首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南海北部珠江口与琼东南盆地构造-热模拟研究   总被引:9,自引:3,他引:6       下载免费PDF全文
珠江口盆地和琼东南盆地位于南海北部的大陆边缘,本文在此地区选取了13条典型剖面,进行了构造沉降史和热史的模拟,初步探讨了其新生代以来的构造-热演化历史.其研究结果表明:珠江口盆地存在两次热流升高过程,分别为始新世(56.5~32 Ma)和渐新世(32~23.3 Ma).琼东南盆地存在三期加热和两期冷却过程,始新世盆地热...  相似文献   

2.
低温热年代学数据是一个与热历史过程紧密相关的资料类型,与高温年代学不同,低温热年代学表观年龄本身在很多情况下没有直接的地质意义.当且仅当样品线性持续冷却的情况下,表观年龄才可以被直接解释为样品经过其封闭温度的大致时间.因此,只有结合地质约束通过对低温热年代学数据进行热历史模拟才能更好地揭示其所蕴含的地质信息.对川东北地...  相似文献   

3.
通过对磷灰石裂变径迹(AFT)数据系统的对比,本文从整体上分析了中、上扬子区块各地质单元在晚中生代、新生带抬升冷却特征,并初步构建了区域上中-新生代构造活动与内陆变形的时空关系.它们的构造活动在空间上具有分区性和连续性特征,在时间上具有幕式性特征.空间上的分区性与连续性主要表现在各地质单元隆升特征的差异性,即中扬子北缘江汉盆地、黄陵隆起最早开始冷却到大巴山逆冲带、米仓山-汉南隆起晚侏罗世自北(东)向南(西)的隆升与江南-雪峰山隆起、湘鄂西褶皱带、川东褶皱带及川东北地区自南东向北西依次递进逆冲褶皱变形的差异;构造活动时间上的幕式特征主要表现在阶段性的快速冷却及其相间的缓慢冷却过程.中、上扬子北缘大巴山逆冲带、米仓山-汉南隆起磷灰石裂变径迹年龄从北(东)向南(西)逐渐变小,它们在晚中生代、新生代处于秦岭-大别造山带向扬子地块逆冲挤压变形的动力学背景;而湘鄂西褶皱带、川东褶皱带及川东北地区磷灰石裂变径迹年龄自南东向北西方向减小的趋势主要受控于太平洋板块的俯冲挤压效应.中、上扬子喜山晚期的快速冷却主要是青藏高原隆升及其向东与南东方向构造逃逸挤压作用及亚洲季风等气候变化的响应.磷灰石裂变径迹的系统分析为中、上扬子递进扩展构造变形提供了年代学约束.  相似文献   

4.
报道了米仓山-汉南穹窿一带磷灰石裂变径迹分析结果,以制约该区白垩纪以来的剥蚀-演化历史.露头样品磷灰石裂变径迹年龄分布显示从汉南穹窿南部的核部地区向南至四川盆地北部裂变径迹的年龄逐渐变新,这与米仓山地区逆冲断裂以背驮式扩展的构造样式从汉南穹窿向南经米仓山褶皱-逆冲带发育到四川盆地北缘的构造模式相吻合.热模拟的结果显示米仓山-汉南穹窿经历了两期快速的剥蚀,其分别发生在白垩纪(约90 Ma之前)和15 Ma以来.研究区白垩纪的快速剥蚀反映了秦岭-大别造山带白垩纪的区域性剥蚀事件,这可能是对临区诸多构造事件(如西伯利亚-蒙古-中朝板块的碰撞,拉萨-羌塘-思茅-印支块体的碰撞,太平洋板块向欧亚板块的俯冲及其相关的岩浆活动)远场效应的响应;约15 Ma以来的快速剥蚀是对青藏高原隆升向东北方向传递的响应.  相似文献   

5.
江南隆起位于扬子与华夏地块的碰撞汇聚带,是研究华南大地构造演化的关键地质单元.本文采用磷灰石裂变径迹及(U-Th-Sm)/He年龄分布特征定性分析与径迹长度分布数据定量模拟相结合,主要研究了幕阜山岩体新生代的隆升与剥蚀过程,并在此基础上结合区域构造背景, 对其构造-热演化之间的关系进行了探讨.自晚白垩世持续隆升以来,幕阜山岩体经历的平均剥蚀厚度约4800 m.在不同岩体间,隆升过程及幅度存在差异,空间上具有非均匀性.热史结果显示幕阜山岩体经历了3期剥蚀, 其中两期快速剥蚀分别发生在晚白垩世-古近纪(80~50 Ma)和10 Ma以来,而这之间为一期缓慢剥蚀过程.研究区古近纪的快速剥蚀反映了中-下扬子喜山期大规模伸展断陷作用造成的肩部块体快速剥蚀事件; 约10 Ma以来的快速剥蚀是对太平洋板块向西运动的响应.幕阜山岩体自燕山晚期以来的隆升剥蚀作用具有良好的盆地沉积响应, 三期隆升剥蚀事件与研究区构造演化的动力学背景相吻合.  相似文献   

6.
Xiaoming  Li  Guilun  Gong  Xiaoyong  Yang  Qiaosong  Zeng 《Island Arc》2010,19(1):120-133
The Yanji area, located at the border of China, Russia, and Korea, where the Phanerozoic granitoids have been widely exposed, was considered part of the orogenic collage between the North China Block in the south and the Jiamusi–Khanka Massifs in the northeast. In this study, the cooling and inferred uplift and denudation history since the late Mesozoic are intensively studied by carrying out apatite and zircon fission-track analyses, together with electron microprobe analyses (EMPA) of chemical compositions of apatite from the granitoid samples in the Yanji area. The results show that: (i) zircon and apatite fission-track ages range 91.7–99.6 Ma and 76.5–85.4 Ma, respectively; (ii) all apatite fission-track length distributions are unimodal and yield mean lengths of 12–13.2 µm, and the apatites are attributed to chlorine-bearing fluorapatite as revealed by EMPA results; and (iii) the thermal history modeling results based on apatite fission-track grain ages and length distributions indicate that the time–temperature paths display similar patterns and the cooling has been accelerated for each sample since ca 15 Ma. Thus, we conclude that sequential cooling, involving two rapid (95–80 Ma and ca 15–0 Ma) and one slow (80–15 Ma) cooling, has taken place through the exhumation of the Yanji area since the late Cretaceous. The maximum exhumation is more than 5 km under a steady-state geothermal gradient of 35°C/km. Combined with the tectonic setting, this exhumation is possibly related to the subduction of the Pacific Plate beneath the Eurasian Plate since the late Cretaceous.  相似文献   

7.
K–Ar ages of the Cenozoic basaltic rocks from the Far East region of Russia (comprising Sikhote-Alin and Sakhalin) are determined to obtain constraints on the tectono-magmatic evolution of the Eurasian margin by comparison with the Japanese Islands, Northeast China, and the formation of the back-arc basin. In the early Tertiary stage (54–26 Ma), the northwestward subduction of the Pacific Plate produced the active continental margin volcanism of Sikhote-Alin and Sakhalin, whereas the rift-type volcanism of Northeast China, inland part of the continent began to develop under a northeast–southwest-trending deep fault system. In the early Neogene (24–17 Ma), a large number of subduction-related volcanic rocks were erupted in connection with the Japan Sea opening. After an inactive interval of the volcanism ∼ 20–13 Ma ago, the late Neogene (12–5 Ma) volcanism of Sikhote-Alin and Sakhalin became distinct from those of the preceding stages and indicated within-plate geochemical features similar to those of Northeast China, in contrast to the Japan Arc which produces island arc volcanism. During the Japan Sea opening, the northeastern Eurasian margin detached and became a continental island arc system, and an integral part of continental eastern Asia comprising Sikhote-Alin, Sakhalin and Northeast China, and the Japan Arc with a back-arc basin. The convergence between the Eurasian Plate, the Pacific Plate and the Indian Plate may have contributed to the Cenozoic tectono-magmatism of the northeastern Eurasian continent.  相似文献   

8.
Thermal histories of Cretaceous sedimentary basins in the Korean peninsula have been assessed to understand the response of the East Asian continental margin to subduction of the Paleo‐Pacific (Izanagi) Plate. The Izanagi Plate subducted obliquely beneath the East Asian continent during the Early Cretaceous and orthogonally in the Late Cretaceous. First, the Jinan Basin, a pull‐apart basin, was studied by illite crystallinity and apatite fission‐track analyses. Analytical results indicate that Jinan Basin sediment was heated to a maximum temperature of approximately 287°C by burial. The sediment experienced two cooling episodes during ca 95–80 Ma and after ca 30 Ma, with a quiescent period between them. A similar cooling pattern is recognized in the Gyeongsang Basin, the largest Cretaceous basin in Korea. The Jinan and Gyeongsang Basins were cooled mainly by exhumation between ca 95 and 80 Ma, but the former was exhumed slightly earlier than the latter by transpressional force due to the subduction direction change of the Izanagi Plate. Comparison of thermal history of Korean Cretaceous basins with those of granitoids in northeastern China and the accretionary complexes in southwestern Japan reveals that the Upper Cretaceous regional exhumation of the East Asian continental margin including the Korean peninsula during ca 95–80 Ma was facilitated by the subduction of the Izanagi–Pacific ridge, which migrated northeastwards with time, resulting in the end of regional exhumation at ca 80 Ma in this region.  相似文献   

9.
The spreading processes within the West Philippine Basin (WPB) remain partly unknown. This study presents an analysis of the tectono-magmatic processes that happened along its spreading axis during the conclusion of the last spreading phase at 33/30 Ma. We demonstrate that the late episode of N-S opening from an E-W-trending spreading system has been followed by a late tectonic event occurring in the central and eastern parts of the basin. This event was responsible for transtensional strain accommodated along the NW-SE faults cutting through the former E-W rift valley in the central part of the basin. In its eastern part, the same event occurred at a larger extent and led to the creation of a new NW-SE axis, obliquely cutting the older E-W spreading segments and their associated spreading fabrics. At this location, several tens of kilometers of slightly oblique amagmatic extension occurred following a ∼60° direction. We propose that this late event is associated with the onset of E-W opening of the Parece-Vela Basin located along the eastern border of the WPB at 30 Ma. Extensive stresses within this basin were probably transmitted to the hot and easily deformable rift zone of the WPB. The newly-created NW-SE axis most likely propagated from east to west, being responsible for scissors opening within the WPB. NE-SW extension ceased when well-organized spreading started at 26 Ma in Parece-Vela Basin, accommodating entirely the global extensive stress pattern.  相似文献   

10.
The Xigaze fore-arc basin is adjacent to the Indian plate and Eurasia collision zone. Understanding the erosion history of the Xigaze fore-arc basin is significant for realizing the impact of the orogenic belt due to the collision between the Indian plate and the Eurasian plate. The different uplift patterns of the plateau will form different denudation characteristics. If all part of Tibet Plateau uplifted at the same time, the erosion rate of exterior Tibet Plateau will be much larger than the interior plateau due to the active tectonic action, relief, and outflow system at the edge. If the plateau grows from the inside to the outside or from the north to south sides, the strong erosion zone will gradually change along the tectonic active zone that expands to the outward, north, or south sides. Therefore, the different uplift patterns are likely to retain corresponding evidence on the erosion information. The Xigaze fore-arc basin is adjacent to the Yarlung Zangbo suture zone. Its burial, deformation and erosion history during or after the collision between the Indian plate and Eurasia are very important to understand the influence of plateau uplift on erosion. In this study, we use the apatite fission track(AFT)ages and zircon and apatite(U-Th)/He(ZHe and AHe)ages, combined with the published low-temperature thermochronological age to explore the thermal evolution process of the Xigaze fore-arc basin. The samples' elevation is in the range of 3 860~4 070m. All zircon and apatite samples were dated by the external detector method, using low~U mica sheets as external detectors for fission track ages. A Zeiss Axioskop microscope(1 250×, dry)and FT Stage 4.04 system at the Fission Track Laboratory of the University of Waikato in New Zealand were used to carry out fission track counting. We crushed our samples finely, and then used standard heavy liquid and magnetic separation with additional handpicking methods to select zircon and apatite grains. The new results show that the ZHe age of the sample M7-01 is(27.06±2.55)Ma(Table 2), and the corresponding AHe age is(9.25±0.76)Ma. The ZHe and AHe ages are significantly smaller than the stratigraphic age, indicating suffering from annealing reset(Table 3). The fission apatite fission track ages are between(74.1±7.8)Ma and(18.7±2.9)Ma, which are less than the corresponding stratigraphic age. The maximum AFT age is(74.1±7.8)Ma, and the minimum AFT age is(18.7±2.9)Ma. There is a significant north~south difference in the apatite fission track ages of the Xigaze fore-arc basin. The apatite fission track ages of the south part are 74~44Ma, the corresponding exhumation rate is 0.03~0.1km/Ma, and the denudation is less than 2km; the apatite fission track ages of the north part range from 27 to 15Ma and the ablation rate is 0.09~0.29km/Ma, but it lacks the exhumation information of the early Cenozoic. The apatite(U-Th)/He age indicates that the north~south Xigaze fore-arc basin has a consistent exhumation history after 15Ma. The results of low temperature thermochronology show that exhumation histories are different between the northern and southern Xigaze fore-arc basin. From 70 to 60Ma, the southern Xigaze fore-arc basin has been maintained in the depth of 0~6km in the near surface, and has not been eroded or buried beyond this depth. The denudation is less than the north. The low-temperature thermochronological data of the northern part only record the exhumation history after 30Ma because of the young low-temperature thermochronological data. During early Early Miocene, the rapid erosion in the northern part of Xigaze fore-arc basin may be related to the river incision of the paleo-Yarlungzangbo River. The impact of Great Count Thrust on regional erosion is limited. The AHe data shows that the exhumation history of the north-south Xigaze fore-arc basin are consistent after 15Ma. In addition, the low-temperature thermochronological data of the northern Xigaze fore-arc basin constrains geographic range of the Kailas conglomerate during the late Oligocene~Miocene along the Yarlung Zangbo suture zone. The Kailas Basin only develops in the narrow, elongated zone between the fore-arc basin and the Gangdese orogenic belt. The southern part of the Xigaze fore-arc basin has been uplifted from the sea level to the plateau at an altitude of 4.2km, despite the collision of the Indian plate with the Eurasian continent and the late fault activity, but the plateau has been slowly denuded since the early Cenozoic. The rise did not directly contribute to the accelerated erosion in the area, which is inconsistent with the assumption that rapid erosion means that the orogenic belt begins to rise.  相似文献   

11.
鄂尔多斯盆地东南缘处于渭北隆起、晋西挠褶带和东秦岭造山带的转折地带,构造位置独特,演化历史复杂.本文选取东缘韩城地区和南缘东秦岭洛南地区上三叠统延长组为研究对象,采集6件砂岩样品进行锆石、磷灰石裂变径迹分析,对关键构造-热事件提供热年代学约束,恢复盆地东南缘不同构造带的热演化史,深化对盆地东南部油气资源赋存条件的认识,以期实现油气勘探的新突破.研究表明韩城和洛南地区的抬升冷却史存在明显差异.磷灰石裂变径迹年龄表现为从南到北减小的趋势.东缘韩城剖面磷灰石裂变径迹记录51.6~66.3 Ma、33 Ma两次抬升冷却的峰值年龄.南缘洛南剖面锆石裂变径迹年龄和磷灰石裂变径迹年龄分别记录89~106 Ma和59~66 Ma的冷却抬升年龄.洛南地区抬升冷却时间较早,剥蚀速率(106m/Ma)大于韩城地区(68m/Ma),且持续时间长.磷灰石裂变径迹(Apatite Fission Track,AFT)热史模拟显示,晚中生代,受燕山运动的影响,东秦岭地区发生强烈的构造岩浆事件,洛南地区热演化程度明显高于韩城地区.洛南剖面的热演化主要受岩浆活动的控制,韩城剖面为埋藏增温型.鄂尔多斯盆地东南缘的裂变径迹年龄格局基本受控于白垩纪以来的抬升冷却事件.  相似文献   

12.
南沙地块内破裂不整合与碰撞不整合的构造分析   总被引:2,自引:2,他引:0       下载免费PDF全文
廷贾断裂以东的南沙地块与南海北部陆缘共轭,因此其构造过程研究对认识整个南海的构造演化具有重要意义.地震资料和区域构造背景分析揭示,破裂不整合面(BU)和碰撞不整合面(CU)是控制南沙地块内盆地演化的骨架界面;为了揭示南沙地块内的主要构造过程,本文利用地震剖面分析和数值模拟的方法,侧重对两个重要界面开展构造分析.结果显示...  相似文献   

13.
根据高分辨率重、磁测网数据的分析,结合多波束海底地貌的构造解释,南海海盆新生代经历了两期不同动力特征的海底扩张,25 Ma的沉积-构造事件是其重要分界.早期扩张从约33.5 Ma开始至25 Ma停止,在东部海盆南、北两侧和西北海盆形成了具有近E-W向或NEE向磁条带的老洋壳,是近NNW-SSE向扩张的产物;晚期扩张从2...  相似文献   

14.
Different models have been proposed for the formation and tectonic evolution of the South China Sea(SCS), including extrusion of the Indochina Peninsula,backarc extension, two-stage opening, proto-SCS dragging,extension induced by a mantle plume, and integrated models that combine diverse factors. Among these, the extrusion model has gained the most attention. Based on simpli?ed physical experiments, this model proposes that collision between the Indian and Eurasian Plates resulted in extrusion of the Indochina Peninsula, which in turn led to opening of the SCS. The extrusion of the Indochina Peninsula, however, should have led to preferential opening in the west side of the SCS, which is contrary to observations. Extensional models propose that the SCS was a backarc basin, rifted off the South China Block. Most of the backarc extension models, however, are not compatible with observations in terms of either age or subduction direction. The two-stage extension model is based on extensional basins surrounding the SCS. Recent dating results indeed show two-stage opening in the SCS, but the Southwest Subbasin of the SCS is much younger, which contradicts the two-stage extension model. Here we propose a re?ned backarc extension model. There was a wide Neotethys Ocean between the Australian and Eurasian Plates before the Indian-Eurasian collision. The ocean ?oor started to subduct northward at *125 Ma, causing backarc extension along the southern margin of the Eurasian Plate and the formation of the proto-SCS. The Neotethys subduction regime changed due to ridge subduction in the Late Cretaceous, resulting in fold-belts, uplifting, erosion, and widespread unconformities. It may also have led to the subduction of the proto-SCS. Flat subduction of the ridge may have reached further north and resulted in another backarc extension that formed the SCS. The rollback of the?at subducting slab might have occurred *90 Ma ago; the second backarc extension may have initiated between 50 and 45 Ma. The opening of the Southwest Subbasin is roughly simultaneous with a ridge jump in the East Subbasin, which implies major tectonic changes in the surrounding regions, likely related to major changes in the extrusion of the Indochina Peninsula.  相似文献   

15.
The Bohai Basin is a petroliferous Cenozoic basin in northeast China (Fig. 1(a)) and has apparent geo- metrical and kinematic similarities with the other Meso-Cenozoic extensional basins located along the eastern margin of the Eurasian Plate[1,2]. Its architec- ture and Cenozoic stratigraphy have been well under- stood from several decades of petroleum exploration. Previous studies have suggested that the Bohai Basinis a typical extensional basin and has two tectonic evolution phases, rift…  相似文献   

16.
Abstract To the northeast of Taiwan, northwestward subduction of the Philippine Sea plate is occurring beneath the Eurasian plate along the Ryukyu Trench. The Ryukyu Trench, which is well defined along the northeastern part of the Ryukyu arc, cannot be easily defined west of 123° east. This is an area where the Gagua Ridge (whose origin is controversial) enters the trench from the south. On the basis of the marine geophysical survey data the following results have been obtained. The structural elements associated with the Ryukyu subduction system deform and partially disappear west of 123° east. Among other things the Ryukyu Trench terminates close to the western slope of the Gagua Ridge. The Gagua Ridge is the result of tectonic heaping and is likely to be an uplifted sliver of oceanic crust. The interaction between the Ryukyu subduction system and the Taiwan collision zone encompasses a wide region from Taiwan to the longitude 124.5° east. The Gagua Ridge is a boundary between the active deformation zone related to the collision in Taiwan and the West Philippine Basin. It is proposed that there is a tectonic zone that can be traced from the Okinawa Trough on the north to the southern termination of the Gagua Ridge on the south.  相似文献   

17.
The Sichuan Basin is a superimposition basin composed of terrestrial and marine sediments that is well known for its abundant petroleum resources. Thermal history reconstruction using paleogeothermal indicators, including vitrinite reflectance and thermochronological data, shows that different structural subsections of the Sichuan Basin have experienced various paleogeothermal episodes since the Paleozoic. The lower structural subsection comprising the Lower Paleozoic to Middle Permian (Pz-P2 successions experienced a high paleogeothermal gradient (23.0–42.6°C/km) at the end of the Middle Permian (P2, whereas the upper structural subsection comprising Late Permian to Mesozoic strata underwent a relatively lower paleogeothermal gradient (13.2–26.9°C/km) at the beginning of the denudation (Late Cretaceous or Paleocene in the different regions). During the denudation period, the Sichuan Basin experienced a successive cooling episode. The high paleogeothermal gradient resulted from an intensive thermal event correlated to the Emeishan mantle plume. The heat flow value reached 124.0 mW/m2 in the southwestern basin near the center of the Emeishan large igneous province. The low geothermal gradient episode with heat flow ranging from 31.2 to 70.0 mW/m2 may be related to the foreland basin evolution. The cooling event is a result of the continuous uplift and denudation of the basin.  相似文献   

18.
合肥盆地构造热演化的裂变径迹证据   总被引:12,自引:0,他引:12       下载免费PDF全文
运用裂变径迹分析方法,探讨分析了合肥盆地中新生代的构造热演化特征. 上白垩统和古近系下段样品的磷灰石裂变径迹(AFT)数据主体表现为靠近部分退火带顶部温度(±65℃)有轻度退火,由此估算晚白垩世至古近纪早期合肥盆地断陷阶段的古地温梯度接近38℃/km,高于盆地现今地温梯度(275℃/km).下白垩统、侏罗系及二叠系样品的AFT年龄(975~25Ma)和锆石裂变径迹(ZFT)年龄(118~104Ma)均明显小于其相应的地层年龄,AFT年龄-深度分布呈现冷却型曲线形态,且由古部分退火带、冷却带或前完全退火带及其深部的今部分退火带组成,指示早白垩世的一次构造热事件和其随后的抬升冷却过程. 基于AFT曲线的温度分带模式和流体包裹体测温数据的综合约束,推算合肥盆地早白垩世走滑压陷阶段的古地温梯度接近67℃/km. 径迹年龄分布、AFT曲线拐点年龄和区域抬升剥蚀时间的对比分析结果表明,合肥盆地在早白垩世构造热事件之后的104Ma以来总体处于抬升冷却过程,后期快速抬升冷却事件主要发生在±55Ma.  相似文献   

19.
TAN Hao-yuan  WANG Zhi 《地震地质》2019,41(6):1366-1379
3-D VP and VS images of southern Philippines at the 0~100km depths are generated by inverting a large number of travel-time data from the International Seismological Centre(1960-2017)through seismic tomography method. The results show lateral variation exists in the crust and upper mantle:High VP and VS anomalies emerge in mid-west Mindanao and Bohol Island, which might be caused by the combined action of huge magmatism and ophiolite accretion in the lower crust; low velocity anomalies of the upper mantle in the west of Mindanao are consistent with locations of volcanoes on the surface. It, thus, could be inferred that the low velocity anomaly is closely related to magmatic activity. The dense earthquake distribution along plate margin extending to 100km coincides with the strong activity of the Philippine Sea Plate which is located in the northeast and southeast of Mindanao. Relative weak activity of Sulawesi Sea Basin is presented simultaneously. The subduction of the Philippine Sea Plate is mostly concentrated in the crust and the top of the uppermost mantle. Our tomographic images show that lateral heterogeneities exist in the crust and uppermost mantle of the southern Philippines. Low VP and VS anomalies emerge in Philippine Trench and Cotabato Trench, in contrast, high VP and VS anomalies appear in shallow crust of land area where a large number of earthquakes and magmatic activities develop. This may reflect strong tectonic processes between the Philippine Sea Plate and Philippine Mobile Belt. Low VP and VS anomalies in the crust of eastern Mindanao coinciding with the location of volcanoes on the surface may show partial melting of crust material caused by dehydration of the subducting Philippine Sea Plate. Such a similar phenomenon can be also seen in the south of Negros Island and Cotabato Trench. Thus we infer that active tectonic behaviors are constrained within the crust of the Philippine Sea Plate, Sulu Sea Basin and Sulawesi Basin.Low VP and VS anomalies of the mantle in the mid-west of Mindanao island are associated with magmatic activity which may be caused by a collision between the east and west part of Mindanao at 5Ma. The fracture system in the west of Mindanao provides the possible passage ways of mantle hot material upwelling, coinciding with the model of geothermal distribution in this area. According to the geochemical analysis, ophiolite observed in Sanbaoyan and the western part of Mindanao could indicate material composition from crust to upper mantle on Eurasian continental margin which may show the evidence of rapid expansion environment of mid-ocean ridge. High VP and VS anomalies in the mantle of northeast and southeast of Mindanao coinciding with the distribution of massive earthquake along boundaries show a well agreement with the shape of the Philippine Sea Plate. Dense earthquake distribution in south Mindanao at 100km shows the Philippine Sea Plate has strong activity and stress accumulation in the upper mantle. On the contrary, the seismicity in southwest Mindanao and Cotabato Trench reduces rapidly at the depth from 50km to 100km, revealing weak subduciton and stress release of Sulawesi Basin in the mantle.  相似文献   

20.
Southern Central America is a Late Mesozoic/Cenozoic island arc that evolved in response to the subduction of the Farallón Plate beneath the Caribbean Plate in the Late Cretaceous and, from the Oligocene, the Cocos and Nazca Plates. Southern Central America is one of the best studied convergent margins in the world. The aim of this paper is to review the sedimentary and structural evolution of arc‐related sedimentary basins in southern Central America, and to show how the arc developed from a pre‐extensional intra‐oceanic island arc into a doubly‐vergent, subduction orogen. The Cenozoic sedimentary history of southern Central America is placed into the plate tectonic context of existing Caribbean Plate models. From regional basin analysis, the evolution of the southern Central American island arc is subdivided into three phases: (i) non‐extensional stage during the Campanian; (ii) extensional phase during the Maastrichtian‐Oligocene with rapid basin subsidence and deposition of arc‐related, clastic sediments; and (iii) doubly‐vergent, compressional arc phase along the 280 km long southern Costa Rican arc segment related to either oblique subduction of the Nazca plate, west‐to‐east passage of the Nazca–Cocos–Caribbean triple junction, or the subduction of rough oceanic crust of the Cocos Plate. The Pleistocene subduction of the Cocos Ridge contributed to the contraction but was not the primary driver. The architecture of the arc‐related sedimentary basin‐fills has been controlled by four factors: (i) subsidence caused by tectonic mechanisms, linked to the angle and morphology of the incoming plate, as shown by the fact that subduction of aseismic ridges and slab segments with rough crust were important drivers for subduction erosion, controlling the shape of forearc and trench‐slope basins, the lifespan of sedimentary basins, and the subsidence and uplift patterns; (ii) subsidence caused by slab rollback and resulting trench retreat; (iii) eustatic sea‐level changes; and (iv) sediment dispersal systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号