首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
中国东北的深源地震波形匹配检测及定位   总被引:1,自引:0,他引:1       下载免费PDF全文
中国东北珲春周边地区位于环太平洋地震带上,也是中国唯一存在的深源地震带.较大地震发生后常会有若干震级较小的余震发生,但在相同的地震震级情况下深源地震的余震一般比浅源地震的余震数量要少1~3个数量级,且在全球不同深震区的深震余震数量也存在显著差异.针对国际地震中心(ISC)2010年7月至2014年12月目录中给出的中国东北附近27次震源深度超过300 km的深源地震,我们首先利用区域固定地震台及NECsaids流动地震台阵的连续波形数据,选取已知地震事件作为模板,采用Match&Locate及Matched Filter方法进行波形互相关叠加分析来检测微小深震事件;然后对1966至2017年ISC目录中的东北地区深源地震进行双差重定位以提高震源位置的准确性,进一步分析深震活动与俯冲板片的关系.研究结果显示除ISC目录中给出的深震事件,我们未能检测出作为模板的深源地震的前震或余震活动,证明东北深源地震余震活动较少并不是由于台站分布有限而造成的漏检结果;重定位后震源延伸的角度与西太平洋板片在410~660 km地幔转换带内的俯冲角度较为一致,并且大部分深震震源位置位于俯冲板片中的亚稳态橄榄岩楔形区内部.结合双差定位结果、b值分析及前人研究成果,我们认为东北深源地震应不属于与俯冲非直接相关的"孤立地震",而是与西太平洋板块俯冲直接相关.  相似文献   

2.
为了更好地确定2017年8月8日九寨沟M_(S )7.0地震震源深度其发震机理,利用四川、甘肃和青海区域地震台网的观测波形数据,采用多种方法研究了此次地震的震源深度。首先,采用gCAP方法反演了九寨沟M_(S )7.0地震的震源机制解和矩心深度,结果显示,节面Ⅰ走向243°/倾角87°/滑动角-158°,节面Ⅱ走向151°/倾角68°/滑动角-3°,矩震级为M_(W )6.5,矩心深度为8 km;然后,采用ISOLA近震全波形方法反演了此次地震的震源机制解,反演结果与gCAP方法结果相差不大,矩心深度为7 km;最后,通过sPn震相与Pn震相之间的走时差测定此次地震初始破裂震源深度,结果显示深度约为12 km。研究表明,九寨沟M_(S )7.0地震的矩心深度为7—8 km,初始破裂深度约为12 km。  相似文献   

3.
正西太平洋板块向欧亚大陆板块俯冲(常称为日本俯冲带)经日本海沟向东插入中国东北大陆下方约600km深度并达到中国东北的珲春附近,造成东北地区深源地震活动频发。东北地区作为中国唯一的深源地震区,也被称为中国的深震"试验场",是研究深源地震的理想场所。地震学中将震源深度超过300km的地震称为深源地震,而深源地震与板块俯冲、火山活动、浅震的发生等又有着密不可分的关系。深源地震与浅源地震最明显的区别是余震数  相似文献   

4.
2019年5月26日(北京时间)秘鲁北部发生M7.8地震,震源深度为100km。本文利用国际地震学研究联合会数据管理中心(IRIS/DMC)提供的远场波形数据,通过波形反演方法快速反演得到此次地震的矩张量解和破裂过程。W震相快速矩张量解反演结果表明此次地震是一次中深源正断层型地震事件,可能是由于正在向下俯冲的纳斯卡板块产生规模巨大的伸展变形所致。远震体波反演有限断层模型结果显示此次地震的发震断层为高倾角的NNW向断层面,破裂从初始破裂点开始,由震中主要向NNW方向延伸破裂,最大滑移量约3m;地震破裂时间约为70s,在40~60s时释放了整个地震80%的地震矩能量,主要破裂区域在震后40s后才开始形成,在40s之前,破裂的集中程度和地震矩释放的规模均较弱,断层在破裂开始后逐渐加速破裂,约50s时地震矩释放速率达到峰值,60s后破裂迅速愈合。  相似文献   

5.
杨帆  盛书中  胡晓辉  崔华伟 《地震》2021,41(4):93-105
基于国家测震台网数据中心提供的波形资料, 采用gCAP方法反演2020年5月18日云南巧家M5.0地震及研究区域51次地震震源机制解, 并收集研究区域震源机制解50个。 采用网格搜索法反演区域构造应力场, 并对研究区域采用不同划分进行应力场反演。 获得以下结论: ① 主震震源机制解节面Ⅰ的走向、 倾角和滑动角分别为175°、 67°和-19°, 节面Ⅱ的走向、 倾角和滑动角分别为273°、 73°和-156°, 矩震级为4.97, 矩心深度为8.8 km。 表明主震属于兼具逆冲分量的走滑型地震; ② 震后区域应力场主压应力轴方位为NWW, 倾角接近水平, 主张应力轴方位为NNE, 倾角接近水平, 属于走滑型应力状态, 与周边地质构造运动状态相吻合; ③ 对研究区域采用不同划分所得应力场结果相差不大, 表明该区域应力场比较稳定, 受深大断裂带和震源机制解类型影响较小。  相似文献   

6.
2017年8月8日四川九寨沟县发生M_S7.0地震。根据中国地震台网固定台站的记录波形,利用gCAP方法和P波初动符号反演方法求解了主震的震源机制解,其结果与哈佛CMT震源机制解、美国地质勘探局发布的震源机制以及中国地震局发布的各震源机制解有很好的一致性。此外,还求解了九寨沟地震震中附近2010—2016年间28次小震的震源机制解,利用得到的小震震源机制解反演了该区域的构造应力场。结果表明,这一区域构造应力场的最大应力轴与最小应力轴均为水平方向,其中最大应力轴方向为NWW方向,最小应力轴方向为SSW方向。  相似文献   

7.
郭志  高星  路珍 《地震学报》2020,42(3):245-255
采用双差重定位和W震相波形反演方法分析 “地震编目系统” 和中国地震台网中心提供的地震观测报告及区域地震波形数据,对2019年四川长宁地震序列进行了重定位,反演获取了M>4.5地震的震源机制解。地震序列重定位结果显示,长宁地震序列沿NW优势方向呈条带状分布,集中分布于5—10 km深度范围,且发震断层面呈高倾角。震源机制反演结果表明,2019年6月17日四川长宁MS6.0主震的两个可能发震断层面参数分别为:节面Ⅰ走向12°,倾角50°,滑动角139°;节面Ⅱ走向131°,倾角59°,滑动角48°,最优矩心深度为7.5 km,矩震级MW5.74。此外几个M>4.5余震的震源机制也基本与主震类似,均为以逆断为主外加少量走滑的地震破裂事件。综合分析长宁地震序列的重定位、震源机制反演结果以及震中和附近区域的地质构造背景信息推断,本次长宁主震的发震破裂面呈NW?SE走向,发震断层为长宁—双河背斜东北翼发育的逆冲断层。   相似文献   

8.
李文超  王勤彩 《地震》2018,38(2):62-71
使用芦山地震序列2013年4月20日至5月20日一个月的地震震相数据和MS4.0以上地震的波形数据, 通过双差定位方法得到了3398个地震的精定位结果, 利用时间域全波形反演方法得到17个地震的矩张量解。 综合分析地震双差定位结果和芦山地震序列中强地震震源机制解, 发现芦山地震发震构造由主震断层和次级反冲断层组成, 主震断层为一走向北东、 倾向北西、 倾角约为45°的高角度逆冲断层, 次级反冲断层与主震断层走向相同, 倾向相反, 两条断层均未出露地表。 主震和余震震源机制解均为逆冲型, 几乎没有走滑分量。 震源区主压应力方位为北西向, 与发震断层走向近乎垂直。  相似文献   

9.
杨彦明  黄世源  戴勇  王磊 《地震》2021,41(2):29-46
本文基于新疆、 西藏区域数字地震台网波形数据, 利用gCAP反演方法和空间格点搜索算法获得2020年6月26日于田MS6.4地震矩心的空间位置为35.649°N, 82.339°E, 深度为5 km。 最佳震源机制解节面Ⅰ走向166°, 倾角59°, 滑动角-144°; 节面Ⅱ走向26°, 倾角38°, 滑动角-55°, 矩震级为MW6.21。 根据不同震源机制解结果, 获得中心震源机制解和标准差, 表明震源机制解较为稳定和可靠。 使用H-C方法进行地震发震断层的快速判断, 显示节面Ⅱ为发震断层面。 综合震源区地质构造特征、 余震序列的空间分布和区域构造应力场特征, 最终推断此次地震断层面为节面Ⅱ, 阿尔金断裂西段是发震断层, 震源机制解显示以正滑为主, 是一次张性破裂地震事件, 属于阿尔金断裂西段强烈活动的响应。  相似文献   

10.
在对丰满地震台水氡井的基本情况和水氡的动态影响因素分析的基础上,列举并分析了该测点自1987年1月1日到2011年12月31日期间M≥5.0级东北深震前后水氡资料的异常形态,得出水氡具有一定的深震效应。结合深震震源机制和水氡井所处特殊区域地质构造,对深震前后异常形态问题进行了初步解释,为今后利用水氡异常形态判别深震发生提供依据。  相似文献   

11.
2011年云南腾冲5.2级双震发震机理   总被引:7,自引:2,他引:5       下载免费PDF全文
本研究联合使用观测震相到时和波形互相关数据,采用双差法对2011年6月20日与8月9日发生在云南腾冲的5.2级双震及其余震序列进行重定位,并采用gCAP(generalized Cut and Paste)方法反演了该双震全矩张量解.结果显示,双震震中位于龙川江断裂的西侧,余震序列在深度上为一个倾斜的柱状体,且倾向腾冲火山区;6月20日和8月9日5.2级地震均表现为体积缩小的闭合型破裂,包含有显著的非双力偶成分,但后者包含的非双力偶成分相对明显减小.这些结果表明,云南腾冲5.2级双震及余震活动可能与火山下方的地壳岩浆作用密切相关,龙川江断裂为热物质向上运移提供了通道,而双震型地震的发生可能与首次地震的破裂体积缩小挤出的流体作用于断裂密切相关.  相似文献   

12.
A MS6.0 earthquake with shallow focal depth of 16km struck Changning County, Yibin City, Sichuan Province at 22:55: 43(Beijing Time)on 17 June 2019. Although the magnitude of the earthquake is moderate, it caused heavy casualties and property losses to Changning County and its surrounding areas. In the following week, a series of aftershocks with MS≥4.0 occurred in the epicentral area successively. In order to better understand and analyze the seismotectonic structure and generation mechanism of these earthquakes, in this paper, absolute earthquake location by HYPOINVERSE 2000 method is conducted to relocate the main shock of MS6.0 in Changning using the seismic phase observation data provided by Sichuan Earthquake Administration, and focal mechanism solutions for Changning MS6.0 main shock and MS≥4.0 aftershocks are inferred using the gCAP method with the local and regional broadband station waveforms recorded by the regional seismic networks of Sichuan Province, Yunnan Province, Chongqing Municipality, and Guizhou Province. The absolute relocation results show that the epicenter of the main shock is located at 28.35°N, 104.88°E, and it occurred at an unusual shallow depth about only 6.98km, which could be one of the most significant reasons for the heavier damage in the Changning and adjoining areas. The focal plane solution of the Changning MS6.0 earthquake indicates that the main shock occurred at a thrust fault with a left-lateral strike-slip component. The full moment tensor solution provided by gCAP shows that it contains a certain percentage of non-double couple components. After the occurrence of the main shock, a series of medium and strong aftershocks with MS≥4.0 occurred continuously along the northwestern direction, the fault plane solutions for those aftershocks show mostly strike-slip and thrust fault-type. It is found that the mode of focal mechanism has an obvious characteristic of segmentation in space, which reflects the complexity of the dislocation process of the seismogenic fault. It also shows that the Changning earthquake sequences occurred in the shallow part of the upper crust. Combining with the results from the seismic sounding profile in Changning anticline, which is the main structure in the focal area, this study finds that the existence of several steep secondary faults in the core of Changning anticline is an important reason for the diversity of focal mechanism of aftershock sequences. The characteristics of regional stress field is estimated using the STRESSINVERSE method by the information of focal mechanism solutions from our study, and the results show that the Changning area is subject to a NEE oriented maximum principal stress field with a very shallow dipping and near-vertical minimum principal stress, which is not associated with the results derived from other stress indicators. Compared with the direction of the maximum principal compressive stress axis in the whole region, the direction of the stress field in the focal area rotates from the NWW direction to the NEE direction. The Changning MS6.0 earthquake locates in the area with complex geological structure, where there are a large number of small staggered fault zones with unstable geological structure. Combining with the direction of aftershocks distribution in Changning area, we infer that the Changning MS6.0 earthquake is generated by rupturing of the pre-existing fault in the Changning anticline under the action of the overall large stress field, and the seismogenic fault is a high dip-angle thrust fault with left-lateral strike-slip component, trending NW.  相似文献   

13.
A strong earthquake with magnitude MS6.2 hit Hutubi, Xinjiang at 13:15:03 on December 8th, 2016(Beijing Time). In order to better understand its mechanism, we performed centroid moment tensor inversion using the broadband waveform data recorded at stations from the Xinjiang regional seismic network by employing gCAP method. The best double couple solution of the MS6.2 mainshock on December 8th, 2016 estimated from local and near-regional waveforms is strike:271°, dip:64ånd rake:90° for nodal plane I, and strike:91°, dip:26ånd rake:90°for nodal plane Ⅱ; the centroid depth is about 21km and the moment magnitude(MW)is 5.9. ISO, CLVD and DC, the full moment tensor, of the earthquake accounted for 0.049%, 0.156% and 99.795%, respectively. The share of non-double couple component is merely 0.205%. This indicates that the earthquake is of double-couple fault mode, a typical tectonic earthquake featuring a thrust-type earthquake of squeezing property.The double difference(HypoDD)technique provided good opportunities for a comparative study of spatio-temporal properties and evolution of the aftershock sequences, and the earthquake relocation was done using HypoDD method. 486 aftershocks are relocated accurately and 327 events are obtained, whose residual of the RMS is 0.19, and the standard deviations along the direction of longitude, latitude and depth are 0.57km, 0.6km and 1.07km respectively. The result reveals that the aftershocks sequence is mainly distributed along the southern marginal fault of the Junggar Basin, extending about 35km to the NWW direction as a whole; the focal depths are above 20km for most of earthquakes, while the main shock and the biggest aftershock are deeper than others. The depth profile shows a relatively steep dip angle of the seismogenic fault plane, and the aftershocks dipping northward. Based on the spatial and temporal distribution features of the aftershocks, it is considered that the seismogenic fault plane may be the nodal plane I and the dip angle is about 271°. The structure of the Hutubi earthquake area is extremely complicated. The existing geological structure research results show that the combination zone between the northern Tianshan and the Junggar Basin presents typical intracontinental active tectonic features. There are numerous thrust fold structures, which are characterized by anticlines and reverse faults parallel to the mountains formed during the multi-stage Cenozoic period. The structural deformation shows the deformation characteristics of longitudinal zoning, lateral segmentation and vertical stratification. The ground geological survey and the tectonic interpretation of the seismic data show that the recoil faults are developed near the source area of the Hutubi earthquake, and the recoil faults related to the anticline are all blind thrust faults. The deep reflection seismic profile shows that there are several listric reverse faults dipping southward near the study area, corresponding to the active hidden reverse faults; At the leading edge of the nappe, there are complex fault and fold structures, which, in this area, are the compressional triangular zone, tilted structure and northward bedding backthrust formation. Integrating with geological survey and seismic deep soundings, the seismogenic fault of the MS6.2 earthquake is classified as a typical blind reverse fault with the opposite direction close to the southern marginal fault of the Junggar Basin, which is caused by the fact that the main fault is reversed by a strong push to the front during the process of thrust slip. Moreover, the Manas earthquake in 1906 also occurred near the southern marginal fault in Junggar, and the seismogenic mechanism was a blind fault. This suggests that there are some hidden thrust fault systems in the piedmont area of the northern Tianshan Mountains. These faults are controlled by active faults in the deep and contain multiple sets of active faults.  相似文献   

14.
分析矿震破裂机制及微震的时空分布能够为矿区灾害评估提供更多的有效信息.本研究基于密集台阵观测对2019年11月12日辽宁抚顺2.4级矿震开展震源参数研究,震源机制解显示地震破裂包含明显的非双力偶分量,表现为体积压缩的塌陷机制,且震源深度较浅,最佳拟合矩心深度为0.6 km.同时,对11月3日—25日记录的连续地震波形开展微震扫描,新检测出324个微震事件(-0.5~2.0级),定位结果显示在M 2.4矿震发生前M>1.0级事件显著增多,且在矿震位置存在近南北向的微震条带分布,微震序列随时间向深部迁移(约1.5 km),暗示存在断层活化迹象.结合震源破裂机制,我们认为此次事件与矿区塌陷破裂密切相关,同时伴随先存断裂的剪切滑动.本研究表明,基于密集台阵观测的地震矩张量反演和微震检测研究,对判定矿震类型及防范矿区灾害具有重要的研究意义.  相似文献   

15.
2020年6月9日宁夏中卫市沙坡头区发生ML3.4地震,该地震发生在1709年中卫南7?级地震的极震区内,且震中位于以往弱震相对偏少的地区。本文利用宁夏区域地震台网的波形记录,采用gCAP方法反演了2020年6月9日中卫ML3.4地震的震源机制解及震源矩心深度,并用Hash方法计算其震源机制解,且得出了两种方法的震源机制中心解。结果表明,gCAP方法的震源机制解为:节面I走向255°,倾角79°,滑动角?20°;节面II走向348°,倾角70°,滑动角?168°,震源矩心深度为12 km。而Hash方法的震源机制解为:节面I走向344°,倾角89°,滑动角176°;节面II走向74°,倾角86°,滑动角1°。两种方法的震源机制中心解为:节面I走向255°,倾角87°,滑动角?11°;节面II走向346°,倾角80°,滑动角?176°,主压应力轴走向主要为NE向,其中gCAP方法结果与震源机制中心解的最小空间旋转角相对最小,为12.09°。结合过去地质构造资料,推测2020年6月9日中卫ML3.4地震的主要错动方式为左旋走滑,且断层面为NEE向节面的可能性较大。   相似文献   

16.
IntroductionOnDecember31,1994andJanuary10,1995,twoearthquakesoccurredconsecutivelyinBeibuwanarea,China.TheirmagnitudewereMs=6.0andMs=6.1respectively.ThehypocentralparametersoftheseearthquakesarelistedinTable1.Thetimeintervalofthetwoewthquakesis10dandtheirepicentrallocationsareneartoeachotherTheyarethestrongestewthquakesinBeibuwanregiononrecord.Since1980,just12earthquakeshadoccurredinthe50kmrangearoundtheepicentresofthesetwoearthquakes(Wu,etal,1996).Thelargestearthquakeamongthe12earthquake…  相似文献   

17.
戴宗辉  李冬梅  王鹏  郑建常  王志才  李霞 《地震》2022,42(1):111-121
本文利用基于波形互相关的双差定位方法对2020年2月18日长清MS4.1地震序列进行了精定位计算, 共得到33个地震事件的精定位结果。 结果显示, 地震序列主要沿NW向分布, 在水平方向上具有自NW向SE迁移, 在深度上具有由浅向深迁移的特征; 序列震源深度主要集中在2~7 km, 其中, 主震的震源深度约2.8 km。 由于长清地震序列的地震数量较少, 为了更准确地了解长清地震序列的发震构造、 探索该序列的发生和发展过程, 本文采用CAP方法反演了主震的震源机制解, 其中, 节面Ⅰ走向223°、 倾角42°、 滑动角-160°, 节面Ⅱ走向117.9°、 倾角76.8°、 滑动角-49.8°, 最佳拟合震源矩心深度约2.8 km, 矩震级MW4.2。 结合区域构造特征分析认为, 长清MS4.1地震的发震断裂为孝里铺断裂和东阿断裂之间发育的一条浅层次生断裂。 在ENE向区域应力场作用下, 发震断裂产生高角度正断滑动, 并伴有左旋走滑分量, 从而引发长清地震序列。  相似文献   

18.
由地震释放的地震矩叠加推导平均应力场   总被引:2,自引:0,他引:2       下载免费PDF全文
文中给出了根据地震释放的总地震矩求解平均应力场的方法,并使用加入随机误差的人工合成震源机制解数据和唐山余震区震源机制解数据对其进行检验。由检验结果可知,该方法可以应用于区域平均应力场的求解。使用的震源机制解资料越多,所得结果越稳定,且更接近真实的区域应力场。该方法的优点是: 用每个地震的震级作为权重,能够较好地反映出大小地震在应力场反演中的不同贡献; 并且在计算过程中不需要知道震源机制解2个节面中哪个节面为地震断层面。  相似文献   

19.
基于区域数字地震台网记录,采用HYPODD方法精确定位了2011年9月10日瑞昌—阳新地震序列的震源位置,采用CAP方法反演得到了4.6级主震的震源深度和震源机制解,并结合区域深度震相sPg、PmP和sPmP对主震震源深度进行了进一步确定,随后探讨了这次地震的震源破裂特征和所在区域的强震危险性.结果显示:瑞昌—阳新4.6级地震的震源深度为15±2 km,震源机制解为节面Ⅰ走向30°,倾角86°,滑动角-169°,节面Ⅱ走向299°,倾角79°,滑动角-4°,发震构造为郯城—庐江断裂带往震区延伸隐伏的瑞昌—武穴断裂;本次地震发生在长江中下游断块东部,所在区域的5.5级以上地震具有明显的成组活动特征,近期显著地震集中发生在郯城—庐江断裂带南段及其分支断裂上,地震能量有加速释放的趋势,未来十年左右该区域存在发生6级左右强震的可能性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号