首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
青藏块体东北缘水平应变场与构造变形分析   总被引:21,自引:0,他引:21       下载免费PDF全文
利用青藏块体东北缘地区 1993与 1999年GPS观测获得的地壳水平运动速度场结果 ,初步研究了该区的应变场与构造变形。该区应变场以近NE向的主压应变为主体 ,伴随着近NW向的张性应变。河西走廊中、东段 ,尤其是武威断块是压应变最强的区域。应变场形成的剪应变以近EW向的左旋剪切为主体 ,表明该区NWW向的块体边缘主干断裂的活动方式是左旋走滑兼挤压。剪应变高值区主要分布于青藏块体东北边界带的武威、祁连一带。甘青块体与阿拉善块体之间整体左旋扭动速率约为 6mm/a。配合非连续变形分析法 (DDA)数值模拟 ,初步分析了该区的构造应力场背景 ,认为该区相对水平运动和构造变形分布特征不仅是印度板块推挤应力场作用的结果 ,还可能与来自西侧南强北弱的向东的动力作用有关  相似文献   

2.
利用青藏块体东北缘地区1999~2001年GPS观测获得的地壳水平运动速率场,通过对该地区进行块体划分,将该地区划分为9个块体,应用块体的整体旋转线性应变模型(RELSM)估计了各个块体的旋转与应变参数,以及计算了该地区内143个GPS站点的应变参数,以此分析了该地区的应变场的基本特征,结果表明:①阿拉善块体s较稳定,其旋转角为0.630×10-8,运动速率为0.688 mm/a,②相比其他块体,共和块体旋转角最大达到了6.589×10-8 ,运动速率达到了7.296 mm/a,③应变高值区主要集中在祁连山断裂,海原断裂等,在这些地区最大剪应变率达到了7.5×10-8、面膨胀率达到了-2.5×10-8、主压应变达到了-6×10-8.  相似文献   

3.
利用1999 ~2007期GPS速度场数据,通过块体模型择优得到了南北地震带中南段主要块体边界带变形的适用模型,并给出了块体边界主要断层的滑动速率.结果表明,龙门山断裂带宝兴-汶川段张压速率较小,为0.5 ~ 1.8mm·a-1;汶川-茂县压性相对显著,速率达1.8~3.8mm·a-1;鲜水河断裂带张压及走滑速率存在一定的空间差异性特征,即炉霍以北张性滑动速率(8.1mm·a-1)比左旋走滑速率(4.8mm·a-1)大,炉霍-道孚段张压速率与走滑速率基本相同,道孚-康定段呈现出左旋走滑速率减小、张性速率增大的变化趋势,康定-石棉段表现出较明显的左旋走滑性质;小江断裂带走滑速率明显大于张压速率;红河断裂带空间分段性较为明显,北西段滑动量较小,但存在一定的张压分量(景东段速率4.7 mm·a-1),南东段(个旧以西)以走滑为主(速率4.5mm·a-1).  相似文献   

4.
GPS初步揭示的渭河盆地及边邻地区地壳水平运动特征h   总被引:16,自引:0,他引:16       下载免费PDF全文
利用中国地壳运动观测网络工程1999~2002年渭河盆地及邻近地区GPS观测资料,以及陕西省地震局2001~2002年的GPS观测资料,研究了渭河盆地及周邻地区地壳运动速度场. 结果表明, 渭河盆地及邻区的运动速率有明显的北东向条带状变化特征,鄂尔多斯块体南缘呈整体不连续性逆时针旋转运动,相对鄂尔多斯块体内部的榆林测点,平均速率约为5.7 mm/a;渭河盆地中部的彬县——西安——蓝田一线,两侧存在一个显著的左旋剪切带,其北部区域与铜川——泾阳——临潼——渭南小震频发区有较好的对应关系.   相似文献   

5.
巴颜喀拉块体北东地区现今水平运动与变形   总被引:2,自引:0,他引:2  
本文利用GPS数据研究了巴颜喀拉块体北东地区现今水平运动与变形特征。 在球坐标系中解算了各应变分量, 分析了应变率场的空间分布特征, 并与地球物理学和地震地质学研究结果进行了综合对比分析。 最新的GPS速度场结果表明, 巴颜喀拉块体北东地区与高原整体运动性质一样具有顺时针向南东方向旋转的特征, 自西向东和北东方向测站水平运动速度呈现明显的衰减特征。 应变场结果显示, 研究区以北东向的主压应变为主, 伴随着近北西向的张性应变。 应变较强的区域主要分布在活动块体的边界断裂东昆仑断裂带的东段塔藏段和龙门山断裂带上。 东昆仑断裂带东段塔藏段的主压应变明显, 结合地震地质和活动构造资料, 认为东昆仑断裂带东段塔藏段的运动性质自西向东发生了改变, 水平滑动速率逐渐减小, 垂向运动逐渐增强。 研究区GPS速度场和应变场的这一变形特征表明, 青藏高原内部的块体运动特征较为明显, 变形主要集中在作为活动块体边界的活动断裂带上, 边界断裂带的运动特征在调节活动块体间的相互运动中起着重要作用。  相似文献   

6.
基于活动块体的基本概念,综合对研究区内活动断裂带空间展布、地震活动性等资料的分析将巴颜喀拉块体东部及邻区划分为巴颜喀拉块体(I)、华南块体(Ⅱ)、川滇块体(Ⅲ)和西秦岭块体(IV)等4个一级块体.利用GPS形变场、地球物理场等资料结合F检验法,将巴颜喀拉块体划分为阿坝(I1)、马尔康(I2)和龙门山(I3)3个次级块体,将西秦岭块体划分为岷县(IV1)和礼县(IV2) 2个次级块体.利用分布在各个块体内部的GPS测站,计算各活动块体及块体边界断裂带的运动变形特征.结果表明:各活动块体的整体运动包括平移和旋转运动;东昆仑断裂带、甘孜—玉树断裂带和鲜水河断裂带的滑动速率明显高于龙门山断裂带的滑动速率;巴颜喀拉块体东部走向北西或北西西的边界断裂表现出左旋拉张的特性;走向北东的边界断裂带,除成县—太白断裂带外,均表现出右旋走滑兼挤压的活动特征.巴颜喀拉块体的东向运动存在自西向东的速度衰减,衰减主要被龙日坝断裂带和岷江断裂带分解吸收,其中龙日坝断裂带的水平右旋分解非常明显,约为~4.8±1.6 mm/a,岷江断裂带的水平分解较弱.龙门山断裂带被马尔康、龙门山和岷县等次级块体分成南、中、北三段,龙门山断裂带中段上的主压应变率要明显小于龙门山断裂带南段上的应变率,其北西侧变形幅度从远离断裂带较大到靠近断裂带逐渐减小,表明其在震前已经积累了较高的应变能,有利于发生破裂滑动.汶川地震后,地表破裂带和余震分布揭示的断裂带运动性质自南西向北东由以逆冲运动为主,逐渐转为逆冲兼走滑的特征可能与龙门山断裂带中段所受主压应力方向自南西向北东的变化有关.马尔康、龙门山和岷县3个次级块体与华南块体之间较低的相对运动速度以及龙门山断裂带低应变率、强闭锁的特征都决定了汶川地震前龙门山断裂带低滑动速率的运动特征.  相似文献   

7.
鄂尔多斯块体周缘地区现今地壳水平运动与应变   总被引:7,自引:1,他引:6       下载免费PDF全文
位于青藏块体和华北块体之间的鄂尔多斯块体及其周缘地区是中国大陆构造活动最活跃的地区之一,从1300年至今,在块体周边断陷盆地和西南缘断裂带上发生了五次8级以上的地震.为了了解该地区现今地壳运动、应变状态以及断裂滑动分布,我们收集了中国大陆构造环境监测网络2009—2013年、国家GPS控制网、跨断陷盆地的8个GPS剖面等共527个流动站和32个连续站GPS观测数据,获得了高空间分辨率的地壳水平运动速度场,进一步用均匀弹性模型计算了应变率分布.结果表明,块体内部GPS站点向NEE方向运动,速度变化较小,应变率大多在(-1.0~1.0)×10~(-8)/a之间;山西断陷带构造运动与变形最为强烈,盆地相对于鄂尔多斯块体为拉张变形,应变率为(1.0~3.0)×10~(-8)/a,相对于东部山地则为挤压变形,应变率为(-2.0~-3.0)×10~(-8)/a,盆地西侧断裂(如罗云山断裂、交城断裂)以拉张运动为主,拉张速率为2~3mm·a-1,盆地东侧断裂主要以右旋缩短运动为主,速率为1~3mm·a-1;河套断陷带西部的临河凹陷处于较强的张性应变状态,应变率为(2.0~3.0)×10~(-8)/a;块体西南边缘处于压缩应变状态,应变率为(-1.0~-2.0)×10~(-8)/a,六盘山断裂存在明显的地壳缩短运动,速率约为2.1mm·a-1,速率在断裂附近逐渐减小,反映了断裂处于闭锁状态;相对于鄂尔多斯块体内部渭河断裂带为左旋运动,速率为1.0mm·a-1,盆地处在弱拉张变形状态.  相似文献   

8.
川滇地区现代地壳运动速度场和活动块体模型研究   总被引:35,自引:9,他引:35       下载免费PDF全文
吕江宁  沈正康  王敏 《地震地质》2003,25(4):543-554
通过分析中国地壳运动观测网络的GPS数据得到川滇地区地壳水平运动速度场 ,由此划分活动块体并分析其运动特征。结果表明 :相对欧亚板块 ,滇中、雅江和中甸次级块体的顺时针转动速率分别为 0 37°± 0 16°/Ma ,0 84°± 0 39°/Ma和 0 90°± 0 39°/Ma ,造成块体间跨木里弧形断裂带约 3mm/a的SN向挤压、丽江 -大理断裂带约 4mm/a的EW向拉张和理塘断裂带约 6mm/a的近EW向拉张。鲜水河断裂带左旋走滑速率 8~ 10mm/a ,安宁河 -则木河 -小江断裂带左旋走滑 5~6mm/a。龙门山断裂带没有明显的地壳消减 ,而断裂带西北约 15 0km处有一形变速度阶跃带 ,右旋走滑速率 4~ 5mm/a。阶跃带两侧的岷山块体和阿坝地区逆时针转动速率分别为 0 13°± 0 0 8°/Ma和0 5 3°± 0 19°/Ma。鲜水河 -小江断裂带以南、以西地区 ,青藏高原物质的E向挤出和重力滑塌造成川滇块体东移 ,在东部相对稳定的华南地块的阻挡下 ,川滇块体沿鲜水河 -小江断裂带由东转向南运动 ,从而引起川滇块体内部各次级块体的顺时针转动  相似文献   

9.
通过对GPS观测资料的数值模拟,获取1999~2001年青藏块体东北缘地区地壳水平运动的非震反位错模型,结合本区视应变场空间分布,研究活动块体及其边界断裂运动、变形特征及应力应变积累部位和强度.结果表明:① 9个活动块体呈现东向由偏北至偏南的整体性顺时针运动. 以祁连山——海原断裂为界,两侧块体间的左旋相对运动明显,由西向东呈现走滑兼NE-NEE向挤压;② 有20条断层段(多数呈压性)不同程度地阻碍块体间的相对运动,其中祁连山断裂中东段(包括与日月山——拉脊山断裂交汇区)及与海原、庄浪河断裂交汇区更有利于应变积累,日月山——拉脊山断裂与柴达木块体北边界交汇区也可能存在一定程度的应变积累;③ 所得活动块体运动速率及边界断裂对块体相对运动的锁定量较1993~1999年相应结果有所减弱.   相似文献   

10.
近十多年来藏南地区GPS网的多期观测结果为研究其构造变形提供了精确数据。本文将该区划分为冈底斯、西喜马拉雅、中喜马拉雅、拉萨4个块体,建立了各块体的弹性运动模型。以藏北高原的旋转框架为参考基准,得到藏南地区的水平形变场和应变场,分析形变场和应变场的空间变化,发现藏南地区存在强烈的S-N向挤压缩短变形,同时也有明显的E-W向伸展变形。南北边界之间的平均缩短速率16.9±2.5mm/a,大约吸收了印度与欧亚汇聚速率的42.4%。在雅鲁藏布江缝合线与班公错—嘉黎断裂之间,从80°E到90°E,地壳E—W向的伸展速率16.3±2.4mm/a。因此,藏南地区现今构造变形是以挤压缩短为主,S-N向挤压缩短与E—W伸展共存的复合变形模式。印度板块向欧亚板块的俯冲推挤是该区域变形的主要驱动力,重力作用对其变形也有重要贡献。  相似文献   

11.
青藏块体东北部2003年最新GPS复测揭示:昆仑山口西8.1级地震后本区水平运动变形较前变异显,以甘青块体西部出现的与NE向挤压背景相反的张性运动变形为主要标志,且区域总体应变幅度增大。结合地震有序活动分析认为:本区目前的水平运动变形态势,与8.1级大震及随后青藏块体中西部发育的NE向中强以上地震条带在较短时间内释放了大量的压应变,使得青藏块体北部区域NE向推挤的应力场失衡(西侧的区域应力场强度衰减、东侧的应力场增强)密切相关;因而青藏块体北部大区域应力场趋于平衡过程将有利于块体东北边缘应力应变加速积累和破裂错动。  相似文献   

12.
The horizontal movement of the Helan Shan west-piedmont fault is important to determination of the present-day boundary between the Alashan and North China blocks as well as to the exploration of the extent of the northeastward expansion of the Tibetan plateau. Field geological surveys found that this fault cuts the west wing of the Neogene anticline, which right-laterally offset the geological boundary between Ganhegou and Qingshuiying Formations with displacement over 800m. The secondary tensional joints (fissures)intersected with the main faults developed on the Quaternary flood high platform near the fault, of which the acute angles indicate its dextral strike slip. The normal faults developed at the southern end of the Helan Shan west-piedmont fault show that the west wall of this fault moves northward, and the tensional adjustment zone formed at the end of the strike slip fault, which reflects that the horizontal movement of the main fault is dextral strike slip. The dextral dislocation occurred in the gully across the fault during different periods. Therefore, the Helan Shan west-piedmont fault is a dextral strike slip fault rather than a sinistral strike slip fault as previous work suggested. The relationship between the faulting and deformation of Cenozoic strata demonstrates that there were two stages of tectonic deformation near the Helan Shan west-piedmont fault since the late Cenozoic, namely early folding and late faulting. These two tectonic deformations are the result of the northeastward thrust on the Alashan block by the Tibet Plateau. The influence range of Tibetan plateau expansion has arrived in the Helan Shan west-piedmont area in the late Pliocene leading to the dextral strike slip of this fault as well as formation of the current boundary between the Alashan and North China blocks, which is also the youngest front of the Tibetan plateau.  相似文献   

13.
Based on the GPS velocity field data of 1999-2007 and 2011-2013,we used the least squares configuration method and GPS velocity profile results to synthetically analyze the dynamic evolution characteristics of crustal deformation in the Yunnan area before and after the Wenchuan earthquake. The dynamic evolution of GPS velocity field shows that the direction is gradually changed from the south in the southern part of the Sichuan-Yunnan block to the south-west in the southern Yunnan block and there is a clear relative motion characteristic near the block boundary fault zone. Compared with the GPS velocity of 1999-2007, the results of 2011-2013 also reflect segmental deformation characteristics of the block boundary fault zone. Southeast movement shows a significant increase, which may be related to crustal deformation adjustment after the Wenchuan earthquake. The dynamic evolution of strain parameters shows a pattern of "extension in the middle and compression at both ends" in the whole area and the distribution of deformation (shear, extension or compression) is closely related to the background motion and deformation characteristics of the main fault zone. Compared with the results of the period of 1999-2007, the extensional deformation zone of 2011-2013 is expanded eastward and southward. The compressional deformation of the eastern boundary (the Xiaojiang fault zone) of the Sichuan-Yunnan block is no longer significant, which is mainly concentrated in the northern section of the Xiaojiang fault zone and may be related to the post-seismic deformation adjustment of the Wenchuan earthquake. The GPS velocity profile results show that the left-lateral slip velocity of the Xiaojiang fault zone reduced gradually from north to south (10mm/a-5mm/a), and the width of the northern section is wider. The right-lateral slip rate of the Honghe fault zone is about 4mm/a, and the deformation width is wider. The dynamic results show that the Wenchuan earthquake has little effect on the deformation modes of these two fault zones.  相似文献   

14.
Chinese scientists proposed that large earthquakes that occurred in mainland China are controlled by the movement and deformation of active tectonic blocks. This scientific hypothesis explains zoned phenomenon of seismicity in space. The active tectonic blocks are intense active terranes formed in late Cenozoic and late Quaternary, and the tectonic activity of block boundaries is the intensest. Global Navigation Satellite System(GNSS)has advantages of high spatio-temporal resolution, broad coverage, and high accuracy, and is utilized to monitor contemporary crustal deformation. High accuracy and resolution of GNSS velocity field within mainland China and vicinities provided by previous studies clearly demonstrate that different active tectonic blocks behave as different patterns of movement and deformation, and block interaction boundaries have intense tectonic deformation. The paper firstly introduces the GPS networks operated by the Crustal Movement Observation Network of China(CMONOC)since 1999, and GNSS data processing methods, including GAMIT, BERNESE and GIPSY/OASIS, and discusses the advantages of using South China block as a regional reference frame for GNSS velocity field, then proposes three strategies of block division, F-test, quasi-accurate detection(QUAD), and clustering analysis. Furthermore, we introduce rigid and non-rigid block motions. Rigid block motion can be denoted by translation and rotation, while non-rigid block motion can be described by rigid motion and internal strain deformation. Internal strain deformation can be divided into uniform and linear strains. We also review the usage of F-test to distinguish whether the block acts as rigid deformation or not. In addition, combining with recent GNSS velocity results, we elaborate the characteristics of present movement of rigid block, such as the South China, Tarim, Ordos, Alashan, and Northeast China, and that of non-rigid block, such as the Tibetan plateau, Tian Shan, and North China plain. Especially, the Tibetan plateau and Tian Shan seem to deform continuously with significant internal deformation. In order to enrich and perfect the active tectonic block hypothesis, we should carefully design dense GNSS networks in inner blocks and block boundaries, optimize utilizing other space geodesy technologies such as InSAR, and strengthen combining study of geodesy, seismogeology and geophysics. Through systematic summary, this paper is very useful to employing GNSS to investigate characteristics of block movement and dynamics of large earthquakes happening in block interaction boundaries.  相似文献   

15.
利用2009—2017年GPS水平速度场和1990—2018年跨断层短水准资料, 分析西昌地区现今三维地壳活动及主要断裂的活动性。 结果表明: 在西昌地区, GPS水平运动场及应变场的大小和方向发生变化。 E向运动速率由北部的平均约8 mm/a减小到南部的平均约4 mm/a; S向运动以安宁河—则木河断裂为界, 西侧点位的运动速率明显大于东侧的点位。 相对华南地块的水平形变场也显示西昌地区水平运动的差异性。 主应变场在西昌地区以SW—NE向拉张和NW—SE向挤压为主。 大凉山次级块体东侧的张应变和压应变均大于西侧; 最大剪应变率在此次级块体以条带形式展布, 条带上的最大剪应变率大于东、 西两侧; GPS水平运动速率和变形宽度相比1999—2007年资料得到的结果大, 表明安宁河—则木河断裂带处于剪切应变积累阶段, 闭锁程度有所提高。 跨断层水准资料显示, 该断裂存在新的活动迹象, 应力持续积累。 综合分析两种资料结果, 推测区域地震危险性将进一步增强。  相似文献   

16.
IntroductionAccording to the division of Neo-tectonically active blocks northeastern Qinghai-Xizang (abbreviated as QX thereafter) plateau is a juncture region where 3 intra-continental subplates, the Qinghai-Xizang, Xinjiang and North China subplate, meet with each other (DING, 1991). The subplates generally consist of blocks. Specifically, around the Yinchuan-Haiyuan (quasi-trijuncture( (TIAN, DING, 1998), where the 3 subplates meet, to the south locates the Gansu-Qinghai (GQ) blo…  相似文献   

17.
Based on the high-accuracy data obtained from the GPS measurements carried out in 1992, 1995 and 1996, the isochronous active units with different kinematic property inside the North China area have been distinguished, 4 active units and 1 transition zone with distinct differential movement have been determined. They are Ordos-Yinshan unit, Yanshan unit, Shanxi-Hebei-Shandong (Jin-Ji-Lu) unit, Jiaodong-Liaoning-Shandong (Jiao-Liao-Lu) unit and Yanshan-Hebei (Yan-Ji) transition zone. The relative movements among the neighboring units in this period have been given. 1 The compressive movement between Ordos-Yinshan unit and Yanshan unit is not obvious with an amount of 0.4±1.3 mm/a. 2 Jin-Ji-Lu unit moves E40°S off the Ordos-Yinshan unit and the magnitude is 4.4±1.0 mm/a. 3 Relative to the Yan-Ji transition zone of differential movement, Yanshan unit shifts W38°N with a value of 2.4±1.3 mm/a and Jin-Ji-Lu unit moves eastward 35° by south with an amount of 2.3±0.9 mm/a. 4 Jin-Ji-Lu unit has a tensional left-lateral movement of 4.7±1.4 mm/a in the direction of E37°S relative to Yanshan unit. 5 Some area near Tanlu belt which is located in the southern part of Jin-Ji-Lu block has a southward movement 14° by west with a magnitude of 1.5±1.1 mm/a off the Jin-Ji-Lu unit. 6 Relative to Jin-Ji-Lu unit, Jiao-Liao-Lu unit has a trend of clockwise movement with a tensional right-lateral motion at the north end which neighbors Yanshan unit and a compressive motion at the south end. It should be noted that the errors given in the paper are obtained based on the divergence among the displacements of the sites in the unit, rather than the value calculated from the displacement error of the sites. The analyzed results indicate that: 1 Shanxi tectonic zone and Yan-Ji transition zone are the major tectonic active zones to show the frame and magnitude of interior relative movement in North China area, and others are the secondary tectonic active zones; 2 The complete horizontal deformation in the North China area is not homogeneous nor successive; 3 The kinetic model of North China area might be "mantle dragging plus boundary coupling". Foundation item: The National Key Basic Research Project Mechanism and Prediction of Continental Earthquakes (G1998040700).  相似文献   

18.
Movement and strain conditions of active blocks in the Chinese mainland   总被引:2,自引:0,他引:2  
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2±1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1±0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8±1.3 mm/a in the central part of Altun fault and 9.8±2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   

19.
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90°E is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2 ± 1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1 ± 0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8 ± 1.3 mm/a in the central part of Altun fault and 9.8 ± 2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   

20.
利用汾渭盆地及其邻域2001—2007年与2009—2011年高精度GPS监测资料,基于区域构造特点,采用块体运动应变模型结合数理统计假设检验法,建立了区域合理的地壳运动应变模型,基于此定量研究了区域现今地壳应变场及其变化特征,特别是2008年汶川强震对汾渭盆地区域变形特征的作用影响,同时从盆地整体上分析了盆地内多发的地裂缝灾害与区域整体构造变形特征之间的内在关系.研究结果表明:经统计检验判断,选择合理的区域地壳运动应变模型,对获取真实反映区域实际构造变形特性的应变参数具有重要的作用;2008年汶川强震对青藏东边缘地块及渭河盆地西侧局部地区应变场造成一定的影响,但是震后上述区域并没有出现显著的应变积累而是呈现出应变量值较震前减小的特征,分析其原因可能是因为此区域并不是强震造成的库仑应力显著增加区,在震后2009—2011年时间段内处于构造应力场的松弛调整期;汶川强震没有显著改变研究域现今整体的构造变形背景特征,区域地壳构造活动特征仍具有较好的继承性;基于研究域构造块体具有各向同性连续弹性变形的前提,初步推断整个汾渭盆地内多发的地裂缝灾害可能是区域NW—SE向拉张应力场作用下的地表破裂响应.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号