首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 109 毫秒
1.
王亚文  蒋长胜 《地震学报》2017,39(3):315-329
为探讨不同地震台网监测能力评估方法的结果差异性及其原因,本文选用目前国际上比较前沿的“基于概率的完整性震级”(PMC)方法和“完整性震级范围”(EMR)方法,以及中国地震台网常规采用的“震级-最大距离”方法,对2008年10月1日—2015年9月17日南北地震带地区表征地震监测能力的最小完整性震级进行了比较研究.研究中考虑了以往关注不够的地震观测质量一致性问题,统一采用至少3个台站记录的地震资料.结果显示,3种方法的结果差异显著,最小完整性震级的差值在南北地震带个别地区甚至可达ML2.0,其中,PMC方法获得的最小完整性震级Mp值在32°N以北地区显著低于其它两种方法,震级-最大距离方法获得的最小完整性震级Mr低值结果仅与高台站密度地区有关,与包括EMR方法获得的最小完整性震级McEMR相比较在统计均值上则呈McEMR < Mp < Mr.进一步对各地震台站的地震检测能力进行评分,结果显示,台站运维水平和对记录地震分析的完整程度,是造成Mp值显著不同于其它方法结果的主要原因,而是否选用相同的记录台站数量等数据质量约束标准,会造成EMR方法与其它方法结果的显著差异.因此,考虑到地震台网运行的实际情况和不同评估方法的计算原理,推荐PMC方法用于地震监测能力的评估.   相似文献   

2.
景晟  康昊天 《地震工程学报》2014,36(4):1118-1121
采用地脉动噪声法和b值曲线拟合法对四川大岗山水电站地震台网的最小监测能力进行了研究和对比,结果表明在重点监视区理论监测能力达到了ML0.5的要求,实际记录重点监视区完整性震级下限为ML0.5,达到了地震台网设计目标。  相似文献   

3.
内蒙古区域地震台网监测能力研究   总被引:10,自引:0,他引:10       下载免费PDF全文
国际上新近发展的“基于概率的完整性震级”(PMC)方法,具有可考察地震定位中由于台站人为选择等造成的台网监测能力下降,以及避免传统基于G-R关系的统计算法因地震数目过少而无法评估等优点.本研究利用PMC方法,计算得到内蒙古区域地震台网39个台站对周边地震事件的检测概率及台网检测概率.单台检测概率结果显示:PMC方法能够客观地反映39个台站对地震事件的检测能力;因台网布局等影响,内蒙古区域地震台网中西部和中东部地区的台站检测能力较强,而靠近蒙古、俄罗斯边境的台站, 阿拉善右旗附近地区的台站,以及邻近吉林、黑龙江等地区的台站检测能力较低.合成检测概率结果显示,由于邻省台站的引入,全区80%的地区基于概率的最小完整性震级MP达到2.2左右,其余地区MP达到3.3左右.为提高地震台网监测能力,建议在监测能力较弱的中蒙交界地区、东北部地区,以及阿拉善左旗以西地区适度加密台站,进一步优化台网布局.   相似文献   

4.
该研究运用国际上新近发展的"基于概率的完整性震级"(PMC)方法,计算获得山西及邻区区域地震台网44个台站对周边地震事件的检测概率及台网检测概率。发现,因台网布局等影响,山西中部断陷盆地展布区域及两侧隆起区大部分地区的最小完整性震级为MP≤1.5,山西西部边缘地区和最北端与内蒙古自治区、河北省交界地区震级达到1.5≤MP≤2.0,山西最南端的晋陕交界MP为3.0级左右。研究表明,为进一步提高山西地区整体监测能力,在山西西部边缘地区、最北端和最南端可增设台站或引入更多邻省台站。  相似文献   

5.
余娜  张晓清  杨晓霞 《地震》2020,40(4):23-32
在强震多发且台站分布极不均匀的青海地区开展最小完整性震级分析, 对该地区的地震危险性分析具有重要的现实意义。 基于青海区域地震台网定位的地震目录, 利用“震级-序号”法和多参数方法分析了Mc的时间演化特征; 采用“完整震级范围”方法研究了其空间分布特征。 研究表明, 不同时段青海及邻区Mc的空间分布存在非均匀性, 其与测震台站的空间分布特征和分布密度具有较好的一致性。 2015年6月后祁连、 柴达木、 巴彦喀拉区域的东部区域最小完整性震级Mc较小, ML1.4以上的地震目录基本完整, 羌塘区域的最小完整性震级最大, 为ML2.5左右; 研究区的Mc随着测震台站数的增加、 台网布局的优化而降低。  相似文献   

6.
针对中国地震台网"十五"项目建成后的地震监测能力科学评估的需求,为进一步优化台网布局、提升边疆海域等重点地区监测能力,本研究利用"基于概率的完整性震级"(PMC)方法,对中国地震台网1001个台站以及2008-10-01-2015-09-17期间实际产出的地震观测资料进行了研究,分析了指定震级档下的检测概率PE和最小完整性震级MP的分布.除台网整体监测能力分布外,为直观地用单分值表述逐个台站的地震检测能力,本文发展了基于等振幅曲线的"地震检测能力评分表",给出了国家台和区域台每个台站的地震检测能力评分统计特征和空间分布特征.此外,研究中还采用设定"最佳"地震监测能力目标函数的方式,模拟了通过改进观测条件可获得的地震台网监测能力提升的理论结果.研究结果表明,我国华北和东南沿海等东部地区地震监测能力较高,西部尤其是青藏高原南部地区Mp仅约为4.5,近海海域Mp仅约为3.5;从单个地震台站的运行效益角度,台网运行水平和地震观测资料的分析程度对台站的实际的地震检测能力影响显著,新疆等部分台站稀疏地区地震检测能力较高,而中等台站密度的贵州等部分区域相对较低;国家台的地震检测能力评分Dscore系统优于区域台,新疆等西部边疆地区,以及福建等东南沿海地区的Dscore明显高于台站密集的东部地区;模拟结果显示,在现有台站布局条件下,通过台站优化改造和提升运维管理水平,可显著提升对内蒙古西部、四川西部、甘肃-青海的北部交界地区、鄂尔多斯地块内部、贵州大部分地区,以及我国近海海域、朝鲜半岛北部和中南半岛北部地区的地震监测能力.  相似文献   

7.
为了实现对山东区域测震台网监测能力的科学准确的评估,分析山东及邻区地震监测能力的时空分布特征,为该区的地震研究和测震台网的进一步优化布局提供科学依据.本文利用"基于概率的完整性震级"(PMC)方法,通过计算山东测震台网的117个台站对周边地震事件的检测概率、测震台网的合成检测概率以及最小完整性震级,来评估测震台网的监测能力.单台检测概率结果显示,PMC方法可客观反映117个台站对地震事件的监测能力,在距离台站较近的区域,检测概率随着震级和震中距的增大而增大,处于沂沭断裂带中南段的台站对低震级档的地震有较高的监测能力.合成检测概率结果显示,检测概率高值区域主要集中在台站密集的胶东半岛和沂沭带中南段,而靠近山东省界的鲁西和鲁北区域则监测能力较差.最小完整性震级的结果也反映了类似的规律.同时,PMC方法还可以检测不同深度对检测概率空间分布特征的影响.  相似文献   

8.
为科学评估山西测震台网的监测能力,采用"基于概率的完整性震级"PMC方法,以山西测震台网产出的地震观测报告为输入,计算了山西测震台网57个台站对周边地震事件的检测概率、测震台网的合成检测概率及最小完整性震级.单台检测概率结果显示:PMC方法相对客观地反映了57个台站对地震事件的检测能力,山西中部的5个台站,由于台站密度...  相似文献   

9.
甘肃测震台网监测能力及地震目录完整性分析   总被引:12,自引:1,他引:11       下载免费PDF全文
区域地震台网监测能力的科学评估,是进行区域地震活动性和地震危险性分析的重要基础,最小完整性震级Mc是表征台网监测能力的关键.本文以甘肃测震台网的地震观测报告和区域地震目录为基础资料,分析了甘肃及邻区地震监测能力在时、空上的分布特征,利用ldquo;震级 序号rdquo;法、ldquo;最大曲率rdquo;法(MAXC)、拟合度分别为90%和95%的拟合优度检验法(GFT)及ldquo;完整性震级范围rdquo;法(EMR)等,研究了甘肃区域地震目录最小完整性震级Mc的时、空分布特征.结果表明,1980年以来甘肃测震台网的地震监测能力得到了逐步提高,模拟记录时期和ldquo;九五rdquo;期间甘东南地区的地震监测能力明显高于祁连山地震带中西段,ldquo;十五rdquo;测震台网运行后,甘肃及邻区的地震监测能力的空间差异明显缩小.最小完整性震级Mc和监测能力的时空分布特征具有较好的一致性.随着台网的改造,Mc逐步降低,ldquo;十五rdquo;台网运行后,甘肃及邻区的ML1.8以上地震基本完整.此外,还讨论了相关技术规范对区域台网地震目录的影响,并且提出了消除该影响的科学途径和有效方法.该研究结果可为甘肃及邻区地震活动性分析和地震危险性评价等相关研究提供参考.   相似文献   

10.
2017年四川省九寨沟县M 7.0级地震发生后,截止到8月24日共16天内时间内地震台网中心记录到5994个九寨沟地震余震事件,为完备该地震的余震目录,本文利用模板匹配方法对本次地震进行了遗漏地震检测研究,选取震中附近台站记录波形为计算数据,重新检测主震后16天时间内的遗漏地震事件,共得到台网目录外地震目录1053个,与台网给出目录相比增加了0.18倍.为比较本次地震检测前后的最小完整性震级以及活动性b值,利用包络差峰值振幅对检测地震的震级进行了估算,根据检测后的余震目录得到九寨沟地震余震序列的最小完整性震级为M_L 0.9,地震活动性b值为0.80左右,较原目录的M_L 1.2和0.85均有降低.  相似文献   

11.
山西地区不同时段地震目录最小完整性震级研究   总被引:2,自引:0,他引:2  
王霞  宋美琴  李丽  罗勇 《地震》2014,34(2):82-88
对地震目录的最小完整性震级MC的科学评估, 是进行地震活动性和地震危险性分析的重要基础, 而最小完整性震级MC又是表征台网监测能力的关键参数。 本文据山西地震观测台网建设时间的阶段性差异, 将其分为4个时段, 以1970—2012年山西地区地震目录为基础资料, 利用震级-序号法、 最大曲率法(MAXC)、 90%和95%的拟合度GFT法, 研究了不同时段山西地区地震目录最小完整性震级MC的时序变化特征。 1970年以来随着山西测震台网的改造, MC逐步降低, 尤其是“十五”数字化台网改造后, 山西ML≥0.9地震基本完整, 表明山西地震监测能力逐步提升。  相似文献   

12.
地震目录的最小完整性震级M.是地震学中最基础、最重要的研究内容之一,也是地震观测台网效能评估的关键.本文对构造活动剧烈、地震活动水平高、台站地理分布复杂的新疆地区开展M研究,试图为该地区的地震危险性评估和台站科学布局等研究提供参考资料.基于新疆地震台网发展的5个阶段划分,采用基于G-R关系的交互式分析方法,研究了M.的...  相似文献   

13.
Assessing the detection threshold of seismic networks becomes of increased importance namely in the context of monitoring induced seismicity due to underground operations. Achieving the maximum possible sensitivity of industrial seismic monitoring is a precondition for successful control of technological procedures. Similarly, the lowest detection threshold is desirable when monitoring the natural seismic activity aimed to imaging the fault structures in 3D and to understanding the ongoing processes in the crust. We compare the application of two different methods to the data of the seismic network WEBNET that monitors the earthquake swarm activity of the West-Bohemia/Vogtland region. First, we evaluate the absolute noise level and its possible non-stationary character that results in hampering the detectability of the seismic network by producing false alarms. This is realized by the statistical analysis of the noise amplitudes using the ratio of 99 and 95 percentiles. Second, the magnitude of completeness is determined for each of the nine stations by analysing the automatic detections of an intensive swarm period from August 2011. The magnitude–frequency distributions of all detected events and events detected at individual stations are compared to determine the magnitude of completeness at a selected completeness level. The resulting magnitude of completeness M c of most of the stations varies between ?0.9 and ?0.5; an anomalous high M c of 0.0 is found at the most distant station, which is probably due to inadequate correction for attenuation. We find that while the absolute noise level has no significant influence to the station sensitivity, the noise stationarity correlates with station sensitivity expressed in low magnitude of completeness and vice versa. This qualifies the method of analysing the stationary character of seismic noise as an effective tool for site surveying during the seismic station deployment.  相似文献   

14.
为实现对高密度、宽频带流动地震台阵地震检测能力的实时、不同深度评估,本研究采用"基于概率的完整性震级"(PMC)方法,以西昌流动地震台阵为例,对2013-01-13—2014-05-14期间平均的地震检测能力、不同震源深度检测能力,以及某一时刻的实时地震检测能力进行了评估.结果表明,PMC方法可识别地震观测资料处理中人为因素对地震检测能力的影响,不同震源深度下地震的检测能力存在差异,其中H=7.5km时,"网内"的完整性震级MP可达ML0.8,而在H=15.0km和25.0km时,"网内"的MP分别为ML1.0和ML1.4.在示例的2014-01-14时刻,非正常运行的台站造成地震检测能力的变化可被清晰识别出.此外,与MAXC和EMR等其它常用方法的对比表明,这些方法可能过高估计了地震台阵的检测能力.  相似文献   

15.
In 1991, a digital seismic monitoring network was installed in Iceland with a digital seismic system and automatic operation. After 20 years of operation, we explore for the first time its nationwide performance by analysing the spatiotemporal variations of the completeness magnitude. We use the Bayesian magnitude of completeness (BMC) method that combines local completeness magnitude observations with prior information based on the density of seismic stations. Additionally, we test the impact of earthquake location uncertainties on the BMC results, by filtering the catalogue using a multivariate analysis that identifies outliers in the hypocentre error distribution. We find that the entire North-to-South active rift zone shows a relatively low magnitude of completeness Mc in the range 0.5–1.0, highlighting the ability of the Icelandic network to detect small earthquakes. This work also demonstrates the influence of earthquake location uncertainties on the spatiotemporal magnitude of completeness analysis.  相似文献   

16.
地震阈值监测技术能够实现对台网监测能力的实时评估,该方法利用短时平均值(STA)代替A/T来计算震级.为了使STA计算的震级跟传统震级计算结果一致,需要对利用STA计算的震级进行校正.本文通过分析台站检测到的历史事件,选择最优的滤波频带计算log(A/T)与log(STA)之差,得到利用STA计算震级的校正系数.利用新疆地震台网部分台站的数据,分析了阈值监测技术计算的台网监测能力,结果跟实际值基本一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号