首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we addressed the effects of wind-induced drift on Lagrangian trajectories of surface sea objects using high-resolution ocean forecast and atmospheric data. Application of stochastic Leeway model for prediction of trajectories drift was considered for the numerical reconstruction of the Elba accident that occurred during the period 21.06.2009–22.06.2009: a person on an inflatable raft was lost in the vicinity of the Elba Island coast; from the initial position, the person on a raft drifted southwards in the open sea and later he was found on a partially deflated raft during rescue operation. For geophysical forcing, we used high-resolution currents from the Mediterranean Forecasting System and atmospheric wind from the European Centre for Medium-Range Weather Forecasts. To investigate the effect of wind on trajectory behavior, numerical simulations were performed using different categories of drifter-like particles similar to a person on an inflatable raft. An algorithm of spatial clustering was used to differentiate the most probable search areas with a high density of particles. Our results showed that the simulation scenarios using particles with characteristics of draft-limited sea drifters provided better prediction of an observed trajectory in terms of the probability density of particles.  相似文献   

2.
The prediction of drifting object trajectories in the ocean is a complex problem plagued with uncertainties. This problem is usually solved simulating the possible trajectories based on wind and advective numerical and/or instrumental data in real time, which are incorporated into Lagrangian trajectory models. However, both data and Lagrangian models are approximations of reality and when comparing trajectory data collected from drifter exercises with respect to Lagrangian models results, they differ considerably. This paper introduces a stochastic Lagrangian trajectory model that allows quantifying the uncertainties related to: (i) the wind and currents numerical and/or instrumental data, and (ii) the Lagrangian trajectory model. These uncertainties are accounted for within the model through random model parameters. The quantification of these uncertainties consists in an estimation problem, where the parameters of the probability distribution functions of the random variables are estimated based on drifter exercise data. Particularly, it is assumed that estimated parameters maximize the likelihood of our model to reproduce the trajectories from the exercise. Once the probability distribution parameters are estimated, they can be used to simulate different trajectories, obtaining location probability density functions at different times. The advantage of this method is that it allows: (i) site specific calibration, and (ii) comparing uncertainties related to different wind and currents predictive tools. The proposed method is applied to data collected during the DRIFTER Project (eranet AMPERA, VI Programa Marco), showing very good predictive skills.  相似文献   

3.
In this work, the benefits of high-frequency (HF) radar ocean observation technology for backtracking drifting objects are analysed. The HF radar performance is evaluated by comparison of trajectories between drifter buoys versus numerical simulations using a Lagrangian trajectory model. High-resolution currents measured by a coastal HF radar network combined with atmospheric fields provided by numerical models are used to backtrack the trajectory of two dataset of surface-drifting buoys: group I (with drogue) and group II (without drogue). A methodology based on optimization methods is applied to estimate the uncertainty in the trajectory simulations and to optimize the search area of the backtracked positions. The results show that, to backtrack the trajectory of the buoys in group II, both currents and wind fields were required. However, wind fields could be practically discarded when simulating the trajectories of group I. In this case, the optimal backtracked trajectories were obtained using only HF radar currents as forcing. Based on the radar availability data, two periods ranging between 8 and 10?h were selected to backtrack the buoy trajectories. The root mean squared error (RMSE) was found to be 1.01?km for group I and 0.82?km for group II. Taking into account these values, a search area was calculated using circles of RMSE radii, obtaining 3.2 and 2.11?km2 for groups I and II, respectively. These results show the positive contribution of HF radar currents for backtracking drifting objects and demonstrate that these data combined with atmospheric models are of value to perform backtracking analysis of drifting objects.  相似文献   

4.
Forecasting search areas using ensemble ocean circulation modeling   总被引:1,自引:1,他引:0  
We investigate trajectory forecasting as an application of ocean circulation ensemble modeling. The ensemble simulations are performed weekly, starting with assimilation of data for various variables from multiple sensors on a range of observational platforms. The ensemble is constructed from 100 members, and member no. 1 is designed as a standard (deterministic) simulation, providing us with a benchmark for the study. We demonstrate the value of the ensemble approach by validating simulated trajectories using data from ocean surface drifting buoys. We find that the ensemble average trajectories are generally closer to the observed trajectories than the corresponding results from a deterministic forecast. We also investigate an alternative model in which velocity perturbations are added to the deterministic results and ensemble mean results, by a first-order stochastic process. The parameters of the stochastic model are tuned to match the dispersion of the ensemble approach. Search areas from the stochastic model give a higher hit ratio of the observations than the results based on the ensemble. However, we find that this is a consequence of a positive skew of the area distribution of the convex hulls of the ensemble trajectory end points.  相似文献   

5.
A main conclusion following the oil spill from the Prestige tanker was that improvements in ocean circulation models were necessary; this was in order to predict, more accurately, the trajectories followed by the oil slicks and hence assist in fight against oil pollution operations. In this contribution, the results of the validation of a semi-empirical ocean circulation model, parameterised for the Bay of Biscay and forced with operational oceano-meteorological remote sensing observations, are shown. The model results have been validated with observations from drifting buoys, deployed in the Bay of Biscay during the crisis. The results show that the model explains a relatively large percentage of the current variability. The comparisons between the real and the estimated drifter trajectories indicate that for 3, 5 and 7 day-long trajectories, the drifter position is estimated with errors of approximately 23, 35 and 46km, respectively. The model reproduces relatively well the trajectory followed by the drifter with the shortest period (23 days).  相似文献   

6.
The leeway of 20-ft containers in typical distress conditions is established through field experiments in a Norwegian fjord and in open-ocean conditions off the coast of France with a wind speed ranging from calm to 14 m s−1. The experimental setup is described in detail, and certain recommendations were given for experiments on objects of this size. The results are compared with the leeway of a scaled-down container before the full set of measured leeway characteristics are compared with a semianalytical model of immersed containers. Our results are broadly consistent with the semianalytical model, but the model is found to be sensitive to choice of drag coefficient and makes no estimate of the crosswind leeway of containers. We extend the results from the semianalytical immersion model by extrapolating the observed leeway divergence and estimates of the experimental uncertainty to various realistic immersion levels. The sensitivity of these leeway estimates at different immersion levels are tested using a stochastic trajectory model. Search areas are found to be sensitive to the exact immersion levels, the choice of drag coefficient, and somewhat less sensitive to the inclusion of leeway divergence. We further compare the search areas, thus, found with a range of trajectories estimated using the semianalytical model with only perturbations to the immersion level. We find that the search areas calculated without estimates of crosswind leeway and its uncertainty will grossly underestimate the rate of expansion of the search areas. We recommend that stochastic trajectory models of container drift should account for these uncertainties by generating search areas for different immersion levels and with the uncertainties in crosswind and downwind leeway reported from our field experiments.  相似文献   

7.
Knowledge of upper ocean currents is needed for trajectory forecasts and is essential for search and rescue operations and oil spill mitigation. This paper addresses effects of surface waves on ocean currents and drifter trajectories using in situ observations. The data set includes colocated measurements of directional wave spectra from a wave rider buoy, ocean currents measured by acoustic Doppler current profilers (ADCPs), as well as data from two types of tracking buoys that sample the currents at two different depths. The ADCP measures the Eulerian current at one point, as modelled by an ocean general circulation model, while the tracking buoys are advected by the Lagrangian current that includes the wave-induced Stokes drift. Based on our observations, we assess the importance of two different wave effects: (a) forcing of the ocean current by wave-induced surface fluxes and the Coriolis–Stokes force, and (b) advection of surface drifters by wave motion, that is the Stokes drift. Recent theoretical developments provide a framework for including these wave effects in ocean model systems. The order of magnitude of the Stokes drift is the same as the Eulerian current judging from the available data. The wave-induced momentum and turbulent kinetic energy fluxes are estimated and shown to be significant. Similarly, the wave-induced Coriolis–Stokes force is significant over time scales related to the inertial period. Surface drifter trajectories were analysed and could be reproduced using the observations of currents, waves and wind. Waves were found to have a significant contribution to the trajectories, and we conclude that adding wave effects in ocean model systems is likely to increase predictability of surface drifter trajectories. The relative importance of the Stokes drift was twice as large as the direct wind drag for the used surface drifter.  相似文献   

8.

Knowledge of upper ocean currents is needed for trajectory forecasts and is essential for search and rescue operations and oil spill mitigation. This paper addresses effects of surface waves on ocean currents and drifter trajectories using in situ observations. The data set includes colocated measurements of directional wave spectra from a wave rider buoy, ocean currents measured by acoustic Doppler current profilers (ADCPs), as well as data from two types of tracking buoys that sample the currents at two different depths. The ADCP measures the Eulerian current at one point, as modelled by an ocean general circulation model, while the tracking buoys are advected by the Lagrangian current that includes the wave-induced Stokes drift. Based on our observations, we assess the importance of two different wave effects: (a) forcing of the ocean current by wave-induced surface fluxes and the Coriolis–Stokes force, and (b) advection of surface drifters by wave motion, that is the Stokes drift. Recent theoretical developments provide a framework for including these wave effects in ocean model systems. The order of magnitude of the Stokes drift is the same as the Eulerian current judging from the available data. The wave-induced momentum and turbulent kinetic energy fluxes are estimated and shown to be significant. Similarly, the wave-induced Coriolis–Stokes force is significant over time scales related to the inertial period. Surface drifter trajectories were analysed and could be reproduced using the observations of currents, waves and wind. Waves were found to have a significant contribution to the trajectories, and we conclude that adding wave effects in ocean model systems is likely to increase predictability of surface drifter trajectories. The relative importance of the Stokes drift was twice as large as the direct wind drag for the used surface drifter.

  相似文献   

9.
Lagrangian trajectory methods are often applied as deterministic transport models, where transport is due strictly to advection without taking into account stochastic elements of particle dispersion, which raises questions about validity of the model results. The present work investigates the impact of horizontal eddy diffusivity for a case study of coastal pollution in the Gulf of Finland, where the pollutants are assumed to originate from a major fairway and are transported to the coast by surface currents. Lagrangian trajectories are calculated using the TRACMASS model from velocity fields calculated by the Rossby Centre circulation model for 1982 to 2001. Three cases are investigated: (1) trajectory calculation without eddy diffusivity, (2) stochastic modelling of eddy diffusivity with a constant diffusion coefficient and (3) stochastic modelling of eddy diffusivity with a time- and space-variable diffusion coefficient. It is found that the eddy diffusivity effect increases the spreading rate of initially closely packed trajectories and the number of trajectories that eventually reach the coast. The pattern of most frequently hit coastal sections, the probability of hit to each such section and the time the pollution spends offshore are virtually invariant with respect to inclusion of eddy diffusivity.  相似文献   

10.
In this work, the benefits of high-frequency (HF) radar currents for oil spill modeling and trajectory analysis of floating objects are analyzed. The HF radar performance is evaluated by means of comparison between a drifter buoy trajectory and the one simulated using a Lagrangian trajectory model. A methodology to optimize the transport model performance and to calculate the search area of the predicted positions is proposed. This method is applied to data collected during the Galicia HF Radar Experience. This experiment was carried out to explore the capabilities of this technology for operational monitoring along the Spanish coast. Two long-range HF radar stations were installed and operated between November 2005 and February 2006 on the Galician coast. In addition, a drifter buoy was released inside the coverage area of the radar. The HF radar currents, as well as numerical wind data were used to simulate the buoy trajectory using the TESEO oil spill transport model. In order to evaluate the contribution of HF radar currents to trajectory analysis, two simulation alternatives were carried out. In the first one, wind data were used to simulate the motion of the buoy. In the second alternative, surface currents from the HF radar were also taken into account. For each alternative, the model was calibrated by means of the global optimization algorithm SCEM-UA (Shuffled Complex Evolution Metropolis) in order to obtain the probability density function of the model parameters. The buoy trajectory was computed for 24 h intervals using a Monte Carlo approach based on the results provided in the calibration process. A bivariate kernel estimator was applied to determine the 95% confidence areas. The analysis performed showed that simulated trajectories integrating HF radar currents are more accurate than those obtained considering only wind numerical data. After a 24 h period, the error in the final simulated position improves using HF radar currents. Averaging the information from all the simulated daily periods, the mean search and rescue area calculated using HF radar currents, is reduced by approximately a 62% in comparison with the search area calculated without these data. These results show the positive contribution of HF radar currents for trajectory analysis, and demonstrate that these data combined with atmospheric forecast models, are of value for trajectory analysis of oil spills or floating objects.  相似文献   

11.
This paper presents a high-resolution operational forecast system for providing support to oil spill response in Belfast Lough. The system comprises an operational oceanographic module coupled to an oil spill forecast module that is integrated in a user-friendly web application. The oceanographic module is based on Delft3D model which uses daily boundary conditions and meteorological forcing obtained from COPERNICUS and from the UK Meteorological Office. Downscaled currents and meteorological forecasts are used to provide short-term oil spill fate and trajectory predictions at local scales. Both components of the system are calibrated and validated with observational data, including ADCP data, sea level, temperature and salinity measurements and drifting buoys released in the study area. The transport model is calibrated using a novel methodology to obtain the model coefficients that optimize the numerical simulations. The results obtained show the good performance of the system and its capability for oil spill forecast.  相似文献   

12.
Geomagnetic secular variations are examined in terms of time variation in the Gauss coefficients. Major parts of the variations over several hundred years can be represented by a two mode model which consists of a standing and a drifting field. When the Gauss coefficients are plotted on a diagram with gnm in the abscissa and hnm in the ordinate, the drifting component describes a circle. However, some of the observed coefficients depict an elliptical trajectory rather than a circular one. Improvement of the model is attempted in two different ways. One is to assume time variability of the amplitude of the drifting component. The other is to introduce another drifting mode. Selecting a few spherical harmonic terms, variations in the Gauss coefficients since A.D. 1600 are analysed.When the amplitude of the drifting field is assumed to vary, the observed nature of the elliptical trajectory is well represented. In this case, phase velocity also changes with time. It is large while the amplitude is small, and it is small while the amplitude is large. Three mode models, in which an eastward drifting mode is incorporated, approximate the observed variations as well, not only for the period over several hundred years but also for the last several decades. In this model the westward drifting mode dominates the eastward mode.  相似文献   

13.
城市桥梁粘滞阻尼器防地震碰撞分析与参数设计   总被引:2,自引:0,他引:2  
研究了粘滞阻尼器防止城市梁桥地震碰撞反应的效果并提出了其参数设计方法。分析了线性粘滞阻尼器与非线性粘滞阻尼器阻尼系数的等效关系。运用随机振动理论与随机等效线性化理论建立了邻联间安装粘滞阻尼器后最大相对位移及墩顶最大位移的计算方法。以控制邻联最大相对位移小于实际间隙为目标,提出了防碰撞粘滞阻尼器参数设计方法。对1座4跨隔震连续梁桥进行了仿真分析,结果表明:粘滞阻尼器能有效抑制邻联的碰撞反应且不会显著增大桥墩的延性需求。在相同阻尼系数的情况下,粘滞阻尼器的速度指数越小,其防碰撞效果越好。利用人工波进行的时程分析结果验证了参数设计方法的可行性。  相似文献   

14.
The increasing production––and therefore sea traffic––of vegetable oils has regularly led to spillages during the past 40 years. The accident of Allegra, on October,1st, 1997, in the English Channel gave rise to a spillage of 900 tonnes of palm nut oil. The drift of this solid vegetable oil was followed by aerial observations. Samples of oil were collected in order to analyse its chemical evolution. This study, associated with several bibliographic cases of pollution by non-petroleum oils, shows that drifting oils can mix with floating material to sink or form a crust. They can also be oxidized or disperse and/or be degraded by bacteria. They may also polymerise. The coating properties of vegetable oils act as crude oils to affect sea life, tourism and yachting. As a result, it is necessary to quickly collect the oil after a spillage, using usual equipment (booms and pumps).  相似文献   

15.
Prevention of oil spill from shipping by modelling of dynamic risk   总被引:1,自引:0,他引:1  
This paper presents a new dynamic environmental risk model, with intended use within a new, dynamical approach for risk based ship traffic prioritisation. The philosophy behind this newly developed approach is that shipping risk can be reduced by directing efforts towards ships and areas that have been identified as high priority (high risk), prior to a potential accident. The risk model proposed in this paper separates itself from previous models by drawing on available information on dynamic factors and by focusing on the ship's surroundings. The model estimates the environmental risk of drift grounding accidents for oil tankers in real time and in forecast mode, combining the probability of grounding with oil spill impact on the coastline. Results show that the inherent dynamic risk introduced by an oil tanker sailing along the North Norwegian coast depends, not surprisingly, significantly upon wind and ocean currents, as well as tug position and cargo oil type. Results of this study indicate that the risk model is well suited for real time risk assessment, and effectively separates low risk and high risk situations. The model is well suited as a tool to prioritise oil tankers and coastal segments. This enables dynamic risk based positioning of tugs, using both real-time and projected risk, for effective support in case of a drifting ship situation.  相似文献   

16.
Little is known about the fate of subsurface hydrocarbon plumes from deep-sea oil well blowouts and their effects on processes and communities. As deepwater drilling expands in the Faroe–Shetland Channel (FSC), oil well blowouts are a possibility, and the unusual ocean circulation of this region presents challenges to understanding possible subsurface oil pathways in the event of a spill. Here, an ocean general circulation model was used with a particle tracking algorithm to assess temporal variability of the oil-plume distribution from a deep-sea oil well blowout in the FSC. The drift of particles was first tracked for one year following release. Then, ambient model temperatures were used to simulate temperature-mediated biodegradation, truncating the trajectories of particles accordingly. Release depth of the modeled subsurface plumes affected both their direction of transport and distance travelled from their release location, and there was considerable interannual variability in transport.  相似文献   

17.
An approximate solution to the problem of the drift of a raft formed of two parallel wires, differentially heated, rigidly coupled and floating in a fluid of finite thickness and with linear viscosity, has been obtained and is shown to agree well with experiment up to a multiplicative constant. In addition, the solution to the problem of the drift of a solid raft with a suspended single-wire heater also shows good agreement with experiment up to a multiplicative constant. In both cases, the rafts drift with constant velocity. For small amounts of heat, the drift velocity is proportional to the first power of the heat input; for large amounts of heat, the drift velocity is proportional to the square root of the heat input. Within imponderable factors of an order of magnitude, the drift velocities are appropriate for drift of lithospheric plates containing both an oceanic and a continental part.  相似文献   

18.
Current reliability‐based control techniques have been successfully applied to linear systems; however, incorporation of stochastic nonlinear behavior of systems in such control designs remains a challenge. This paper presents two reliability‐based control algorithms that minimize failure probabilities of nonlinear hysteretic systems subjected to stochastic excitations. The proposed methods include constrained reliability‐based control (CRC) and unconstrained reliability‐based control (URC) algorithms. Accurate probabilistic estimates of nonlinear system responses to stochastic excitations are derived analytically using enhanced stochastic averaging of energy envelope proposed previously by the authors. Convolving these demand estimates with capacity models yields the reliability of nonlinear systems in the control design process. The CRC design employs the first‐level and second‐level optimizations sequentially where the first‐level optimization solves the Hamilton–Jacobi–Bellman equation and the second‐level optimization searches for optimal objective function parameters to minimize the probability of failure. In the URC design, a single optimization minimizes the probability of failure by directly searching for the optimal control gain. Application of the proposed control algorithms to a building on nonlinear foundation has shown noticeable improvements in system performance under various stochastic excitations. The URC design appears to be the most optimal method as it reduced the probability of slight damage to 8.7%, compared with 11.6% and 19.2% for the case of CRC and a stochastic linear quadratic regulator, respectively. Under the Kobe ground motion, the normalized peak drift displacement with respect to stochastic linear quadratic regulator is reduced to 0.78 and 0.81 for the URC and CRC cases, respectively, at comparable control force levels. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
An examination of the westward drift of the geomagnetic field indicates that the drift velocity is almost independent of latitude, suggesting a uniform rigid rotation of spherical shape. When the geomagnetic field is separated into standing and drifting components and expressed in a spherical harmonic series, a lack of sectorial terms is noted in the standing field. It is shown that these features are well explained by a stratified core model.The core is supposed to be stratified near the surface where toroidal fluid motions are predominant. In the deeper part, the fluid motion is two-dimensional, forming Taylor columns. A simplified core model is assumed to represent these features, in which the core is divided into two parts, an outer spherical shell that rotates westwards at a uniform rate of 0.3° y?1 and a central sphere in which the two-dimensional columnar motions reside. The toroidal motions in the outer spherical interact with the dipole field to induce the drifting field, whereas the columnar motions generate the standing field through interaction with a toroidal field. It follows that a small velocity as 5 × 10?3 cm s?1 for the stratified motion is sufficient to create the observed drifting field.  相似文献   

20.
We apply iterative resolution estimation to least‐squares Kirchhoff migration. Reviewing the theory of iterative optimization uncovers the common origin of different optimization methods. This allows us to reformulate the pseudo‐inverse, model resolution and data resolution operators in terms of effective iterative estimates. When applied to Kirchhoff migration, plots of the diagonal of the model resolution matrix reveal low illumination areas on seismic images and provide information about image uncertainties. Synthetic and real data examples illustrate the proposed technique and confirm the theoretical expectations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号