首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
The microseismicity of the southeastern-most Zagros is examined by high-resolution data recorded by a temporary dense local seismic network. The seismicity defines a diffuse pattern, mostly located beneath folds in the southern part of the High Zagros Fault (HZF). Seismicity dips gently northward in the depth range 6–25 km, implying slip on a major intracrustal thrust fault extending to the north of the Main Zagros Reverse Fault (MZRF) which seems to connect to the Mountain Frontal Fault (MFF). Furthermore, observed focal mechanisms suggest transpressive motion on the HZF located west of the Zendan-Minab-Palami (ZMP) fault system and striking obliquely to the convergent motion. These observations suggest that the transition zone between the Zagros continental collision zone and the Makran oceanic subduction zone is not confined to the east of the ZMP and some part of the this diffuse transition is accommodated north of the Hormuz Strait in the west by partitioning between strike-slip and shortening components. The Zagros reverse domain is terminated by a transpressive tectonic regime. Moho depth beneath the MZRF, deduced from receiver functions, is almost 45 km thinner than is observed in the central and northern parts of the Zagros. These observations support a model of active underthrusting of the Arabian plate beneath central Iran in the southeastern-most Zagros.  相似文献   

2.
Based on abundant aftershock sequence data of the Wenchuan MS8.0 earthquake on May 12, 2008, we studied the spatio-temporal variation process and segmentation rupture characteristic. Dense aftershocks distribute along Longmenshan central fault zone of NE direction and form a narrow strip with the length of 325 km and the depth between several and 40 km. The depth profile (section of NW direction) vertical to the strike of aftershock zone (NE direction) shows anisomerous wedgy distribution characteristic of aftershock concentrated regions; it is related to the force form of the Longmenshan nappe tectonic belt. The stronger aftershocks could be divided into northern segment and southern segment apparently and the focal depths of strong aftershocks in the 50 km area between northern segment and southern segment are shallower. It seems like 'to be going to rupture' segment. We also study focal mechanisms and segmentation of strong aftershocks. The principal compressive stress azimuth of aftershock area is WNW direction and the faulting types of aftershocks at southern and northern segment have the same proportion. Because aftershocks distribute on different secondary faults, their focal mechanisms present complex local tectonic stress field. The faulting of seven strong earthquakes on the Longmenshan central fault is mainly characterized by thrust with the component of right-lateral strike-slip. Meantime six strong aftershocks on the Longmenshan back-range fault and Qingchuan fault present strike-slip faulting. At last we discuss the complex segmentation rupture mechanism of the Wenchuan earthquake.  相似文献   

3.
Transition boundary between Zagros continental collision and Makran oceanic-continental subduction can be specified by two wide limits: (a) Oman Line is the seismicity boundary with a sizeable reduction in seismicity rate from Zagros in the west to Makran in the east; and (b) the Zendan-Minab-Palami (ZMP) fault system is believed to be a prominent tectonic boundary. The purpose of this paper is to analyze the stress field in the Zagros-Makran transition zone by the iterative joint inversion method developed by Vavrycuk (Geophysical Journal International 199:69-77, 2014). The results suggest a rather uniform pattern of the stress field around these two boundaries. We compare the results with the strain rates obtained from the Global Positioning System (GPS) network stations. In most cases, the velocity vectors show a relatively good agreement with the stress field except for the Bandar Abbas (BABS) station which displays a relatively large deviation between the stress field and the strain vector. This deviation probably reflects a specific location of the BABS station being in the transition zone between Zagros continental collision and Makran subduction zones.  相似文献   

4.
The Doroud segment of the Main Recent Fault (“MRF”) is studied by installing a local seismic network of 35 short-period stations for a period of 13 weeks from 21 June 2007 to 19 September 2007 in the Silakhur region of the Zagros continental collision zone, close to the epicenter of the 31 March 2006 Silakhur earthquake (M w  ∼ 6.1). Our seismic network also covers the Qale-Hatam and Vanaei segments of the MRF and part of the Nahavand fault. We investigate the geometry and mechanism of the causative fault(s) of the 2006 Silakhur earthquake using aftershocks recorded by the dense local network. Most of the aftershocks in this region are located at a depth of 4–11 km, shallower depth than usual for other seismic zones in the Zagros. The distribution of the aftershocks along the course of the river indicates that older faults in the Silakhur region have been activated during the 2006 earthquake and only a few aftershocks have occurred on the Doroud fault. Tensional and compressional components in the northern part of the Doroud fault are interpreted as a pull-apart basin which has been activated by the right-lateral strike-slip movement of the Doroud fault.  相似文献   

5.
汶川8.0级地震序列及震型判定   总被引:5,自引:0,他引:5  
程万正  阮祥  张致伟 《地震》2009,29(1):15-25
研究了2008年5月12日四川省汶川8.0级地震余震序列, 其特点是: 余震序列丰富, 持续时间长。 余震沿NE向龙门山构造带的中央断裂条形展布, 深度横剖面为锲形, 呈现地块间强烈汇聚、 挤压活动的特点。 跨不同断裂段, 余震震源机制解有逆冲、 斜滑或走滑型, 反映的局部构造应力场复杂。 汶川8.0级地震序列为主震-余震型, 文中给出了其判定的主要依据及分析预测结果。  相似文献   

6.
2017年8月8日在青藏高原东缘四川省九寨沟县发生M7.0级强烈地震,极震区烈度达Ⅸ度,但无明显地表破裂,一定程度上限制了发震构造的确定和后续地震危险性判定.本文基于截止至2017年8月14日的地震资料,采用多阶段定位方法,对主震及余震进行了重新定位,同时,利用CAP波形反演方法,获得了M7.0主震与13次ML ≥ 4.0级余震的震源机制解和震源矩心深度,进而初步分析了本次地震的发震构造.结果显示,九寨沟M7.0地震的矩震级MW6.4,震源矩心深度5 km,表明主震发生在上地壳浅部,与2003年伊朗巴姆(Bam)MW6.5地震特征极为相似;12次ML ≥ 4.0级余震的震源矩心深度6~12 km,显示这些余震发生在主震下部,仅1次例外.重新定位后的余震震中呈NW-SE向窄带展布,位于近NS向的岷江断裂与近EW向的东昆仑断裂带东端分支塔藏断裂所夹持的区域,余震带长轴长约38 km,主震位于余震带中部.根据余震震中分布、主震及余震震源机制解等,推测本次九寨沟M7.0地震及其余震的主发震构造为位于岷江断裂与塔藏断裂之间的树正断裂.震源机制解揭示,树正断裂呈左旋走滑,走向约152°,近SE,倾向SW,倾角约70°,该断裂应属于东昆仑断裂东端的分支断裂之一,或与东南侧的虎牙断裂构成统一断裂系.  相似文献   

7.
The study of mantle lithosphere plays a key role to reveal predominant tectonic setting process of a region. The current geological and tectonic setting of Iran is due to the ongoing continental–continental collision of the Arabian and Eurasian plates. We applied a combined P and S receiver function analysis to the teleseismic data of nine permanent broadband seismic stations of the International Institute of Earthquake Engineering and Seismology located in different tectonic zones of Iranian plateau. More than 4 years of data were used to estimate the thickness of the crust and mantle lithosphere. According to our results, the crust is 50 km thick beneath the Zagros fold and thrust belt (ZFTB). We found the maximum Moho depth of approximately 70 km under the Sanandaj-Sirjan zone (SSZ) indicating the overthrusting of the crust of Central Iran onto the Zagros crust along the main Zagros thrust (MZT). Below the northeasternmost part of the Urumieh–Dokhtar Magmatic Arc (UDMA) and Central Iran, the Moho becomes shallower and lies at 40 km depth. Towards northeast, beneath the Alborz zone, the crust is 55 km thick. Based on S receiver functions, we provided new insights into the thickness of the Arabian and Eurasian lithospheres. The location of the boundary between these plates was estimated to be beneath the SSZ, which is slightly shifted northeastward relative to the surficial expression of the MZT. Furthermore, the Arabian plate is characterized by the relatively thick lithosphere of about 130 km beneath the ZFTB reaching 150 km beneath the SSZ, where the thickest crust was also observed. This may imply that the shortening across the Zagros is accommodated by lithospheric thickening. In contrast, UDMA and Central Iran are recognized by the thin lithosphere of about 80–85 km. This thin lithosphere may be associated with the asthenospheric upwelling caused by either lithospheric delamination or Neo-Tethys slab detachment beneath the Zagros collision zone.  相似文献   

8.
Using the digital broadband seismic data recorded by Xinjiang network stations, we obtained focal mechanism of the July 3 Pishan, Xinjiang, MS6.5 earthquake with generalized Cut and Paste(gCAP)inversion method. The strike, dip and rake of first nodal plane are 97°, 27°, 51°, and the second nodal plane are 318°, 70°, 107°. The centroid depth and moment magnitude are calculated to be 12km and 6.4. Combining with the distribution of aftershocks, we conclude that the first nodal plane is the seismogenic fault, and the main shock presents a thrust earthquake at low angle. We relocated 1014 earthquakes using the double-difference algorithm, and finally obtained 937 relocated events. Our results show that the earthquake sequences clearly demonstrate a unilateral extension about 50km nearly in NWW direction, and are mainly located above 25km depth, especially the small earthquakes are predominately located at the shallow parts. Furthermore, the focal depth profile shows a southwestward dipping fault plane at the main shock position, suggesting listric thrust faulting, which is consistent with the dip of the mainshock rupture plane. The spatial distribution of aftershocks represents that the Tarim block was thrust under the West Kunlun orogenic belt. In addition, the dip angle of the fault plane gradually increases along the NWW direction, possibly suggesting a gradual increase of strike-slip component during the NWW rupturing process. From above, we conclude that the Pishan MS6.5 earthquake is the result of Tibet plateau pushing onto the Tarim block from south to north, which further confirms that the continuous collision of India plate and Eurasia plate has strong influence on the seismic activity in and around the Tibet plateau.  相似文献   

9.
不同资料和方法给出的2019年6月17日四川长宁6.0级地震震源机制解存在较大差异,为了找到1个合适的震源机制解来研究此次地震的发震方式,通过数学方法得到了与现有震源机制解差别最小的中心震源机制解,节面I的走向、倾角、滑动角分别为194.78°、52.68°和139.16°,节面Ⅱ的走向、倾角、滑动角分别为312.44°、58.67°和45.22°,根据本次地震余震分布拟合得到的断层面的走向为312.17°,与中心震源机制的节面Ⅱ走向一致,因而推断节面Ⅱ为本次地震的发震断层面。之后,利用此次地震之前震源区地震的震源机制解,反演了震源区的震前构造应力场。结果表明,长宁6.0级地震的中心震源机制解和震源区震前应力场均为逆冲型为主兼走滑分量的类型,震前应力场压轴为NWW—SEE向,中间轴为NNE—SSW向,两轴倾角接近水平,而张轴较陡,表现为逆冲型的应力场。将反演得到的应力场投影到中心震源机制解给出的与余震分布一致的节面上,发现中心震源机制解的滑动角和应力场预测的滑动角差别仅为13.45°,表明此次地震受背景应力场控制而发生在先存的薄弱面上。  相似文献   

10.
2012年11月20日在宁夏银川市永宁县与兴庆区交界处发生MS4.6地震,为了更好地了解此次地震的发震构造,首先采用Hypo2000绝对定位方法得到该地震的震中位置及余震分布;然后采用CAP方法反演了此次地震的震源机制解和震源深度. 反演结果表明,永宁MS4.6地震是一个带有少量逆冲分量的右旋走滑地震.该地震矩震级为MW4.3,最佳双力偶解为:节面Ⅰ走向11°,倾角74°,滑动角171°;节面Ⅱ走向103°,倾角81°,滑动角16°.最佳震源深度为8km左右.从该地震震中和震源机制解以及震源深度剖面分布来看,这次地震很可能发生在银川隐伏主断层西侧的次级断层上.   相似文献   

11.
陈晨  胥颐 《地球物理学报》2013,56(12):4028-4036
利用四川省地震台网的震相数据和双差定位方法对芦山MS7.0级地震及其余震序列进行了精确定位,根据余震分布确定了发震断层的位置和断层面的几何特征,并对余震活动进行了分析.结果显示,芦山MS7.0级地震的震中位于30.28°N、102.99°E,震源深度为16.33 km.余震沿发震断层向主震两侧延伸,主要分布在长约32 km、宽约15~20 km、深度为5~24 km的范围内.地震破裂带朝西南方向扩展范围较大,东北方向略小,余震震级随时间迅速衰减.震源深度剖面清晰地显示出发震断层的逆冲破裂特征,推测发震断层为大川—双石断裂东侧约10 km的隐伏断层.该断层走向217°、倾向北西,倾角约45°,产状与大川—双石断裂相比略缓,它们同属龙门山前山断裂带的叠瓦状逆冲断层系.受发震断裂影响,部分余震沿大川—双石断裂分布,西北方向的余震延伸至宝兴杂岩体的东南缘,与汶川地震的破裂带之间存在50 km左右的地震空区,有可能成为未来发生强震的潜在危险区.  相似文献   

12.
2015年7月3日09时07分,在新疆皮山县发生M_(S)6.5地震,震源深度约10 km,主震后一段时间内陆续发生一系列大小不等的余震。使用新疆测震台网原始波形数据和中国地震台网编目数据库震相数据,采用CAP方法反演皮山M_(S)6.5地震及M_(S)3.5以上余震序列震源机制解,得到震源机制解参数,其中:节面Ⅰ走向为136°,倾角为34°,滑动角为94°;节面Ⅱ走向为311°,倾角为56°,滑动角为87°;最佳震源深度为21.3 km;矩震级为M_(W)6.3。据皮山地区地质构造和余震序列展布,基本确定节面Ⅰ为发震断层面;通过震源球判定本次地震的断层活动主要表现为逆冲型特征,破裂优势方向SE,倾角以20°—40°居多,滑动角以70°—120°居多。  相似文献   

13.
中亚地区地震序列特征   总被引:3,自引:0,他引:3  
共搜集到1970-1984年中亚地区8个地震序列。通过分析这些板块内部地震序列的震源分布,震源机制,归纳出它们的特征是:震中分布的长轴部比较短,震中分布长轴和短轴的比值小;长轴的方向受当地地震带的走向控制。和碰撞带走向无关。地震序列中各地震的震源深度都比较浅。其中有震源机制资料的3个地震序列表明:主震的震源机制如果是逆冲滑动,倾角则比较低;主要的震源机制如果是走向滑动,倾角则比较高。  相似文献   

14.
采用双差定位方法对2019年1月1日至2019年10月20日期间四川区域台网记录到的地震进行重定位,得到7 030个重定位事件,并获得了四川长宁MS6.0地震序列较准确的空间分布,并据此计算了震后长宁震源区的平均b值,分析了地震序列的活动性;利用近震全波形拟合方法获得了主震及4次MS≥5.0地震的震源机制解和矩心深度,初步分析了本次地震序列的发震构造,获得如下主要结果:① 四川长宁余震序列呈NW?SE向分布,余震深度分布整体呈现出西深东浅的趋势,且西部地区地震的频度远远高于东部地区;② b值空间分布显示,震后长宁地区呈现出明显的挤压构造环境;③ 主震和4次震级较大余震的矩心深度均较浅,尽管均为逆冲型为主的地震事件,但破裂面走向有所差异;④ 推测主震及中强余震是长宁背斜地区既有断裂或者同震过程中所产生的新生断层长期受到外力挤压而错断所致。   相似文献   

15.
A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seismogenic sources that affect the site, including plate boundaries such as the Makran subduction zone, the Zagros fold-thrust region and the transition fault system between them; and local crustal faults in UAE. PSHA indicated that local faults dominate the hazard. The peak ground acceleration (PGA) for the 475-year return period spectrum is 0.17 g and 0.33 g for the 2,475-year return period spectrum. The hazard spectra are then employed to establish rock ground motions using the spectral matching technique.  相似文献   

16.
2015年7月3日皮山6.5级地震发震构造初步研究   总被引:11,自引:1,他引:10       下载免费PDF全文
李金  王琼  吴传勇  向元 《地球物理学报》2016,59(8):2859-2870
基于新疆区域数字地震台网记录,采用CAP(Cut and Paste)方法反演了2015年7月3日皮山6.5级主震和部分MS3.6以上余震的震源机制解和震源深度;采用HypoDD方法重新定位了序列中ML2.5以上地震序列的震源位置,并利用小震分布和区域应力场拟合了可能存在的发震断层面参数.基于上述研究,综合分析了皮山6.5级地震序列的震源深度、震源机制和震源破裂面特征,探讨可能的发震构造.结果显示,利用CAP方法得到的最佳双力偶机制解节面I:走向280°/倾角60°/滑动角90°;节面Ⅱ:走向100°/倾角30°/滑动角90°,矩心深度19 km,表明该地震为一次逆冲型地震事件.大部分MS3.6以上余震震源机制与主震具有一定的相似性.双差定位结果显示,ML2.5以上的余震序列主要分布在主震的西南方向,深度主要分布在0~15 km范围内,余震分布显示出与发震构造泽普隐伏断裂一致的倾向南西的特征.利用小震分布和区域应力场拟合得到发震断层参数为走向104°/倾角34°/滑动角94°,该结果与主震震源机制解中节面Ⅱ的滑动角较为接近,绝大多数余震发生在断层面附近10 km左右的区域.根据本研究得到的震源机制、精定位结果以及利用小震分布和区域应力场拟合得到的断层面的参数,结合震源区地质构造情况,初步给出了此次皮山6.5级地震的发震模式.  相似文献   

17.
We consider the results of reconstructing the stress-strain state of the Earth’s crust in South Baikal from the focal mechanism data for the Kultuk earthquake of August 27, 2008 (M w = 6.3) and its aftershocks. The source parameters of the main shock were determined by calculating the seismic moment tensor. The focal mechanism solutions of 32 aftershocks (M w ≥ 2.3) were obtained through the deployment of a local seismic network at South Baikal. It is found that the main shock and first aftershocks (August–September) gave rise to the activation of latitudinal fragments of the segmented near-edge fault, and the sources of the consequent aftershocks were dominated by the NW-striking planes related to the small intrabasin structures. The calculations of seismotectonic deformations based on the data on the focal mechanisms of the earthquakes show that the area of activation is dominated by the transtension regime (with deformation in the form of extension with shear). The epicentral and hypocentral fields of the aftershocks and the mechanisms of their sources reflect the complex tectonic structure of the source zone of the Kultuk earthquake, which exhibits a clear subvertical zonality of the local seismically active volume and a wedge-shaped area of crustal destruction.  相似文献   

18.
Iranian earthquakes, a uniform catalog with moment magnitudes   总被引:3,自引:1,他引:2  
A uniform earthquake catalog is an essential tool in any seismic hazard analysis. In this study, an earthquake catalog of Iran and adjacent areas was compiled, using international and national databanks. The following priorities were applied in selecting magnitude and earthquake location: (a) local catalogs were given higher priority for establishing the location of an earthquake and (b) global catalogs were preferred for determining earthquake magnitudes. Earthquakes that have occurred within the bounds between 23–42° N and 42–65° E, with a magnitude range of M W 3.5–7.9, from the third millennium BC until April 2010 were included. In an effort to avoid the “boundary effect,” since the newly compiled catalog will be mainly used for seismic hazard assessment, the study area includes the areas adjacent to Iran. The standardization of the catalog in terms of magnitude was achieved by the conversion of all types of magnitude into moment magnitude, M W, by using the orthogonal regression technique. In the newly compiled catalog, all aftershocks were detected, based on the procedure described by Gardner and Knopoff (Bull Seismol Soc Am 64:1363–1367, 1974). The seismicity parameters were calculated for the six main tectonic seismic zones of Iran, i.e., the Zagros Mountain Range, the Alborz Mountain Range, Central Iran, Kope Dagh, Azerbaijan, and Makran.  相似文献   

19.
基于四川区域地震台网记录的波形资料,利用CAP波形反演方法,同时获取了2013年4月20日芦山M7.0级地震序列中88个M≥3.0级地震的震源机制解、震源矩心深度与矩震级,进而利用应变花(strain rosette)和面应变(areal strain)As值,分析了芦山地震序列震源机制和震源区构造运动与变形特征.获得的主要结果有:(1)芦山M7.0级主震破裂面参数为走向219°/倾角43°/滑动角101°,矩震级为MW6.55,震源矩心深度15 km.芦山地震余震区沿龙门山断裂带走向长约37 km、垂直断裂带走向宽约16 km.主震两侧余震呈不对称分布,主震南西侧余震区长约27 km、北东侧长约10 km.余震分布在7~22 km深度区间,优势分布深度为9~14 km,序列平均深度约13 km,多数余震分布在主震上部.粗略估计的芦山地震震源体体积为37 km×16 km×16 km.(2)面应变As值统计显示,芦山地震序列以逆冲型地震占绝对优势,所占比例超过93%.序列主要受倾向NW、倾角约45°的近NE-SW向逆冲断层控制;部分余震发生在与上述主发震断层近乎垂直的倾向SE的反冲断层上;龙门山断裂带前山断裂可能参与了部分余震活动.P轴近水平且优势方位单一,呈NW-SE向,与龙门山断裂带南段所处区域构造应力场方向一致,反映芦山地震震源区主要受区域构造应力场控制,芦山地震是近NE-SW向断层在近水平的NW-SE向主压应力挤压作用下发生逆冲运动的结果.序列中6次非逆冲型地震均发生在主震震中附近,且主震震中附近P轴仰角变化明显,表明主震对其震中附近局部区域存在明显的应力扰动.(3)序列整体及不同震级段的应变花均呈NW向挤压白瓣形态,显示芦山地震震源区深部构造呈逆冲运动、NW向纯挤压变形.各震级段的应变花方位与形状一致,具有震级自相似性特征,揭示震源区深部构造运动和变形模式与震级无关.(4)不同深度的应变花形态以NW-NWW向挤压白瓣为优势,显示震源区构造无论是总体还是分段均以NW-NWW向挤压变形为特征.但应变花方位与形状随深度仍具有较明显的变化,可能反映了震源区构造变形在深度方向上存在分段差异.(5)芦山地震震源体尺度较小,且主震未发生在龙门山断裂带南段主干断裂上,南段长期积累的应变能未能得到充分释放,南段仍存在发生强震的危险.  相似文献   

20.
A magnitude MW7.0 earthquake struck north of Anchorage, Alaska, USA on 1 December 2018. This earthquake occurred in the Alaska-Aleutian subduction zone, on a fault within the subducting Pacific slab rather than on the shallower boundary between the Pacific and North American plates. In order to better understand the earthquake source characteristics and slip distribution of source rupture process as well as to explore the effect of tectonic environment on dynamic triggering of earthquake, the faulting geometry, slip distribution, seismic moment, source time function are estimated from broadband waveforms downloaded from IRIS Data Management Center. We use the regional broadband waveforms to infer the source parameters with ISOLA package and the teleseismic body wave recorded by stations of the Global Seismic Network is employed to conduct slip distribution inversion with iterative deconvolution method. The focal mechanism solution indicates that the Alaska earthquake occurred as the result of tensile-type normal faulting, the estimated centroid depth from waveform inversion shows that the earthquake occurred at the depth of 56.5km, and the centroid location is 10km far away in northeast direction relative to the location of initial epicenter. We use the aftershock distribution to constrain the fault-plane strike of a normal fault to set up the finite fault model, the finite fault inversion shows that the earthquake slip distribution is concentrated mainly on a rectangular area with 30km×20km, and the maximum slip is up to 3.6m. In addition, the slip distribution shows an asymmetrical distribution and the range of possible rupture direction, the direction of rupture extends to the northeast direction, which is same as that of aftershock distribution for a period of ten days after the mainshock. It is interesting to note that a seismic gap appears in the southwest of the seismogenic fault, we initially determined that the earthquake was a typical normal fault-type earthquake that occurred in the back-arc extensional environment of the subduction collision zone between the Pacific plate and the North American plate, this earthquake was not related to tectonic movement of faults near the Earth's surface. Due to the influence of high temperature and pressure during the subduction of the Pacific plate toward to the north, the subduction angle of the Pacific plate becomes steep, causing consequently the backward bending deformation, thus forming to a tensile environment at the trailing edge of the collision zone and generating the MW7.0 earthquake in Alaska.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号