首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although waveform inversion has been intensively studied in an effort to properly delineate the Earth's structures since the early 1980s, most of the time‐ and frequency‐domain waveform inversion algorithms still have critical limitations in their applications to field data. This may be attributed to the highly non‐linear objective function and the unreliable low‐frequency components. To overcome the weaknesses of conventional waveform inversion algorithms, the acoustic Laplace‐domain waveform inversion has been proposed. The Laplace‐domain waveform inversion has been known to provide a long‐wavelength velocity model even for field data, which may be because it employs the zero‐frequency component of the damped wavefield and a well‐behaved logarithmic objective function. However, its applications have been confined to 2D acoustic media. We extend the Laplace‐domain waveform inversion algorithm to a 2D acoustic‐elastic coupled medium, which is encountered in marine exploration environments. In 2D acoustic‐elastic coupled media, the Laplace‐domain pressures behave differently from those of 2D acoustic media, although the overall features are similar to each other. The main differences are that the pressure wavefields for acoustic‐elastic coupled media show negative values even for simple geological structures unlike in acoustic media, when the Laplace damping constant is small and the water depth is shallow. The negative values may result from more complicated wave propagation in elastic media and at fluid‐solid interfaces. Our Laplace‐domain waveform inversion algorithm is also based on the finite‐element method and logarithmic wavefields. To compute gradient direction, we apply the back‐propagation technique. Under the assumption that density is fixed, P‐ and S‐wave velocity models are inverted from the pressure data. We applied our inversion algorithm to the SEG/EAGE salt model and the numerical results showed that the Laplace‐domain waveform inversion successfully recovers the long‐wavelength structures of the P‐ and S‐wave velocity models from the noise‐free data. The models inverted by the Laplace‐domain waveform inversion were able to be successfully used as initial models in the subsequent frequency‐domain waveform inversion, which is performed to describe the short‐wavelength structures of the true models.  相似文献   

2.
Elastic waves, such as Rayleigh and mode‐converted waves, together with amplitude versus offset variations, serve as noise in full waveform inversion using the acoustic approximation. Heavy preprocessing must be applied to remove elastic effects to invert land or marine data using the acoustic inversion method in the time or frequency domains. Full waveform inversion using the elastic wave equation should be one alternative; however, multi‐parameter inversion is expensive and sensitive to the starting velocity model. We implement full acoustic waveform inversion of synthetic land and marine data in the Laplace domain with minimum preprocessing (i.e., muting) to remove elastic effects. The damping in the Laplace transform can be thought of as an automatic time windowing. Numerical examples show that Laplace‐domain acoustic inversion can yield correct smooth velocity models even with the noise originating from elastic waves. This offers the opportunity to develop an accurate smooth starting model for subsequent inversion in the frequency domain.  相似文献   

3.
基于L2范数的常规全波形反演目标函数是一个强非线性泛函,在反演过程中容易陷入局部极小值.本文提出归一化能量谱目标函数来缓解全波形反演过程中的强非线性问题,同时能够有效地缓解噪声和震源子波不准等因素的影响.能量谱目标函数是通过匹配观测数据与模拟数据随频率分布的能量信息来实现最小二乘反演的,其忽略了地震数据波形与相位变化的细节特征,这在反演的过程中能够有效缓解波形匹配错位等问题.数值测试结果表明,基于归一化能量谱目标函数在构建初始速度模型、抗噪性和缓解震源子波依赖等方面都优于归一化全波形反演目标函数.金属矿模型测试结果表明,即使地震数据缺失低频分量,基于归一化能量谱目标函数的全波形反演方法在像金属矿这样的强散射介质反演问题上同样具有一定的优势.  相似文献   

4.
We develop a two‐dimensional full waveform inversion approach for the simultaneous determination of S‐wave velocity and density models from SH ‐ and Love‐wave data. We illustrate the advantages of the SH/Love full waveform inversion with a simple synthetic example and demonstrate the method's applicability to a near‐surface dataset, recorded in the village ?achtice in Northwestern Slovakia. Goal of the survey was to map remains of historical building foundations in a highly heterogeneous subsurface. The seismic survey comprises two parallel SH‐profiles with maximum offsets of 24 m and covers a frequency range from 5 Hz to 80 Hz with high signal‐to‐noise ratio well suited for full waveform inversion. Using the Wiechert–Herglotz method, we determined a one‐dimensional gradient velocity model as a starting model for full waveform inversion. The two‐dimensional waveform inversion approach uses the global correlation norm as objective function in combination with a sequential inversion of low‐pass filtered field data. This mitigates the non‐linearity of the multi‐parameter inverse problem. Test computations show that the influence of visco‐elastic effects on the waveform inversion result is rather small. Further tests using a mono‐parameter shear modulus inversion reveal that the inversion of the density model has no significant impact on the final data fit. The final full waveform inversion S‐wave velocity and density models show a prominent low‐velocity weathering layer. Below this layer, the subsurface is highly heterogeneous. Minimum anomaly sizes correspond to approximately half of the dominant Love‐wavelength. The results demonstrate the ability of two‐dimensional SH waveform inversion to image shallow small‐scale soil structure. However, they do not show any evidence of foundation walls.  相似文献   

5.
Joint inversion of teleseismic P-waveforms and local group velocities of surface waves retrieved from ambient seismic noise has been performed to model velocity structure of the crust and uppermost mantle of the Bohemian Massif. We analysed P-waveforms of 381 teleseismic earthquakes recorded at 54 broadband seismic stations located on the territory of the Czech Republic and in its close surroundings. Group velocities of Rayleigh and Love surface waves were obtained by cross-correlating long-term recordings of seismic noise. The basis for waveform inversion is the well-known methodology of P-to-S receiver functions constructed from converted phases. Due to instabilities in direct inversion of receiver functions caused by the necessity of applying deconvolution, we propose an alternative formulation to fit observed and calculated radial components of P waveforms. The joint inversion is transformed into a search for the minimum of the cost function defined as a weighted sum of waveform and group velocity misfits. With the use of the robust stochastic optimizer (Differential Evolution Algorithm), neither derivatives nor a starting model are needed. The task was solved for 1D layered isotropic models of the crust and the uppermost mantle. We have performed a sequence of inversions with models containing one, two, three and four layers above a half-space. By using statistical criteria (F-test) we were able to select the simplest velocity models satisfying data and representing local geological structures. Complex crustal models are typical for stations located close to boundaries of major tectonic units. The relatively low average P to S wave-velocity ratio is in agreement with the generally accepted view that the BM crust is predominantly felsic.  相似文献   

6.
3D anisotropic waveform inversion could provide high-resolution velocity models and improved event locations for microseismic surveys. Here we extend our previously developed 2D inversion methodology for microseismic borehole data to 3D transversely isotropic media with a vertical symmetry axis. This extension allows us to invert multicomponent data recorded in multiple boreholes and properly account for vertical and lateral heterogeneity. Synthetic examples illustrate the performance of the algorithm for layer-cake and ‘hydraulically fractured’ (i.e. containing anomalies that simulate hydraulic fractures) models. In both cases, waveform inversion is able to reconstruct the areas which are sufficiently illuminated for the employed source-receiver geometry. In addition, we evaluate the sensitivity of the algorithm to errors in the source locations and to band-limited noise in the input displacements. We also present initial inversion results for a microseismic data set acquired during hydraulic fracturing in a shale reservoir.  相似文献   

7.
多震源编码技术可以提高全波形反演的计算效率,但同时会引入串扰噪声使反演结果质量降低. 全变分约束可以有效地压制层内噪声并突出模型界面,其与多震源技术的结合,能在大大提高弹性波全波形反演效率的同时提高反演质量. 本文提出了一种高效的动态多震源全波形反演策略,可以在离散串扰噪声的同时保证照明的均匀性. 根据残留串扰噪声的分布特征,构建了与之匹配的基于各向异性全变分约束的弹性波全波形反演方法. 为了减少周期跳跃效应,将基于稀疏约束的低频重构算法应用于弹性波地震记录,给出了利用快速梯度投影算法求解各向异性全变分约束的全波形反演流程. 模型数据测试结果表明本文的方法不仅能有效地抑制多震源方法导致的串扰噪声,同时也能降低观测数据中的噪声对反演结果的影响.  相似文献   

8.
基于精确震源函数的解调包络多尺度全波形反演   总被引:3,自引:3,他引:0       下载免费PDF全文
本文提出解调包络方法来重构地震记录中缺失的低频信号,同时该方法能够降低全波形反演的非线性程度;提出伴随状态震源函数反演方法来得到精确的震源函数,并推导了梯度计算公式;解调包络方法结合低通滤波技术,实现了从低频到高频的多尺度反演策略,有效缓解了全波形反演的周波跳跃问题.数值算例证明了解调包络、伴随状态震源函数反演方法和低通滤波多尺度反演策略的可行性及优越性.震源函数反演精度测试结果表明:即使观测记录在缺失低频信息的情况下,也能反演得到精确的震源函数.缺失低频测试和抗噪能力测试结果表明:即使地震数据中缺失9Hz以下的低频信号或者信噪比极低的情况下,利用反演得到的精确震源函数进行解调包络多尺度全波形反演,同样可以得到高精度的全波形反演结果.与Hilbert包络全波形反演对比结果表明:解调包络在重构低频和降低伴随震源主频方面具有一定优势.  相似文献   

9.
波形反演方法及其在新疆地区转换波测深中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
利用天然地震记录直达P波后续20s内的波形信息,研究了地壳、土地慢速度结构反演的方法、唯一性、精度及应注意的问题,并将求解有条件极值的惩罚数法和求解无条件极值的单纯形法引入到波形反演.数值计算证明,波形反演方法对记录的误差有压制作用,在深源、远震、各向同性水平层状近似合理的前提下,可用一个地震事件在射线平面内的二分量记录反演台站区地壳、上地幔P、S波速度结构.在新疆天山地区转换波流动台站观测中,选择出较好的记录进行波形反演,给出了该转换被测深剖面上6个台站下方的地壳、上地慢P、S波速度结构.通过塔里木盆地内一测点上波形反演和地震勘探结果的对比证明,波形反演方法具有满意的精度.  相似文献   

10.
姚殿义  刘家琦 《中国地震》1994,10(3):230-237
本文针对天然地震波形反演面临的困难及其复杂性,提出了逐步波形反演方法,第一步,运用波形反演中的试错法,求得地震台站下方成层介质的初步结构;第地一步,以第一步结果为初值,令各层厚度不变,反演速度;第三步,以第二步结果为初值,令速度不变,反演厚度。以上各步还可交替进行,直至得到满意结果。  相似文献   

11.
In this paper we propose a 3D acoustic full waveform inversion algorithm in the Laplace domain. The partial differential equation for the 3D acoustic wave equation in the Laplace domain is reformulated as a linear system of algebraic equations using the finite element method and the resulting linear system is solved by a preconditioned conjugate gradient method. The numerical solutions obtained by our modelling algorithm are verified through a comparison with the corresponding analytical solutions and the appropriate dispersion analysis. In the Laplace‐domain waveform inversion, the logarithm of the Laplace transformed wavefields mainly contains long‐wavelength information about the underlying velocity model. As a result, the algorithm smoothes a small‐scale structure but roughly identifies large‐scale features within a certain depth determined by the range of offsets and Laplace damping constants employed. Our algorithm thus provides a useful complementary process to time‐ or frequency‐domain waveform inversion, which cannot recover a large‐scale structure when low‐frequency signals are weak or absent. The algorithm is demonstrated on a synthetic example: the SEG/EAGE 3D salt‐dome model. The numerical test is limited to a Laplace‐domain synthetic data set for the inversion. In order to verify the usefulness of the inverted velocity model, we perform the 3D reverse time migration. The migration results show that our inversion results can be used as an initial model for the subsequent high‐resolution waveform inversion. Further studies are needed to perform the inversion using time‐domain synthetic data with noise or real data, thereby investigating robustness to noise.  相似文献   

12.
Full waveform inversion algorithms are widely used in the construction of subsurface velocity models. In the following study, we propose a Laplace–Fourier-domain waveform inversion algorithm that uses both Laplace-domain and Fourier-domain wavefields to achieve the reconstruction of subsurface velocity models. Although research on the Laplace–Fourier-domain waveform inversion has been published recently that study is limited to fluid media. Because the geophysical targets of marine seismic exploration are usually located within solid media, waveform inversion that is approximated to acoustic media is limited to the treatment of properly identified submarine geophysical features. In this study, we propose a full waveform inversion algorithm for isotropic fluid–solid media with irregular submarine topography comparable to a real marine environment. From the fluid–solid system, we obtained P and S wave velocity models from the pressure data alone. We also suggested strategies for choosing complex frequency bands constructed of frequencies and Laplace coefficients to improve the resolution of the restored velocity structures. For verification, we applied our Laplace–Fourier-domain waveform inversion for fluid–solid media to synthetic data that were reconstructed for fluid–solid media. Through this inversion test, we successfully restored reasonable velocity structures. Furthermore, we successfully extended our algorithm to a field data set.  相似文献   

13.
Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.  相似文献   

14.
P波偏振层析成像   总被引:2,自引:2,他引:0  
论述了P波偏振层析成像方法。这是一个利用P波远震偏振资料去反演速度结构的方法,与走时层析成像相比,它有几个显著的优点:不受震源定位和发震时刻误差的影响;对深地幔速度结构不敏感而对接收器附近的速度结构和速度梯度最敏感,在这一意义上它与时反演是互补的。如果联合使用走时和偏振资料可以改善层析成像的结果。走时的变化对应于速度的变化,而偏振的变化则与速度梯度的变化相对应,因昆,要确定速度异常的边界,用偏振数  相似文献   

15.
时间二阶积分波场的全波形反演   总被引:4,自引:4,他引:0       下载免费PDF全文
陈生昌  陈国新 《地球物理学报》2016,59(10):3765-3776
通过对波场的时间二阶积分运算以增强地震数据中的低频成分,提出了一种可有效减小对初始速度模型依赖性的地震数据全波形反演方法—时间二阶积分波场的全波形反演方法.根据散射理论中的散射波场传播方程,推导出时间二阶积分散射波场的传播方程,再利用一阶Born近似对时间二阶积分散射波场传播方程进行线性化.在时间二阶积分散射波场传播方程的基础上,利用散射波场反演地下散射源分布,再利用波场模拟的方法构建地下入射波场,然后根据时间二阶积分散射波场线性传播方程中散射波场与入射波场、速度扰动间的线性关系,应用类似偏移成像的公式得到速度扰动的估计,以此建立时间二阶积分波场的全波形迭代反演方法.最后把时间二阶积分波场的全波形反演结果作为常规全波形反演的初始模型可有效地减小地震波场全波形反演对初始模型的依赖性.应用于Marmousi模型的全频带合成数据和缺失4Hz以下频谱成分的缺低频合成数据验证所提出的全波形反演方法的正确性和有效性,数值试验显示缺失4Hz以下频谱成分数据的反演结果与全频带数据的反演结果没有明显差异.  相似文献   

16.
2008年汶川大地震震源机制的时空变化   总被引:23,自引:7,他引:16       下载免费PDF全文
本文提出了一种基于恒定破裂速度和固定子事件震源时间函数的假定、利用远场地震波形资料获取大地震震源机制的时空变化图像的线性反演方法,并利用这种方法及全球范围内48个台站的长周期波形资料反演建立了2008年汶川MS8.0地震的震源机制随时间和空间变化的图像.根据这个图像可知,汶川大地震断层的西南端震源机制接近于逆冲,随着破裂向东北方向延伸,震源机制的走滑分量逐渐增大,走滑分量超过逆冲分量的转折点在震中东北大约190 km的位置.为了检验反演方法的有效性和反演结果的可靠性,我们特别设计了一个数值试验对反演结果进行了检验.检验结果表明,我们在本文中提出的反演方法是有效的,关于汶川大地震的反演结果也是可靠的(除长周期信号较弱的一段外).通过比较发现,反演结果与震后野外考察的结果也相当吻合.  相似文献   

17.
Time‐lapse refraction can provide complementary seismic solutions for monitoring subtle subsurface changes that are challenging for conventional P‐wave reflection methods. The utilization of refraction time lapse has lagged behind in the past partly due to the lack of robust techniques that allow extracting easy‐to‐interpret reservoir information. However, with the recent emergence of the full‐waveform inversion technique as a more standard tool, we find it to be a promising platform for incorporating head waves and diving waves into the time‐lapse framework. Here we investigate the sensitivity of 2D acoustic, time‐domain, full‐waveform inversion for monitoring a shallow, weak velocity change (?30 m/s, or ?1.6%). The sensitivity tests are designed to address questions related to the feasibility and accuracy of full‐waveform inversion results for monitoring the field case of an underground gas blowout that occurred in the North Sea. The blowout caused the gas to migrate both vertically and horizontally into several shallow sand layers. Some of the shallow gas anomalies were not clearly detected by conventional 4D reflection methods (i.e., time shifts and amplitude difference) due to low 4D signal‐to‐noise ratio and weak velocity change. On the other hand, full‐waveform inversion sensitivity analysis showed that it is possible to detect the weak velocity change with the non‐optimal seismic input. Detectability was qualitative with variable degrees of accuracy depending on different inversion parameters. We inverted, the real 2D seismic data from the North Sea with a greater emphasis on refracted and diving waves’ energy (i.e., most of the reflected energy was removed for the shallow zone of interest after removing traces with offset less than 300 m). The full‐waveform inversion results provided more superior detectability compared with the conventional 4D stacked reflection difference method for a weak shallow gas anomaly (320 m deep).  相似文献   

18.
We study the stability of source mechanisms inverted from data acquired at surface and near‐surface monitoring arrays. The study is focused on P‐wave data acquired on vertical components, as this is the most common type of acquisition. We apply ray modelling on three models: a fully homogeneous isotropic model, a laterally homogeneous isotropic model and a laterally homogeneous anisotropic model to simulate three commonly used models in inversion. We use geometries of real arrays, one consisting in surface receivers and one consisting in ‘buried’ geophones at the near‐surface. Stability was tested for two of the frequently observed source mechanisms: strike‐slip and dip‐slip and was evaluated by comparing the parameters of correct and inverted mechanisms. We assume these double‐couple source mechanisms and use quantitatively the inversion allowing non‐double‐couple components to measure stability of the inversion. To test the robustness we inverted synthetic amplitudes computed for a laterally homogeneous isotropic model and contaminated with noise using a fully homogeneous model in the inversion. Analogously amplitudes computed in a laterally homogeneous anisotropic model were inverted in all three models. We show that a star‐like surface acquisition array provides very stable inversion up to a very high level of noise in data. Furthermore, we reveal that strike‐slip inversion is more stable than dip‐slip inversion for the receiver geometries considered here. We show that noise and an incorrect velocity model may result in narrow bands of source mechanisms in Hudson's plots.  相似文献   

19.
In order to retrieve a 2D background velocity model and to retrieve the geometry and depth of shallow crustal reflectors in the Southern Apennines thrust belt a separate inversion of first arrival traveltimes and reflected waveforms was performed. Data were collected during an active seismic experiment in 1999 by Enterprise Oil Italiana and Eni-Agip using a global offset acquisition geometry. A total of 284 on-land shots were recorded by 201 receivers deployed on an 18 km line oriented SW–NE in the Val D'Agri region (Southern Apennines, Italy).
The two-step procedure allows for the retrieval of a reliable velocity model by using a non-linear tomographic inversion and reflected waveform semblance data inversion. The tomographic model shows that the P wave velocity field varies vertically from approximately 3 km/s to 6 km/s within 4 km from the Earth's surface. Moreover, at a distance of approximately 11 km along the profile, there is an abrupt increase in the velocity field. In this zone indeed, an ascent from 2 km depth to 0 km above sea level of the 5.2 km/s iso-velocity contour can be noted. The retrieved velocity can be associated with Plio-Pleistocene clastic deposits outcropping in the basin zone and with Mesozoic limestone deposits. The inversion of waveform semblance data shows that a P-to-P reflector is retrieved at a depth of approximately 2 km. This interface is deeper in the north-eastern part of the profile, where it reaches 3 km depth and can be associated with a limestone horizon.  相似文献   

20.
Waveform inversion met severe challenge in retrieving long‐wavelength background structure. We have proposed to use envelope inversion to recover the large‐scale component of the model. Using the large‐scale background recovered by envelope inversion as new starting model, we can get much better result than the conventional full waveform inversion. By comparing the configurations of the misfit functional between the envelope inversion and the conventional waveform inversion, we show that envelope inversion can greatly reduce the local minimum problem. The combination of envelope inversion and waveform inversion can deliver more faithful and accurate final result with almost no extra computation cost compared to the conventional full waveform inversion. We also tested the noise resistance ability of envelope inversion to Gaussian noise and seismic interference noise. The results showed that envelope inversion is insensitive to Gaussian noise and, to a certain extent, insensitive to seismic interference noise. This indicates the robustness of this method and its potential use for noisy data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号