首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 287 毫秒
1.
2.
宽频带强震仪与地震仪同一台基上记录仿真对比研究   总被引:6,自引:0,他引:6  
本文依据作者提出的由加速度记录实时仿真速度、位移时程和由速度记录实时仿真加速度时程及位移时程时域实时方法,对福建省和黑龙江省在同一台基上记录到的宽频带加速度记录与速度记录分别进行了仿真,并与仪器记录进行了比较分析。结果表明,可由宽频带加速度记录仿真得到真实的速度与位移时程;由宽频带速度记录也可得到加速度时程和位移时程,但对加速度时程高频成分会有一定的损失;应用此方法也可以仿真得到某一型号地震仪或者强震仪记录。  相似文献   

3.
近场数字强震仪记录误差分析与零线校正方法   总被引:6,自引:0,他引:6  
本文对数字强震仪记录进行了误差分析,并对国家强震动台网入网的5种型号数字强震仪系统作了振动台对比试验,分析了该系统加速度记录积分后速度和位移时程零线漂移的原因.本文提出了加速度记录的零线漂移校正方法和校正准则.为了印证零线校正方法的可靠性,对振动台试验中强震仪记录到的加速度两次积分得出位移时程与试验时记录到的绝对位移进行比较,计算位移和振动台绝对位移完全一致;对2008年5.12汶川8.0级大地震和1999年台湾9.21集集7.6级地震现场加速度记录两次积分后得出永久位移与两次大地震的GPS同震位移进行比较.结果表明,该方法对大地震近场仪器墩会发生倾斜或产生永久位移时加速度记录的零线校正有明显效果,可以给出加速度积分后的速度和位移并符合校正准则.本文方法解决了对大地震近场地面运动的研究停留在对峰值加速度和反应谱的研究阶段的困惑,满足了结构抗震对地面永久位移的需求.  相似文献   

4.
利用初期P波预警参数构建现地地震动预测模型,使其在达到设定阈值时快速发出报警信息,是现地地震预警系统面临的一个关键问题,直接关系到发布信息的准确性和及时性。针对地震烈度仪基于微机电系统传感器记录到的数据质量较差,通过两次积分获取的位移存在较大偏差,会引起更多的误报和漏报,本文采用不同阶数(1—4阶)的巴特沃斯滤波器,分别构建了基于P波3 s和全P波段数据的位移幅值PD、速度幅值PV和加速度幅值PA与地震动峰值速度PGV和峰值加速度PGA的现地地震动预测模型,然后利用收集到的川滇示范预警网地震事件记录进行验证。结果表明,对于地震烈度仪微机电系统传感器的记录,采用1阶巴特沃斯滤波器处理、基于全P波段波形拟合获取到的PV与PGV的相关性和PA与PGA的相关性为两种最优现地地震动预测模型。具体应用时,应同时利用两种或两种以上的统计关系进行现地地震动预测,并将实际地震动观测值作为额外的判定条件,以降低误报率和漏报率。   相似文献   

5.
非因果滤波器在强震数据处理中的应用   总被引:1,自引:0,他引:1  
本文叙述了非因果滤波器的特点,以汶川主震记录为例,采用Butterworth非因果滤波器,研究了加零、余弦过渡以及截止频率对于强震动记录有关参数的影响,对比了四种非因果滤波器在不同阶数下的计算结果,探讨了滤波后的加速度保零和去零的问题。研究表明:借助于在记录的首尾加零得以实现的非因果滤波具有零相位特点,余弦过渡处理对于加零部分与原始记录间的过渡很必要;Butterworth非因果滤波器的计算结果比较稳定,PGV和PGD对于高通截止频率的选择比较敏感,当波纹系数为0.2dB时,宜使用Chebyshev I型非因果滤波器;当波纹系数为3dB时,宜使用Cheby-shev II型非因果滤波器;对于滤波后的加速度数据需要保零以适应数据间的协调。  相似文献   

6.
At present, with the wide application of the Newmark method, various Newmark empirical formulas with different ground motion parameters have been fitted by many researchers based on global strong-motion records. However, the existing study about the Wenchuan earthquake does not quantitatively evaluate the applicability of different Newmark models based on the actual landslides distribution. The aim of this paper is to present a comparison between observed landslides from the 2008 Wenchuan earthquake and predicted landslides using Newmark displacement method based on different ground motion parameters. The factor-of-safety map and critical acceleration(ac)map in the study area are obtained by using the terrain data and geological data. The distribution of Arias intensity(Ia)and PGA in the study area is obtained by using the attenuation formulas of Arias intensity(Ia)and PGA, which is regressed by Wenchuan ground motion records. Based on the distribution of Arias intensity(Ia)and PGA parameters, we obtained the predicted locations of landslide using Newmark regression equations which are generated using global strong-motion records. The results shows that the assessment results can better reflect the macroscopic distribution characteristics of co-seismic landslides, most predicted landslide cells are distributed on the two sides of the Beichuan-Yingxiu Fault, especially the Pengguan complex rock mass in the hanging wall. The abilities to predict landslide occurrence of the two Newmark simplified models are different. On the whole, the evaluated result of simplified model based on parameter Ia is better than that based on PGA parameter. The GFC values obtained by the Newmark model of Ia and PGA parameters are 65.7% and 34.9%respectively. The evaluated result based on Ia can better reflect the macro distribution of coseismic landslides. The Ls_Pred value based on the Newmark model of parameter Ia is 26.5%, and the Ls_Pred value based on the Newmark model of PGA parameter is 10.3%. However the total area of predicted landslides accounts for 2.4% of the study area, which indicates that the predicted landslide cells are greater than the observed landslide cells. This reminds us that depending on the current input of shear strength and ground-motion parameters, we can only conduct landslide hazard assessment in macro areas, the ability to predict landslide can be improved using more accurate topographic data and input parameters.  相似文献   

7.
本文提出了一种基于L1范数正则化的基线校正新方法,即以拟合速度时程误差最小为目标,以基线漂移本身尽可能小为约束条件,经过凸优化多次迭代自动求解出满足条件的基线漂移,避免了人为选取基线漂移分段次数和基线漂移起止时刻的主观干扰;随后利用该方法对多组加入了基线漂移噪声模型的强震动加速度记录进行验证。结果表明:本文方法对于识别和处理单段式、两段式和多段式的基线漂移噪声具有普适性,能敏锐地捕捉到速度时程发生漂移的趋势(斜率变化),无需预先设定加速度基线漂移模型也可有效地识别出多种基线漂移噪声的起止位置和漂移程度;地震记录事前部分对本文方法处理结果影响较大,当记录事前部分足够长时(如20 s),识别基线漂移噪声的准确性较高,位移时程可以较好地与原始位移匹配;而对于发生漂移的速度时程,本文方法可以不受地震事前部分长短的干扰,甚至在加速度记录出现明显丢头现象时,也能很好地实现峰值速度和整个速度时程的恢复。   相似文献   

8.
High-frequency filtering of strong-motion records   总被引:5,自引:3,他引:2  
The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (<1 Hz) on strong-motion intensity parameters such as ground velocities, displacements and response spectral ordinates can be dramatic and consequentially it has become standard practice to low-cut (high-pass) filter strong-motion data with corner frequencies often chosen based on the shape of Fourier amplitude spectra and the signal-to-noise ratio. It has been shown that response spectral ordinates should not be used beyond some fraction of the corner period (reciprocal of the corner frequency) of the low-cut filter. This article examines the effect of high-frequency noise (>5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.  相似文献   

9.
The Italian strong-motion database was created during a joint project between Istituto Nazionale di Geofisica e Vulcanologia (INGV, Italian Institute for Geophysics and Vulcanology) and Dipartimento della Protezione Civile (DPC, Italian Civil Protection). The aim of the project was the collection, homogenization and distribution of strong motion data acquired in Italy in the period 1972–2004 by different institutions, namely Ente Nazionale per l’Energia Elettrica (ENEL, Italian electricity company), Ente per le Nuove tecnologie, l’Energia e l’Ambiente (ENEA, Italian energy and environment organization) and DPC. Recently the strong-motion data relative to the 23th December 2009, Parma (Mw = 5.4 and Mw = 4.9) and to the April 2009 L’Aquila sequences (13 earthquakes with 4.1 ≤ Mw ≤ 6.3) were included in the Italian Accelerometric Archive (ITACA) database (beta release). The database contains 7,038 waveforms from analog and digital instruments, generated by 1.019 earthquakes with magnitude up to 6.9 and can be accessed on-line at the web site . The strong motion data are provided in the unprocessed and processed versions. This article describes the steps followed to process the acceleration time series recorded by analogue and digital instruments. The procedures implemented involve: baseline removal, instrumental correction, band pass filtering with acausal filters, integration of the corrected acceleration in order to obtain velocity and displacement waveforms, computation of acceleration response spectra and strong motion parameters. This procedure is applied to each accelerogram and it is realised to preserve the low frequency content of the records.  相似文献   

10.
This paper is concerned with modeling earthquake-induced ground accelerations and the simulation of the dynamic response of linear structures through the principles of stochastic dynamics. A fully evolutionary approach, with nonstationarity both in amplitude and in frequency content, is proposed in order to define the seismic action, based on seismological information in the form of a small number of input parameters commonly available in deterministic or probabilistic seismic design situations. The signal is obtained by filtering a Gaussian white-noise. The finite duration and time-varying amplitude properties are obtained by using a suitable envelope function. By utilizing a subset of the records from the PEER-NGA strong-motion database, and time-series analysis tools extended to nonstationary processes, the key transfer-function properties, in terms of circular frequency, damping ratio and spectral intensity factor, are identified. A regression analysis is conducted for practical and flexible application of this model, in order to empirically relate the identified time-varying parameters of the filter to the characteristics defining earthquake scenarios such as magnitude, rupture distance and soil type. A validation study and a parametric investigation using elastic response spectra is also included. Results show that the final seismic model can reproduce, with satisfactory accuracy, the characteristics of acceleration records in a region, over a broad range of response periods.  相似文献   

11.
Attenuation laws predicting induced displacements generated by earthquakes of different magnitude at different distances as a function of the critical acceleration ratio of the foundation materials have been derived from a substantial data set of strong-motion records obtained worldwide.  相似文献   

12.
A revised empirical model has been developed for predicting liquefaction-induced lateral spreading displacement (LD) as a function of both response spectral acceleration derived from strong-motion atte...  相似文献   

13.
Processing of strong-motion accelerograms: needs, options and consequences   总被引:13,自引:2,他引:13  
Recordings from strong-motion accelerographs are of fundamental importance in earthquake engineering, forming the basis for all characterizations of ground shaking employed for seismic design. The recordings, particularly those from analog instruments, invariably contain noise that can mask and distort the ground-motion signal at both high and low frequencies. For any application of recorded accelerograms in engineering seismology or earthquake engineering, it is important to identify the presence of this noise in the digitized time-history and its influence on the parameters that are to be derived from the records. If the parameters of interest are affected by noise then appropriate processing needs to be applied to the records, although it must be accepted from the outset that it is generally not possible to recover the actual ground motion over a wide range of frequencies. There are many schemes available for processing strong-motion data and it is important to be aware of the merits and pitfalls associated with each option. Equally important is to appreciate the effects of the procedures on the records in order to avoid errors in the interpretation and use of the results. Options for processing strong-motion accelerograms are presented, discussed and evaluated from the perspective of engineering application.  相似文献   

14.
The development of high-rate GNSS seismology and seismic observation methods has provided technical support for acquiring the near-field real-time displacement time series during earthquake. But in practice, the limited number of GNSS continuous stations hardly meets the requirement of near-field quasi-real-time coseismic displacement observation, while the macroseismographs could be an important complement. Compared with high-rate GNSS, macroseismograph has better sensitivity, higher resolution(100~200Hz)and larger dynamic range, and the most importantly, lower cost. However, baseline drift exists in strong-motion data, which limits its widespread use. This paper aims to prove the feasibility and reliability of strong motion data in acquiring seismic displacement sequences, as a supplement to high-rate GNSS. In this study, we have analyzed the strong-motion data of Wenchuan MS8.0 earthquake in Longmenshan fault zone, based on the automatic scheme for empirical baseline correction proposed by Wang et al., which fits the uncorrected displacement by polynomial to obtain the fitting parameters, and then the baseline correction is completed in the velocity sequence. Through correction processing and quadratic integration, the static coseismic displacement field and displacement time series are obtained. Comparison of the displacement time series from the strong motions with the result of high-rate GPS shows a good coincidence. We have worked out the coseismic displacement field in the large area of Wenchuan earthquake using GPS data and strong motion data. The coseismic displacement fields calculated from GPS and strong motions are consistent with each other in terms of magnitude, direction and distribution patterns. High-precision coseismic deformation can provide better data constraint for fault slip inversion. To verify the influence of strong-motion data on slip distribution in Wenchuan earthquake, we used strong motion, GPS and InSAR data to estimate the stress drop, moment magnitude and coseismic slip model, and our results agreed with those of the previous studies. In addition, the inversion results of different data are different and complementary to some extent. The use of strong-motion data supplements the slip of the fault in the 180km segment and the 270~300km segment, thus making the inversion results of fault slip more comprehensive. From this result, we can draw the following conclusions:1)Based on the robust baseline correction method, the use of strong motion data, as an important complement to high-rate GNSS, can obtain reliable surface displacement after the earthquake. 2)The strong motion data provide an effective method to study the coseismic displacement sequence, the surface rupture process and quick seismogenic parameters acquisition. 3)The combination of multiple data can significantly improve the data coverage and give play to the advantages of different data. Therefore, it is suggested to combine multiple data(GPS, strong motion, InSAR, etc.)for joint inversion to improve the stability of fault slip model.  相似文献   

15.
This study investigates the correlation properties of integral ground-motion intensity measures (IMs) from Italian strong-motion records. The considered integral IMs include 5–95% significant duration, Housner intensity, cumulative absolute velocity, and Arias intensity. Both IM spatial correlation and the correlation between different integral and amplitude-based IMs (i.e., cross-IM correlation) are addressed in this study. To this aim, a new Italian ground-motion model (GMM) with spatial correlation for integral IMs is first introduced. Based on the newly developed GMM, the empirical correlation coefficients from interevent and intraevent residuals are investigated and various analytical correlation models between integral IMs and amplitude-based IMs are proposed. The effective range parameter representing spatial correlation properties and the trend in the cross-IM correlations are compared with existing models in the literature. The variability of the effective range parameters with respect to event-specific features is also discussed. Modeling ground-motion spatial and cross-IM correlations is an important step in seismic hazard and risk assessment of spatially distributed systems. Investigating region-specific correlation properties based on Italian strong-motion records is of special interest as several correlation models have been developed based on global datasets, often lacking earthquakes in extensional regions such as Italy.  相似文献   

16.
The necessity of a dense network in Northern Italy started from the lack of available data after the occurrence of the 24th November 2004, Ml 5.2, Salò earthquake. Since 2006, many efforts have been made by the INGV (Italian National Institute for Geophysic and Vulcanology), Department of Milano-Pavia (hereinafter INGV MI-PV), to improve the strong-motion monitoring of the Northern Italy regions. This activity led to the installation of a strong-motion network composed by 20 accelerometers, 4 coupled with 20-bits Lennartz Mars88 recorders, 12 coupled with 24-bits Reftek 130 recorders and 4 coupled with 24-bits Gaia2 recorders. The network allow us to reduce, in the area under study, the average inter-distances between strong-motion stations from about 40 km (at November 2004) to 15 km. At present the network includes nine 6-channels stations where velocity sensors work together the strong-motion ones. The data transmission is assured by modem-gsm, with the exception of four stations that send data in real time through a TCP/IP protocol. In order to evaluate different site responses, the stations have been installed both in free field and near (or inside) public buildings, located in the center of small villages. From June 2006 to December 2008 a dataset of 94 events with local magnitude range from 0.7 to 5.1 has been collected. An ad hoc data-processing system have been created in order to provide, after each recorded event, engineering parameters such as peak ground acceleration (PGA) and velocity (PGV), response spectra (SA and PSV), Arias and Housner intensities. Data dissemination is achieved through the web site , while the waveforms are distributed through the Italian strong motion database ().  相似文献   

17.
A simple hybrid approach for the simulation of strong ground motion is presented in this paper. This approach is based on the deterministic modelling of rupture plane initially started by Midorikawa, Tectonophysics 218:287–295, (1993) and further modified by Joshi, Pure Appl Geophys (PAGEOPH) 8:161, (2004). In this technique, the finite rupture plane of the target event is divided into several subfaults, which satisfy scaling relationship. In this paper, simulation of strong ground motion due to a rupture buried in a earth medium consisting of several layers of different velocities and thicknesses is made by considering (1) transmission of energy at each layer; (2) frequency filtering properties of medium and earthquake source; (3) correction factor for slip of large and small magnitude earthquakes and (4) site amplification ratio at various stations. To test the efficacy of the developed technique, strong motion records were simulated at different stations that have recorded the 2004 Niigata-ken Chuetsu, Japan earthquake (M s 7.0). Comparison is made between the simulated and observed velocity and acceleration records and their response spectra. Distribution of peak ground acceleration, velocity and displacement surrounding the rupture plane is prepared from simulated and observed records and are compared with each other. The comparison of synthetic with the observed records over wide range of frequencies shows that the present technique is effective to predict various strong motion parameters from simple deterministic model which is based on simple regression relations and modelling parameters.  相似文献   

18.
Since 1990, digital strong-motion accelerographs and global positioning system (GPS) instruments have been widely deployed in the Taiwan region (Shin et al. 2003; Yu et al. 2001). The 1999 Chi-Chi, Mw 7.6 earthquake and the 2003 Chengkung, Mw 6.8 earthquake were well recorded by both digital accelerographs and GPS instruments. These data offer a good opportunity to determine coseismic displacements from strong-motion records and to compare the results with those derived from GPS measurements. As noted by Boore (2001), a double integration of the acceleration data often leads to unreasonable results, and baseline corrections are therefore required in most cases before the integration. Based on the works of Iwan et al. (1985) and Boore (2001), we developed an improved method for baseline correction and validated it using an extensive set of data from shake-table tests of a known “step” displacement on 249 accelerographs. Our baseline correction method recovered about 97% of the actual displacement from the shake-table data. We then applied this baseline correction method to compute coseismic displacements from the strong-motion data of the Chi-Chi and Chengkung earthquakes. Our results agree favorably with the coseismic displacements determined by the GPS measurements at nearby sites. The ratio of seismic to geodetic displacement varies from 0.78 to 1.41, with an average of about 1.05.  相似文献   

19.
赵松年  熊小芸 《地震学报》1987,9(2):217-224
工程强震观测是地震科学研究的重要课题之一,而触发式记录则是强地震与工程强震记录的主要方式.利用地震信号(位移,速度或加速度)本身作为触发信号而设计的各类强震观测仪器(PDR-1,2;DR-100,200;GQ-Ⅱ,Ⅲ;QZ-2A 等)所面临的主要困难是如何减小误触与漏触概率,即提高触发器的抗干扰能力,本文对利用地震信号的不同特征参量作为触发信号时的误触与漏触概率作了对比分析,提出了幅度特征--窗口比较器触发电路的设计,在GQ-Ⅱ及 QZ-2A 型仪器的现场使用和抗干扰实验中取得了预期结果.误触与漏触概率降低到1%以下,抗干扰能力明显提高.   相似文献   

20.
Housner谱烈度及修正谱烈度作为基于加速度记录时程直接得到的地震动强度参数,与建筑结构破坏及地震宏观烈度存在较高的相关性,是可靠的地震仪器烈度物理参数指标。然而,相对于地面加速度峰值、地面速度峰值等地震动峰值参数,三分量加速度记录对应的谱烈度计算过程较为复杂,耗时相对较长,影响了利用谱烈度确定地震仪器烈度的时效性。基于对强震动加速度记录的统计分析,本文提出了谱烈度的快速近似算法,仅计算4个方向上的谱烈度值,采用其中3点作圆即可获得水平面内谱烈度迹线的近似最大值,使计算速度提高了45倍,且保持了谱烈度作为地震仪器烈度物理指标的精度。利用在汶川MS 8.0地震等386次MS > 3.0地震中获取的2701组强震动加速度记录,经可靠性检验,结果表明所提出的Housner谱烈度快速近似算法的计算误差在±4.5%以内,可以同时满足地震仪器烈度速报的可靠性和时效性需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号