征及其与发震构造的关系,本文通过布置垂直龙门山构造带南段芦山地震震源区的大地电磁测深剖面,运用多种数据处理手段,得到研究区可靠的电性结构,并通过与已有龙门山中段和北段剖面进行对比分析.研究表明:(1)青藏高原东缘岩石圈存在明显的低阻异常带--松潘岩石圈低阻带,该低阻异常带沿龙日坝断裂-岷山断裂-龙门山后山断裂分布,形成松潘-甘孜地块向扬子地块俯冲的深部动力学模式,通过统计研究区的历史强震,发现震源主要沿低阻异常带东侧分布,同时,低阻异常带也是低速度、低密度异常带,松潘岩石圈低阻带可能是扬子地块的西缘边界;(2)青藏高原物质东移过程中,受到克拉通型四川盆地的强烈阻挡,龙门山构造带表层岩块和物质发生仰冲推覆,表现为逆冲推覆特征的薄皮构造,中下地壳和上地幔顶部物质向龙门山构造带岩石圈深部俯冲,印支运动晚期,扬子古板块持续向华北板块俯冲,在上述构造运动作用下,呈现出刚性的上扬子地块西缘高阻楔形体向西插入柔性青藏块体的楔状构造;(3)根据电性结构推断,芦山地震受到深部上里隐伏壳幔韧性剪切带向上扩展的影响,构成芦山地震的深部主要动力来源;汶川地震的发生,在龙门山南段形成应力加载区,是触发或加快芦山地震孕育发生的另一个动力来源.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号