首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
In order to track the space-time variation of regional strain field holistically(in a large scale) and to describe the regional movement field more objectively,the paper uses a nonlinear continuous strain model focused on extracting medium-low frequency strain information on the basis of a region with no rotation.According to the repeated measurements(1999~2001~2004) from GPS monitoring stations in the Sichuan and Yunnan area obtained by the Project of "China Crust Movement Measuring Network",and with the movement of 1999~2001(stage deformation background) as the basic reference,we separated the main influencing factors of the Kunlun Mountain M-S8.1 earthquake in 2001 from the data of 2001 and 2004,and the results indicate:(1) the Kunlun Mountain M-S8.1 earthquake has a discriminating effect on the Sichuan and Yunnan area,moreover,the deformation mode and background had not only certain similitude but also some diversity;(2) The movement field before the earthquake was very ordinal,while after the earthquake,order and disorder existed simultaneously in the displacement field;The displacement quantities of GPS monitoring stations were generally several millimeters;(3) The principal strain field before earthquake was basically tensile in an approximate EW direction and compressive in the SN direction,and tension was predominant.After the earthquake,the principal strain field in the Sichuan area was compressive in the EW direction and tensile in the SN direction,and the compression was predominant.In the Yunnan area,it was tensional in the NE direction and compressive in the NW direction,and tension was predominant;(4) The surficial strain before the earthquake was dominated by superficial expansion,the contractive area being located basically in the east boundary of Sichuan and Yunnan block and its neighborhood.After the earthquake,the Sichuan area was surface contractive(the further north,the greater it was),and south of it was an area of superficial expansion.Generally speaking,the Kunlun Mountain M-S8.1 earthquake played an active role in the accumulation of energy in the Sichuan and Yunnan area.Special attention shall be focused on the segment of Xichang-Dongchuan and its neighborhood.  相似文献   

2.
On the basis of the GPS data obtained from repeated measurements carried out in 2004 and 2007,the horizontal principal strain of the Chinese mainland is calculated,which shows that the direction of principal compressive strain axis of each subplate is basically consistent with the P-axis of focal mechanism solution and the principal compressive stress axis acquired by geological method.It indicates that the crustal tectonic stress field is relatively stable in regions in a long time.The principal compressive stress axes of Qinghai-Tibet and Xinjiang subplates in the western part of Chinese mainland direct to NS and NNE-SSW,which are controlled by the force from the col-lision of the Eurasia Plate and India Plate.The principal compressive strain axes of Heilongjiang and North China subplates in the eastern part direct to ENE-WSW,which shows that they are subject to the force from the collision and underthrust of the Eurasia Plate to the North America and Pacific plates.At the same time,they are also af-fected by the lateral force from Qinghai-Tibet and Xinjiang subplates.The principal compressive strain axis of South China plate is WNW-ESE,which reflects that it is affected by the force from the collision of Philippine Sea Plate and Eurasia Plate and it is also subject to the lateral force from Qinghai-Tibet subplate.It is apparent from the comparison between the principal compressive strain axes in the periods of 2004~2007 and 2001~2004 that the acting directions of principal compressive stress of subplates in both periods are basically consistent.However,there is certain difference between their directional concentrations of principal compressive stress axes.The sur-face strain rates of different tectonic units in both periods indicate that the events predominating by compressive variation decrease,while the events predominating by tensile change increase.  相似文献   

3.
Using the focal mechanism solutions of 24 moderately strong earthquakes in the northern Tianshan area, we carried out system cluster and stress field inversion analysis. The result indicates that, the focal mechanism solutions of moderately strong earthquakes are mainly dipslip reverse faulting in the northern Tianshan area. The principal rupture planes of earthquakes are NW-oriented. It is basically consistent with the strike of earthquake structure in its adjacent area. The direction of the principal compression stress P axis is nearly NS, and its inclination angle is small; while the inclination angle of the principal extensional stress T axis is large. It shows that the regional stress field is mainly controlled by the near-NS horizontal compressive stress. The direction of the maximum principal stress shows a gradation process of NNE-NS-NW from east to west.  相似文献   

4.
Based on the GPS velocity field data of 1999-2007 and 2011-2013,we used the least squares configuration method and GPS velocity profile results to synthetically analyze the dynamic evolution characteristics of crustal deformation in the Yunnan area before and after the Wenchuan earthquake. The dynamic evolution of GPS velocity field shows that the direction is gradually changed from the south in the southern part of the Sichuan-Yunnan block to the south-west in the southern Yunnan block and there is a clear relative motion characteristic near the block boundary fault zone. Compared with the GPS velocity of 1999-2007, the results of 2011-2013 also reflect segmental deformation characteristics of the block boundary fault zone. Southeast movement shows a significant increase, which may be related to crustal deformation adjustment after the Wenchuan earthquake. The dynamic evolution of strain parameters shows a pattern of "extension in the middle and compression at both ends" in the whole area and the distribution of deformation (shear, extension or compression) is closely related to the background motion and deformation characteristics of the main fault zone. Compared with the results of the period of 1999-2007, the extensional deformation zone of 2011-2013 is expanded eastward and southward. The compressional deformation of the eastern boundary (the Xiaojiang fault zone) of the Sichuan-Yunnan block is no longer significant, which is mainly concentrated in the northern section of the Xiaojiang fault zone and may be related to the post-seismic deformation adjustment of the Wenchuan earthquake. The GPS velocity profile results show that the left-lateral slip velocity of the Xiaojiang fault zone reduced gradually from north to south (10mm/a-5mm/a), and the width of the northern section is wider. The right-lateral slip rate of the Honghe fault zone is about 4mm/a, and the deformation width is wider. The dynamic results show that the Wenchuan earthquake has little effect on the deformation modes of these two fault zones.  相似文献   

5.
The Datong fault belt is a NE trending fault in the northern Qinghai-Xizang (Tibet) Plateau and controls the boundary of the Xining Basin and Datong Basin. It consists of the Maziying- Miaogou (F1) fault and the Laoye Mountain-Nanmenxia fault (F2). There is obvious displacement in vertical direction along the belt. The field investigation results show that this belt has long-term activity. There are several meters long crushed zones and veins along the fault side in the basement rock. On the fault section, the Cambria system thrusts over the red- brick-colored Quaternary Period gravel, and there is a fault gouge of several centimeters thick developed on the fault plane. The fault gouge date (ESR) on the fault plane is 610 ± 61ka. The covering deluvial loess is not dislocated, and the OSL result is 14.6 ± 1.5ka. So it can be concluded that the fault belt was active in the middle Pleistocene, but inactive in the late Pleistocene according to the age data and geomorphologic features. Interior formations of the Datong basin features fold with the major axis orienting northwest. According to the relation of fault and fold deformation, Datong fault is a trausversal tear, which is due to uneven compression of the folds in different parts and NNE trending regional compressive stress. It is common among the NE trending faults in the northeast of Qinghai-Xizang (Tibet) Plateau. These NE trending faults aren't large, and most are located in the active plate. They are all nearly vertical to the axis of the folds and compressive basins.  相似文献   

6.
In the paper, the current strain field and stress field in Chinese continent have been discussedbased on the processed data from two GPS campaigns of national GPS network carried out inthe years of 1994 and 1996. With a principal compressional strain direction of NNE, thewestern and castern parts of Qinghai-Xizang subplate are dominated by extensional straiu andthe central Part by compressional strain. Along the southwestern segment of southeastern partof Qinghai-Xizang subplate, i. e. Yunnan area, the princiPal compressional strain direction isNW and the compressional strain is equivalent to the extensional strain in magnitude. Theprincipal compressional strain of Xinjiang subplate is mainly NNE and NE with a difference inthe strain magnitude. The principal compressional strain in North China subplate is quite effective in NE and nearly EW directions with differences along some segments. However, thecompressional strain is corresponding to the extensional strain in magnitude in most areas. Theprincipal  相似文献   

7.
We analyzed the present state of crustal horizontal movement in part of the North China region using existing GPS re-observation data (1992-1995) and drew the following conclusions: (1) The monitored region appears to be in tensile movement, with the trend of the principal tensile strain in the WNW-ESE direction; (2) There are two zones of higher maximum shear strain in the monitored region, namely, the Beijing zone and two sides of the Tancheng-Lujiang fault near Linyi; (3) There exists a striped compressive zone which stretches in the NNE-SSW direction; the zone of maximum planar compression is located in the Beijing zone; (4) The displacement field has an obvious zoned distribution.  相似文献   

8.
Harvard Centroid Moment Tensor (CMT) solutions for earthquakes from 1977 to 2004 showed that the stress fields are obviously different in northwestern Sichuan sub-block (NWSSB), western parts of Central Yunnan sub-block (CYSB) and eastern part of CYSB. The characteristics of the mean stress fields in these three regions are obtained by fitting to CMT solutions. The stress state in NWSSB is characterized by its sub-horizontal tensile principal axis of stress (T axis) in roughly N-S direction and west dipping compressive principal axis of stress (P axis); the one in western part of CYSB is characterized by its ENE dipping T axis and sub-horizontal medium prin-cipal axis of stress (B axis) in roughly N-S direction; the one in eastern part of CYSB is characterized by its sub-horizontal P axis in roughly NNW-SSE direction and sub-horizontal T axis in roughly WSW-ENE direction. Finite element method simulation clearly shows that the Indian Plate imposes great extrusion on Sichuan-Yunnan rhombic block (SYRB) near Assam massif. The value of the simulated compressive principal stress decreases with the distance from Assam massif. The simulated directions of the T axes in SYRB form annular distribution encir-cling Assam. For a homogeneous elastic medium with free boundary conditions on the top and bottom surfaces as well as the displacement boundary conditions derived from the GPS observations on the lateral boundaries, the computation results are consistent with the Harvard CMT solutions in NWSSB and western part of CYSB, while inconsistent with the Harvard CMT solutions in eastern part of CYSB. The inconsistency in eastern part of CYSB can be reduced when it includes inhomogeneous elastic media. The stress states in NWSSB and western part of CYSB revealed by the Harvard CMT solutions are not local, which are mainly controlled by the boundary force on the whole region. On the other hand, the stress state in eastern part of CYSB given by the Harvard CMT solutions is local, which may be affected by local topography, material inhomogeneity, and the drag force underneath.  相似文献   

9.
We applied the g CAP algorithm to determine239 focal mechanism solutions 3:0 M We 6:0T with records of dense Chin Array stations deployed in Yunnan,and then inverted 686 focal mechanisms(including 447 previous results) for the regional crustal stress field with a damped linear inversion. The results indicate dominantly strike-slip environment in Yunnan as both the maximum(r1) and minimum(r3) principal stress axes are sub-horizontal. We further calculated the horizontal stress orientations(i.e., maximum and minimum horizontal compressive stress axes: S H and S h, respectively) accordingly and found an abrupt change near *26°N. To the north, S H aligns NW-SE to nearly E-W while S h aligns nearly N-S. In contrast, to the south, both S H and S h rotate laterally and show dominantly fan-shaped patterns. The minimum horizontal stress(i.e., maximum strain axis) S h rotates from NW-SE to the west of Tengchong volcano gradually to nearly E-W in west Yunnan, and further toNE-SW in the South China block in the east. The crustal strain field is consistent with the upper mantle strain field indicated by shear-wave splitting observations in Yunnan but not in other regions. Therefore, the crust and upper mantle in Yunnan are coupled and suffering vertically coherent pure-shear deformation in the lithosphere.  相似文献   

10.
By using 126 earthquake focal mechanism solutions (M S≥4.7) during the period of 1963~1998, modern tectonic stress field in North China is inverted by means of the step by step convergence. The inversion results indicate that the tectonic stress field in the research region is clearly variational in space and time: (1) The middling principal stress axis σ 2 is basically vertical. The maximum and minimum principal stress axes σ 1 and σ 2 are nearly horizontal, but the azimuths of σ 1 and σ 3 are inconsistent in different districts and periods. (2) Before the Tangshan earthquake in 1976, the three principal stress axes are uniform. The azimuth of maximum principal stress axis σ 1 is 68° (striking in a NEE-SWW direction). (3) After the Tangshan earthquake, the maximum principal stress axis σ 1 and minimum principal stress axis σ 3 have variations in different districts. In the northern area of North China and on the eastern side of the Tancheng-Lujiang fault zone, the maximum principal stress axis σ 1 is also striking in a NEE-SWW direction. Its azimuth is 68°. It is the same as that before the Tangshan earthquake. In the southern area of North China, the maximum principal stress axis σ 1 is striking in a E-W direction and its azimuth is 87°.  相似文献   

11.
用菲律宾海板块上7个站ITRF2000的速度建立了菲律宾海板块的整体旋转线性应变模型. 结果认为菲律宾海板块的现今运动是顺时针方向旋转,与NNR_NUVEL_1A估计的旋转方向一致,但与NNR_NUVE_1A估计的旋转极位置和旋转角速度有较大差别. 本文模型与Sella等建立的刚体运动模型相比能更精确地描述菲律宾海板块的现今构造运动与板内形变. 菲律宾海板块内部存在强烈的形变-应变场. 在板块上存在一致的向东形变,形变速率在中央构造线附近小,东、西边界附近大,南、北两端小,中部大,在Mariana弧上向东的形变速率达到484 mm/a. 板块上南北方向的形变,东、西部存在明显差别,东部的南北向形变速率很小,西部在Manila海沟附近南北向形变速率较大,北端向北的形变速率为113 mm/a,南端向南的形变速率为293 mm/a. 板块的中央构造线把板块的主应变场分为东、西两个区. 东区存在非常强烈的张应变,压应变则很弱. 主张应变为近东西方向,从中央构造线向东主张与主压应变率逐渐增加,板块东南边界附近(148°E,15°N)主张应变率最大为858×10-8/a. 在西区,存在很强的主压应变而主张应变则较弱,主压应变为NW-SE方向,主压与主张应变率呈现从中央构造向西逐渐增加的特征,在板块西北边界(122°E,23°N)附近,主压应变率最大为571×10-8/a. 菲律宾海板块主应变场的空间变化与板块内部及周围的构造背景密切相关,是构造应力场的反映.  相似文献   

12.
汶川MS8.0地震孕育发生的机制与动力学问题   总被引:1,自引:0,他引:1       下载免费PDF全文
2008年5月12日四川省汶川县发生了MS8.0强烈地震.发震断层是龙门山断裂带的映秀—北川断裂.分析震前的GPS速度场发现,从巴颜喀拉块体西部到龙门山断裂带沿大约N103°E方向的缩短速率为13.0 mm/a,龙门山断裂带的右旋走滑速率1.1 mm/a,断裂带处于闭锁状态.四川盆地沿大约N103°E方向有少量的压缩变形,而沿SW方向有少量的拉张变形.同震位移场显示,这次地震可能是巴颜喀拉块体SE向逆冲与四川盆地NW向俯冲同时发生的.应变场分析发现,震前震中区的主压与主张应变率分别为-30.840×10-9/a与13.956×10-9/a,主压应变轴N105.4°E与震源机制解得到的主压应力轴的方向N103°E一致.由本文提出的应力-应变机制得到的断层滑动方向和走向与地表破裂调查和震源机制解得到的结果一致.印度、太平洋和菲律宾海板块与欧洲板块的相互作用是龙门山断裂带积累弹性应变能和孕育汶川地震的长期作用力.苏门达腊大地震使青藏高原和华南块体的相互作用加强,促进了汶川地震的发生.  相似文献   

13.
弹性板块运动模型研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
传统板块构造理论认为板块是一个刚体,实际上板块是可变形的.板块内部几年到几十年时间尺度的变形主要是弹性变形,因此应当用弹性模型描述板块运动.推导了板块的弹性运动方程,由空间大地测量新的观测成果建立了菲律宾海、太平洋和澳大利亚板块的弹性运动模型.发现三个板块内部都存在明显的水平形变.板内应变场的空间变化有明显的规律:板块边界附近的应变率最大,从边界向内部逐渐减小;在板块扩散边界附近,主张应变率大于主压应变率,主张应变轴基本上与边界的扩张方向一致;在俯冲边界附近,主压应变率大于主张应变率,主压应变轴基本上与板块的俯冲方向一致;在走滑兼有俯冲性质的边界附近,最大剪应变的方向与边界断裂的走向基本一致.由GPS观测得到的主压应变轴与由震源机制解得到的主压应力轴方向具有很好的一致性.板内的应力-应变场基本上遵循广义胡克定律.  相似文献   

14.
Movement and strain conditions of active blocks in the Chinese mainland   总被引:2,自引:0,他引:2  
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90oE is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2±1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1±0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8±1.3 mm/a in the central part of Altun fault and 9.8±2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   

15.
推导了板块的弹性运动方程.根据太平洋板块(PCFC)上空间大地测量的观测结果,建立了PCFC的弹性运动模型,该模型与板块实际运动状态的符合程度明显地优于刚体运动模型.研究表明:PCFC现今旋转的角速度比过去3Ma的平均值大0037°/Ma;在PCFC内部存在明显的水平形变,在15°S以北和2045°E以西地区存在一致的向西形变,北西与南西方向的形变速率分别为08~35 mm/a与10~34 mm/a;在板块的东南区存在一致的向东形变,北东与南东方向的形变速率分别为15~18 mm/a与28~91 mm/a.PCFC内部水平应变场的空间变化是有规律的,在PCFC的西北部,主压应变轴为NW-SE方向,主压应变率大于主张应变率;在PCFC的东南部,主压应变轴为NE-SW方向,主张应变率大于主压应变率;PCFC的东南边界是扩张边界,边界附近的主张应变率最大(平均为151×10-9/a),主张应变轴基本上与洋中脊的扩张方向一致;PCFC的西北边界是俯冲边界,边界附近的主压应变率最大(平均为075×10-9/a),主压应变轴基本上与太平洋板块的俯冲方向一致.  相似文献   

16.
对中国大陆地壳水平变形的初步探索   总被引:13,自引:0,他引:13  
郭良迁 《中国地震》2000,16(2):126-134
根据全国GPS网1994和1996年两期观测资料的处理结果,讨论了中国大陆地区现阶段应变场和应力场。青藏亚板块的西部和东部张应变起主导作用,中部压应变占优势,主压应变方向为北北东向;青藏亚板块东南部东南段云南地区的主压应变方向为北西向,压应变和张应变量级相当。新疆亚板块的主压应役北北东向至北东向为主,应变量存在差别。华北亚板块的主压应变方向是北东至近东西向为主导,局部地段存在差别,大部分地区压应变  相似文献   

17.
许多研究人员利用GPS测量的速度资料计算了地应变率场,但其结果差异较大. 本文将地质统计学中的Kriging方法引入到GPS观测的速度场研究中, 通过Kriging插值得到青藏高原及邻区均匀网格节点上的速度值,然后运用有限单元中形函数(Lagrange插值函数)的求导方法,计算每个网格单元积分点处的地应变率分量,从而获得青藏高原及邻区的地应变率场的分布. 计算结果显示,青藏高原主体处在南北向受挤压、东西向被拉张的应变状态之中,但高原东部地区则正好相反,即南北向拉张、东西向出现挤压. 青藏高原及邻区主应变率的方位与震源机制解中P轴、T轴的方向基本一致;最大主压应变率的高值区分布在喜马拉雅主边界冲断带及附近地区,高原内部出现主张应变率大于压应变率的现象,且高原内部处在拉张应变状态. 面膨胀率结果也表明,喜马拉雅山及附近地区为面收缩区,而高原内部其他地区主要为膨胀区;最大剪应变率分布清晰地显示出青藏高原周边的主要断裂带轮廓. 文中的应变率计算结果预示青藏高原及周边地区现今的地应变与较长期的地质活动之间有一定的继承关系.  相似文献   

18.
东南沿海地震区的现代构造应力场   总被引:11,自引:3,他引:11  
根据断层面的最新错动方向,震源机制解和地壳形变等资料,研究了东南沿海地区的现代构造应力场,结果表明:本区构造应力场可大致划分为两个分区:长乐-诏安断裂带以东地区主压应力轴为近东西向;以西地区的主压应力轴近南北向。  相似文献   

19.
The definition of active block is given from the angles of crustal deformation and strain. The movement and strain parameters of active blocks are estimated according to the unified velocity field composed of the velocities at 1598 GPS stations obtained from GPS measurements carried out in the past years in the Chinese mainland and the surrounding areas. The movement and strain conditions of the blocks are analyzed. The active blocks in the Chinese mainland have a consistent E-trending movement component, but its N and S components are not consistent. The blocks in the western part have a consistent N-trending movement and the blocks in the eastern part have a consistent S-trending movement. In the area to the east of 90°E, that is the area from Himalayas block towards NE, the movement direction of the blocks rotates clockwisely and the movement rates of the blocks are different. Generally, the movement rate is large in the west and south and small in the east and north with a difference of 3 to 4 times between the rates in the west and east. The distributions of principal compressive strain directions of the blocks are also different. The principal strain of the blocks located to the west of 90°E is basically in the SN direction, the principal compressive strain of the blocks in the northeastern part of Qingzang plateau is roughly in the NE direction and the direction of principal compressive strain of the blocks in the southeastern part of Qingzang plateau rounds clockwisely the east end of Himalayas structure. In addition, the principal strain and shear strain rates of the blocks are also different. The Himalayas and Tianshan blocks have the largest principal compressive strain and the maximum shear strain rate. Then, Lhasa, Qiangtang, Southwest Yunnan (SW Yunnan), Qilian and Sichuan-Yunan (Chuan-Dian) blocks followed. The strain rate of the blocks in the eastern part is smaller. The estimation based on the stain condition indicates that Himalayas block is still the area with the most intensive tectonic activity and it shortens in the NS direction at the rate of 15.2 ± 1.5 mm/a. Tianshan block ranks the second and it shortens in the NS direction at the rate of 10.1 ± 0.9 mm/a. At present, the two blocks are still uprising. It can be seen from superficial strain that the Chinese mainland is predominated by superficial expansion. Almost the total area in the eastern part of the Chinese mainland is expanded, while in the western part, the superficial compression and expansion are alternatively distributed from the south to the north. In the Chinese mainland, most EW-trending or proximate EW-trending faults have the left-lateral or left-lateral strike-slip relative movements along both sides, and most NS-trending faults have the right-lateral or right-lateral strike-slip relative movements along both sides. According to the data from GPS measurements the left-lateral strike-slip rate is 4.8 ± 1.3 mm/a in the central part of Altun fault and 9.8 ± 2.2 mm/a on Xianshuihe fault. The movement of the fault along the block boundary has provided the condition for block movement, so the movements of the block and its boundary are consistent, but the movement levels of the blocks are different. The statistic results indicate that the relative movement between most blocks is quite significant, which proves that active blocks exist. Himalayas, Tianshan, Qiangtang and SW Yunnan blocks have the most intensive movement; China-Mongolia, China-Korea (China-Korea), Alxa and South China blocks are rather stable. The mutual action of India, Pacific and Philippine Sea plates versus Eurasia plate is the principal driving force to the block movement in the Chinese mainland. Under the NNE-trending intensive press from India plate, the crustal matter of Qingzang plateau moves to the NNE and NE directions, then is hindered by the blocks located in the northern, northeastern and eastern parts. The crustal matter moves towards the Indian Ocean by the southeastern part of the plateau.  相似文献   

20.
基于2009—2014年渭河盆地及邻区GPS资料,利用Shen提出的连续形变场与应变场计算方法,获得渭河盆地及邻区的水平形变场及应变率场,结合构造地质、地震目录等资料对渭河盆地及邻区的现今地壳形变及构造特征进行研究,并得到如下结论:(1)鄂尔多斯地块南缘西段和东段GPS形变场变化差异明显,六盘山—陇县—宝鸡断裂带形变场以挤压变形为主,渭河盆地中部西安—咸阳地区的形变场呈现EW向挤压、SN向拉张特征;(2)主应变率、剪应变率、面应变率变化明显的区域位于鄂尔多斯地块西南缘的六盘山—陇县—宝鸡断裂带、渭河盆地中部的长安—临潼断裂与渭南塬前断裂以及韩城断裂与双泉—临猗断裂附近;(3)未来需要警惕六盘山—陇县—宝鸡断裂带、长安—临潼断裂与渭南塬前断裂以及韩城断裂与双泉—临猗断裂附近的地震危险性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号