首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
王瑞平  刘辉  张文来 《内陆地震》2000,14(3):276-280
1 台站概况及资料简介阿克苏岩体形变测量场地位于阿克苏市西北方向约 8km处 (λE80°1 1′,φN41°0 6′) ,覆盖层厚度约 2 m左右。该场地所处地区位于南天山隆起与塔里木盆地之间 ,监测区内发震构造主要为柯坪断裂的东延分支 ,该断裂是一条全新世活动断裂 1 。文中资料选取 1 994年 1月 1日~ 1 998年 5月 31日阿克苏断层仪 D1 2 、D3、D4的日平均观测值 (阿克苏断层仪于 1 998年 6月发生故障 ,1 998年 9月更换传感器 ,所以数据无法连续使用 )。正常情况下 ,垂直分量 D1 2 的年变化量为 0 .1 mm左右 ,水平分量 D3、D4的年变化量为0 .…  相似文献   

2.
断层活动协调比方法在分析云南地区的地壳应变积累上具有适用性。利用区域11处跨断层流动监测场地的三十余年观测资料,首先计算跨断层场地的三维活动量,进而得出场地的断层活动协调比参数,结果显示:(1)丽江、永胜、剑川、石屏、建水场地在对应6~7级地震上,历史映震效果良好;云南地区近期存在异常的跨断层监测场地有剑川、石屏和建水场地,存在应变积累、断层活动出现异常的断裂有剑川断裂和石屏-建水断裂;(2)结合跨断层原始观测数据和三维活动量时序曲线,综合认为云南地区地壳形变异常区域分布在滇西北地区的剑川、下关和永胜以及滇中地区的峨山、石屏和建水附近;(3)结合地震活动性资料,综合认为四川九寨沟7.0级地震后,南北地震带南段应力可能会加速积累,应重点关注云南地区的中强震危险性。  相似文献   

3.
近年来在城市活断层探测中广泛开展了土壤气探测的工作.本文在合作市周边地区选择2个位于西秦岭北缘断裂西段具有典型断层露头的甘加、黄香沟场地开展了现场土壤气汞、氡浓度测试.主要结论有:(1)断层带存在明显汞、氡浓度异常,曲线的峰值能够很好地对应断层位置,而且其曲线形态能够较好的反映出断层性质与几何形态;(2)异常段上方氡、汞的峰值异常一般比背景值高出1.5倍以上,且具有成组特征(即在断层带上方超过背景值1.5倍以上的点2个以上),并具有典型正弓形曲线形态;(3)合作市地处草原,地表覆盖层匀一、稳定,外界干扰较小,植被覆盖好,不仅有利于土壤气汞、氡浓度地球化学方法进行隐伏断裂的控制性探测,同时也有利于对已知断裂活动性时空变化特征进行跟踪探测研究.  相似文献   

4.
为探究卫辉西代村跨断层短水准出现的趋势性变化与断裂活动间的相关性,在跨断层水准观测场地布设1条土壤气Rn和H2浓度测线,复测周期与跨断层水准测量周期基本一致,分别于2018年4月、7月、10月开展3期土壤气Rn和H2浓度测量。同时,为增加观测数据的可靠性,于2018年8月布设了1条与上述3期测线平行的测线并开展土壤气Rn和H2浓度测量。4期土壤气H2浓度测量结果显示,该区土壤气H2浓度背景值处于较低水平,H2浓度异常值所处位置主要集中在距起点150—210 m处,该处为断裂通过处。4期中Rn浓度最大值、背景值和均值的变化幅度均在正常范围内,Rn浓度异常值所处位置也主要集中在距起点150—210 m处,该处可能为断裂通过处。土壤气显示的断裂通过处与该区探槽显示的断裂位置一致。4期土壤气测量结果表明,近期汤西断裂带可能处于相对稳定状态,跨断层水准观测数据的趋势性变化与断裂活动之间相关性不大。  相似文献   

5.
四川玉农希断裂的全新世活动与1975年康定六巴6.2级地震   总被引:4,自引:0,他引:4  
玉农希断裂呈N20°~30°E方向展布于四川省西部高原,构成贡嘎山第四纪强烈隆起断块的西边界.在北西西-近东西向的区域主压应力作用下,玉农希断裂第四纪以来主要表现为挤压逆冲性质.断错地貌研究结果表明,该断裂为一条全新世弱活动断裂,平均垂直滑动速率为0.5~0.6 mm/a左右.1975年1月15日康定六巴6.2级地震发生于该断裂上,宏观震中位置位于六巴乡溯布-莫达村附近,极震区长轴方向与玉农希断裂走向一致,是该断裂最新活动的表现.  相似文献   

6.
于克涛  蒋浦 《地震地质》1992,14(3):279-285
地表破裂是断裂发育地区主要的地震地质灾害。断层错动、地表破裂对结构物的破坏不是一般的抗震措施所能抵御的。因而地表破裂危险性分析日益引起工程设计人员的重视。利用地震危险性分析的原理,建立了考虑位错衰减的场地破裂危险性分析模型。利用该模型,可以了解场地在未来的有效时间内最大位错超过给定值的可能性。最后,以鲜水河断裂为例,评价了某场地的破裂危险性  相似文献   

7.
为探究卫辉西代村跨断层短水准出现的趋势性变化与断裂活动间的相关性,在跨断层水准观测场地布设1条土壤气Rn和H2浓度测线,复测周期与跨断层水准测量周期基本一致,分别于2018年4月、7月、10月开展3期土壤气Rn和H2浓度测量.同时,为增加观测数据的可靠性,于2018年8月布设了1条与上述3期测线平行的测线并开展土壤气Rn和H2浓度测量.4期土壤气H2浓度测量结果显示,该区土壤气H2浓度背景值处于较低水平,H2浓度异常值所处位置主要集中在距起点150—210 m处,该处为断裂通过处.4期中Rn浓度最大值、背景值和均值的变化幅度均在正常范围内,Rn浓度异常值所处位置也主要集中在距起点150—210 m处,该处可能为断裂通过处.土壤气显示的断裂通过处与该区探槽显示的断裂位置一致.4期土壤气测量结果表明,近期汤西断裂带可能处于相对稳定状态,跨断层水准观测数据的趋势性变化与断裂活动之间相关性不大.  相似文献   

8.
白石嶂钼矿区归属于环太平洋钼成矿带华南褶皱系钨-铜-钼成矿省,成矿于中生代燕山期。矿床赋存于燕山二期细粒二云母花岗岩株南东端西侧与上三叠-下侏罗统地层的接触带,白石嶂断裂(F19)与杨塘断裂的交汇部位。本文从区域地质背景入手,着重研究了地层、构造、岩浆岩与成矿的关系;并对矿床的成矿专属性作了初步探讨。文章对围岩及其蚀变特征与矿体/矿石赋存特征、矿体规模之间的关系作了较深入的分析;并在分析成矿物质来源、总结矿化富集规律的基础上,结合粤东地区钼矿成矿特征,总结出本区控矿地质条件与成矿规律,为粤东地区该类矿床的寻找提供理论上的参考。  相似文献   

9.
利用S波高频衰减参数对云南地区地壳Q值成像   总被引:5,自引:1,他引:4       下载免费PDF全文
根据35个数字地震台站记录的云南地区1999 ~2007年6429个近震的波形资料,采用遗传算法对S波位移谱的高频衰减进行拟合,得到19009条衰减算子t*数据.根据这些衰减算子t*数据,反演得到云南地区地壳Q值分布.结果表明,云南地区的地壳Q值分布存在显著的横向不均匀性,即红河断裂北侧地壳Q值整体偏低,而红河断裂南侧地壳Q值整体较高.云南地区1900年以来6级以上强震基本上位于低Q值区域,这可能由于强烈构造活动导致地壳产生大量裂隙,且裂隙中充满流体,从而表现为低Q值;但呈北西向的龙陵—澜沧—耿马—孟连一带的强震却位于高Q值区,这可能与该地区正发育一条新的构造带有关.此外,云南地区的高大地热流点(>80 mW/m2)基本上位于低Q值区域,热流值与衰减值成负对应关系.  相似文献   

10.
王凯英  马瑾 《地震地质》2004,26(2):259-272
对川滇地区主要活动断裂地震活动性的分析表明 ,该区主要活动断裂间存在地震活动的相关性 :1)强震活跃期沿着鲜水河断裂、小江断裂、红河断裂、龙陵 -澜沧断裂及NE向的龙门山 -瑞丽断裂依次迁移 ;2 )鲜水河断裂与龙陵 -澜沧断裂不仅在强震活动上 ,而且在b值变化上存在较强的相关性 ,是平行断裂在区域应力场作用下相互作用的结果 ;3)龙门山 -瑞丽断裂与上述川滇地区其它近NW向断裂间存在地震交替活动的现象 ;4 )龙门山 -瑞丽断裂的地震具有分段活动的特征 ,是断块差异活动的体现。有限元分析显示 ,上述断层相互作用现象是块体非均匀运动过程中应力场调整的反映 ,是块体运动的结果。研究表明川滇地区主要断层地震活动间存在 3种相互作用的现象 ,即块体边界迁移型、旋向相反平行断层交替型和交叉断层交替型  相似文献   

11.
2015年4月25日尼泊尔发生了MW7.8地震, 本文基于震前、 震后两景Sentinel-1A雷达影像, 采用D-InSAR两轨差分干涉法提取了此次地震的同震形变场。 结果显示, 同震形变场位于喜马拉雅造山带—主边界逆冲断裂(MBT)和主前锋逆冲断裂(MFT)附近, 形变场整体表现为自西北向往东南方向延伸近150 km的纺锤形包络状, 以大面积隆起抬升形变为主, 视线向最大隆升形变达1.18 m, 抬升区北侧存在一小沉陷区, 以InSAR观测值定位同震最大形变中心。 基于均匀介质弹性半空间模型(Okada模型)与InSAR观测数据反演了断层滑动分布。 反演结果表明该地震属于典型逆冲型地震, 发震断层为主喜马拉雅逆冲断裂(MHT), 同震破裂从主喜马拉雅逆冲断裂(MHT)向上沿着主前锋逆冲断裂(MFT)传递。 基于InSAR同震形变场局部形变细节, 结合震区地质背景、 断裂分布及断层运动特征, 获得了同震破裂拟出露地表迹线。  相似文献   

12.
赵元鑫  李营  陈志  路畅  刘兆飞 《地震》2022,42(1):18-32
气体是识别构造带展布和活动的敏感组分。 对唐山断裂带高空间分辨率气体地球化学测量数据进行了变异函数计算, 分析了断裂带活动性与断裂带气体浓度的定量关系。 结果表明, 断裂带本身结构特性是控制断裂带气体空间分布的主要因素, 高倾角断裂在地表以狭长条带状为主要特征, 分布气体浓度高值异常, 交会处气体浓度高值异常以环带形式围绕断裂分布。 沿断裂带走向, 各气体浓度呈高值分布, 利用变异函数计算, 确定各气体组分在测量区域内气体浓度与构造相关的空间范围, 据此确定了唐山断裂各段构造敏感气体组分, 在断裂带周边圈定出断裂带活动性重点监测区域。 断裂带气体浓度克里金插值分析结果表明, 唐山地区滦县—乐亭断裂带活动性较强, 唐山断裂带次之, 蓟运河断裂带活动性最弱。 断裂带交会处, 浓度高值异常分布更加明显。  相似文献   

13.
Yingjiang area is located in the China-Burma border,the Sudian-Xima arc tectonic belt,which lies in the collision zone between the Indian and Eurasian plates.The Yingjiang earthquake occurring on May 30th,2014 is the only event above MS6.0 in this region since seismicity can be recorded.In this study,we relocated the Yingjiang MS5.6 and MS6.1 earthquake sequences by using the double-difference method.The results show that two main shocks are located in the east of the Kachang-Dazhuzhai Fault,the northern segment of the Sudian-Xima Fault.Compared with the Yingjiang MS5.6 earthquake,the Yingjiang MS6.1 earthquake is nearer to the Kachang-Dazhuzhai Fault.The aftershocks of the two earthquakes are distributed along the strike direction of the Kachang-Dazhuzhai Fault (NNE).The rupture zone of the main shock of Yingjiang MS6.1 earthquake extends northward approximately 5km.The aftershocks of two earthquakes are mainly located in the eastern side of the Kachang-Dazhuzhai Fault with a significant asymmetry along the fault,which differ from the characteristics of the aftershock distribution of the strike-slip earthquake.It may indicate that the Yingjiang earthquakes are conjugate rupture earthquakes.The non-double-couple components are relatively high in the moment tensor.We speculate that the Yingjiang earthquakes are related to the fractured zone caused by the long-term seismic activity and heat effect in the deep between Kachang-Dazhuzhai Fault and its neighboring secondary faults.Aftershock distribution of the Yingjiang MS6.1 earthquake on the southern area crosses a secondary fault on the right of the Kachang-Dazhuzhai Fault,suggesting that the coseismic rupture of the secondary fault may be triggered by the dynamic stress of the main shock.  相似文献   

14.
本文利用2007—2010年花东纵谷南段区域的InSAR形变数据作为约束, 采用分段断层模型和层状介质模型, 反演中国台湾东部纵谷断层南段滑动速率空间分布, 并据此分析断层运动特征。 研究结果表明, 纵谷断层南段整体以逆冲运动为主, 兼具左旋走滑运动。 纵谷断层南段的滑动速率具有空间非均匀性, 在空间上可以细分为深浅两个极值区, 浅部(0~15 km)最大滑动速率为10 cm/a, 位于深度2.5 km左右; 深部(15~30 km)最大滑动速率为21 cm/a, 位于深度25 km左右。 反演结果与用重复地震估算的深部滑动速率基本吻合。  相似文献   

15.
Complex geometrical structures on strike-slip faults would likely affect fault behavior such as strain accumulation and distribution, seismic rupture process, etc. The Xianshuihe Fault has been considered to be a Holocene active strike-slip fault with a high horizontal slip rate along the eastern margin of the Tibetan plateau. During the past 300 years, the Xianshuihe Fault produced 8 earthquakes with magnitude≥7 along the whole fault and showed strong activities of large earthquakes. Taking the Huiyuansi Basin as a structure boundary, the northwestern and southeastern segments of the Xianshuihe Fault show different characteristics. The northwestern segment, consisting of the Luhuo, Daofu and Qianning sections, shows a left-stepping en echelon pattern by simple fault strands. However, the southeastern segment(Huiyuansi-Kangding segment)has a complex structure and is divided into three sub-faults: the Yalahe, Selaha and Zheduotang Faults. To the south of Kangding County, the Moxi segment of the Xianshuihe Fault shows a simple structure. The previous studies suggest that the three sub-faults(the Yalahe, Selaha and Zheduotang Faults of the Huiyuansi-Kangding segment)unevenly distribute the strain of the northwestern segment of the Xianshuihe Fault. However, the disagreement of the new activity of the Yalahe Fault limits the understanding of the strain distribution model of the Huiyuansi-Kangding segment. Most scholars believed that the Yalahe Fault is a Holocene active fault. However, Zhang et al.(2017)used low-temperature thermochronology to study the cooling history of the Gongga rock mass, and suggested that the Yalahe Fault is now inactive and the latest activity of the Xianshuihe Fault has moved westward over the Selaha Fault. The Yalahe Fault is the only segment of the Xianshuihe Fault that lacks records of the strong historical earthquakes. Moreover, the Yalahe Fault is located in the alpine valley area, and the previous traffic conditions were very bad. Thus, the previous research on fault activity of the fault relied mainly on the interpretation of remote sensing, and the uncertainty was relatively large. Through remote sensing and field investigation, we found the geological and geomorphological evidence for Holocene activity of the Yalahe Fault. Moreover, we found a well-preserved seismic surface rupture zone with a length of about 10km near the Yariacuo and the co-seismic offsets of the earthquake are about 2.5~3.5m. In addition, we also advance the new active fault track of the Yalahe Fault to Yala Town near Kangding County. In Wangmu and Yala Town, we found the geological evidence for the latest fault activity that the Holocene alluvial fans were dislocated by the fault. These evidences suggest that the Yalahe Fault is a Holocene active fault, and has the seismogenic tectonic condition to produce a large earthquake, just like the Selaha and Zheduotang Faults. These also provide seismic geological evidence for the strain distribution model of the Kangding-Huiyuansi segment of the Xianshuihe Fault.  相似文献   

16.
In this paper, we processed and analyzed the Sentinel-1A data by "two-pass" method and acquired the surface deformation fields of Menyuan earthquake. The results show the deformation occurred mainly in the south wall of fault, where uplift deformation is dominant. The uplift deformation is significantly larger than the subsidence and the maximum uplift of ascending and descending in the LOS is 6cm, 8cm respectively. Meanwhile, based on the Okada model, we use the ascending and descending passes data as constraints to invert jointly the fault distribution and source parameters through constructing fault model of different dip directions. The optimum fault parameters are:The dip is 43°, the strike is 128°with the mean rake of 85°. The maximum slip is about 0.27m. The inverted seismic moment M0 is 1.13×1018N·m, and the moment magnitude MW is 5.9. The SW-dipping Minyue-Damaying Fault is possibly the seismogenic fault, based on the comprehensive analysis of the focal mechanisms, aftershocks relocation results and the regional tectonic background. The focus property is dominated by thrust movement with a small amount of dextral strike-slip component. The earthquake is the result of local stress adjustment nearby the Lenglongling Fault under the background of northeastward push and growth of Tibet Plateau.  相似文献   

17.
青海玛多Ms7.4级地震发生后,与此次地震发震断裂相邻且近平行状分布的库赛湖-玛曲-荷叶断裂(以下简称"库-玛-荷断裂")截至2021年6月1日共发生5次Ms≥3.0的余震事件。本文分别计算了该断裂上震级较大的4次余震事件震源机制解,并对玛多Ms7.4级地震进行了静态库伦破裂应力改变量(ΔCFS)分析。结果显示:库-玛-荷断裂占主导地位的左旋走滑运动并没有简单延伸贯通,断裂带各段枢纽处应力分布错综复杂,断裂总体受到来自玛多震中方向的应力扰动。结合前人研究,本文认为库-玛-荷断裂上发生的一系列余震事件可视为该断裂带的应力释放过程。虽然玛曲-玛沁段最后一次大地震离逝时间已经超出或接近其复发周期,但在该断裂整体应力得到一定程度释放的前提下,大地震复发周期是否发生改变值得进一步探讨。  相似文献   

18.
The northeastern margin of Tibetan plateau is an active block controlled by the eastern Kunlun fault zone, the Qilian Shan-Haiyuan fault zone, and the Altyn Tagh fault zone. It is the frontier and the sensitive area of neotectonic activity since the Cenozoic. There are widespread folds, thrust faults and stike-slip faults in the northeastern Tibetan plateau produced by the intensive tectonic deformation, indicating that this area is suffering the crustal shortening, left-lateral shear and vertical uplift. The Riyueshan Fault is one of the major faults in the dextral strike-slip faults systems, which lies between the two major large-scale left-lateral strike-slip faults, the Qilian-Haiyuan Fault and the eastern Kunlun Fault. In the process of growing and expanding of the entire Tibetan plateau, the dextral strike-slip faults play an important role in regulating the deformation and transformation between the secondary blocks. In the early Quaternary, because of the northeastward expansion of the northeastern Tibetan plateau, tectonic deformations such as NE-direction extrusion shortening, clockwise rotation, and SEE-direction extrusion occurred in the northeastern margin of the Tibetan plateau, which lead to the left-lateral slip movement of the NWW-trending major regional boundary faults. As the result, the NNW-trending faults which lie between these NWW direction faults are developed. The main geomorphic units developed within the research area are controlled by the Riyueshan Fault, formed due to the northeastward motion of the Tibet block. These geomorphic units could be classified as:Qinghai Lake Basin, Haiyan Basin, Datonghe Basin, Dezhou Basin, and the mountains developed between the basins such as the Datongshan and the Riyueshan. Paleo basins, alluvial fans, multiple levels of terraces are developed at mountain fronts. The climate variation caused the formation of the geomorphic units during the expansion period of the lakes within the northeastern Tibetan plateau. There are two levels of alluvial fans and three levels of fluvial terrace developed in the study area, the sediments of the alluvial fans and fluvial terraces formed by different sources are developed in the same period. The Riyueshan Fault connects with the NNW-trending left-lateral strike-slip north marginal Tuoleshan fault in the north, and obliquely connects with the Lajishan thrust fault in the south. The fault extends for about 180km from north to south, passing through Datonghe, Reshui coal mine, Chaka River, Tuole, Ketu and Xicha, and connecting with the Lajishan thrusts near the Kesuer Basin. The Riyueshan Fault consists of five discontinuous right-step en-echelon sub-fault segments, with a spacing of 2~3km, and pull-apart basins are formed in the stepovers. The Riyueshan Fault is a secondary fault located in the Qaidam-Qilian active block which is controlled by the major boundary faults, such as the East Kunlun Fault and the Qilian-Haiyuan Fault. Its activity characteristics provide information of the outward expansion of the northeastern margin of Tibet. Tectonic landforms are developed along the Riyueshan Fault. Focusing on the distinct geomorphic deformation since late Pleistocene, the paper obtains the vertical displacement along the fault strike by RTK measurement method. Based on the fault growth-linkage theory, the evolution of the Riyueshan Fault and the related kinetic background are discussed. The following three conclusions are obtained:1)According to the characteristics of development of the three-stage 200km-long steep fault scarp developed in the landforms of the late Pleistocene alluvial fans and terraces, the Riyueshan Fault is divided into five segments, with the most important segment located in the third stepover(CD-3); 2)The three-stage displacement distribution pattern of the Riyueshan Fault reveals that the fault was formed by the growths and connections of multiple secondary faults and is in the second stage of fault growth and connection. With CD-3 as the boundary, the faults on the NW side continue to grow and connect; the fault activity time on the SE side is shorter, and the activity intensity is weaker; 3)The extreme value of the fault displacement distribution curve indicates the location of strain concentration and stress accumulation. With the stepover CD-3 as the boundary, the stress and strain on NW side are mainly concentrated in the middle and fault stepovers. The long-term accumulation range of stress on the SE side is relatively dispersed. The stress state may be related to the counterclockwise rotation inside the block under the compression of regional tectonic stress.  相似文献   

19.
邵永新  任峰 《地震》2008,28(1):65-72
运用海河断裂、 沧东断裂、 天津北断裂和天津南断裂断层气测量结果, 同时结合人工地震探测结果, 讨论了土壤气氡异常位置与断层上断点位置的关系和土壤氡背景场与背景值的问题。 研究结果表明, 覆盖层的厚度对土壤气氡异常的位置存在一定影响, 覆盖浅的断层, 断层气异常一般在断层上断点的上方; 覆盖厚的断层, 断层气异常往往与断层位置不一致, 至少存在60 m左右的误差, 说明断层气异常存在偏离断层的情况。 从偏移距离以及异常位于断层的上盘或下盘上看, 未发现有统计上的关系。 在土壤气氡测量结果的异常确定上, 以每条测线的相对高值判定异常为宜, 不宜使用统一的背景场来确定异常。  相似文献   

20.
Jinta Nanshan Fault is an important fault in northeast front of Qing-Zang Plateau, and it is crucial for determining the eastern end of Altyn Tagh Fault. However, there is still debate on its significant strike-slip movement. In this paper, we study the Late Quaternary activity of Jinta Nanshan Fault and its geological and geomorphic expressions by interpreting aerial photographs and high-resolution remote sensing images, surveying and mapping of geological and geomorphic appearances, digging and clarifying fault profiles and mapping deformation characteristics of micro-topographies, then we analyze whether strike-slip activity exists on Jinta Nanshan Fault. We get a more complete fault geometry than previous studies from most recent remote sensing images. Active fault traces of Jinta Nanshan mainly include 2 nearly parallel, striking 100°~90° fault scarps, and can be divided into 3 segments. West segment and middle segment form a left stepover with 2~2.5km width, and another stepover with 1.2km width separates the middle and east segment. We summarize geomorphic and geologic evidence relating to strike slip activity of Jinta Nanshan Fault. Geomorphic expressions are as follows:First, fault scarps with alternating facing directions; second, sinistral offset of stream channels and micro-topographies; third, pull-apart basins and compressive-ridges at discontinuous part of Jinta Nanshan Fault. Geologic expressions are as follows:First, fault plane characteristics, including extremely high fault plane angle, unstable dip directions and coexistence of normal fault and reverse fault; second, flower structures. Strike-slip rate was estimated by using geomorphic surface age of Zheng et al.(2013)and left-lateral offset with differential GPS measurements of the same geomorphic surface at field site in Fig. 4e. We calculated a strike-slip rate of (0.19±0.05)mm/a, which is slightly larger than or almost the same with vertical slip rate of (0.11±0.03)mm/a from Zheng et al.(2013). When we confirm the strike-slip activity of Jinta Nanshan, we discuss its potential dynamic sources:First, eastern extension of Altyn Tagh Fault and second, strain partitioning of northeastward extension of Qilian Shan thrust belt. The first one is explainable when it came to geometric pattern of several E-W striking fault and eastward decreasing strike slip rate, but the former cannot explain why the Heishan Fault, which locates between the the Altyn Tagh Fault and Jinta Nanshan Fault, is a pure high angle reverse fault. The latter seems more explainable, because oblique vectors may indeed partition onto a fault and manifest strike-slip activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号