首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
文中根据南北地震带中段及附近区域1973年以来86次5.0级以上的地震序列统计结果,对地震序列类型和空间分布进行分析,结果表明:1)研究区域内的地震序列以主余型为主(51%),多震型次之(29%),孤立型最少(20%);同一序列类型中,随着地震震级增大,主余型地震所占的比例增加,多震型、孤立型逐渐减少,7.0级以上地震以主余型为主,无孤立型地震;对于不同破裂类型,逆冲型地震中主余型最多,多震型地震更可能为走滑和正断性质的地震。2)主余型和多震型地震序列的主震与最大余震震级的线性关系相对较好;绝大多数地震的最大余震多发生在震后20d内,主余型最大余震集中在震后3d内发生,多震型地震中次大地震集中在震后12d内发生,孤立型地震的最大余震多发生在地震当天。3)地震序列空间分布显示,主余型地震分布相对较广,多震型地震主要集中在川西巴塘—理塘、川东马边—昭通一带、川北松潘和滇西北云龙、姚安、龙陵及附近区域,甘孜-玉树断裂带、鲜水河断裂带NW段及四川盆地等地更易发生孤立型地震。4)地震序列类型的空间分布可能与本区域的地质构造和历史地震活动存在一定的关系。  相似文献   

2.
Introduction Through studying ″foreshock″ and sequence features of strong earthquakes with focal mechanism of strike-slip or thrust occurred in the shallow subduction zone or in the continental thrust belt respectively, Reasenberg (1999) suggested that precursory representation and the se- quence features are related tightly to the rupture mechanism of the mainshock. This implies that the rupture pattern of the mainshock is probably one of the important factors affecting the features of afte…  相似文献   

3.
研究中国大陆地区中强地震序列震后早期阶段(震后15天)ETAS模型参数的平均统计特征,据此讨论不同统计条件下的序列衰减及余震激发问题.宏观而言,模型参数b、p、α数值分布较为离散,不同统计条件下模型参数平均值的差异显著性不十分突出.详细对比不同统计条件下模型参数平均值的微小差异,b值随主震震级增大而增大,但b值随不同区域、不同主震断层类型或不同序列类型的变化不明显.p、α具有一定的区域特征,西南、西北p值略低于新疆及华北,表明西南、西北序列衰减相对较慢而新疆、华北序列衰减相对较快,华北α较低而西北α相对最高,意味着尽管华北序列衰减相对较快,但其激发高阶余震的能力却相对强,西北尽管序列衰减较慢,但序列结构单一,激发高阶余震的能力弱.p与主震断层类型关系不明显,即主震破裂性质不是决定序列衰减快慢的主要因素;α与主震断层类型有一定关系,走滑-近走滑型破裂所导致序列的α值最小、斜滑型次之、倾滑-近倾滑型最大,表明走滑-近走滑型序列激发高阶余震的能力最强、逆冲型最弱、斜滑型居中.p、α随主震震级增大而减小,意味着主震震级越高则序列衰减越慢、激发高阶余震的能力越强.不同类型序列p、α有一定差异,主余型序列p最小、孤立型p最大,表明相对而言主余型序列衰减最慢、孤立型序列衰减最快、多震型序列衰减速率居中.孤立型序列与主余型序列α大体一致、大于多震型序列的α值,即多震型序列激发高阶余震的能力相对最强,孤立型及主余型序列则相对较弱.  相似文献   

4.
用科里奥利力效应预测强余震是一种震源物理的方法。回顾2008年汶川8.0级大震时用该方法判定余震最大强度的过程,半定性与综合判定为可能发生的最大余震强度为6.5级左右,实际发生了6.4级地震,与主震震级相差大于1级(MM=1.6)。验证结果进一步说明该方法的科学性,给科里奥利力效应判定余震增加了一个可靠的判例。  相似文献   

5.
The 2004 Mid Niigata Prefecture earthquake (MJMA 6.8) and its aftershock sequences generated complicated, i.e., several conjugate fault planes in their source region. In order to understand the generating process of these earthquakes, we estimated a 3-D distribution of relative scattering coefficients in the source region. The large slip area during the main shock rupture seems to be bounded by strong heterogeneous zones with larger scattering coefficients. Hypocenters of the main shock and major large aftershocks with M 5-6 classes tend to be located close to stronger scattering areas. We found that one of these strong heterogeneities already existed before the occurrence of the M 5.9 aftershock on November 8. We suppose that heterogeneous structures in the source region of this earthquake sequence affected the initiation and growth of ruptures of the main shock and major large aftershocks.  相似文献   

6.
Using the ground motion attenuation relation, we calculated and compared the effective peak acceleration (EPA) generated by main shocks and their strong aftershocks of 21 earthquake sequences with MS≥7 occurred in Chinese mainland and offing of China during 1966~2002. The result shows that EPA of strong aftershocks usually exceed that of main shock for 76.2% earthquake sequences and EPA of more than 50% strong aftershocks are greatly lar-ger than that of main shocks in large area, which suggests that it is necessary to take damage produced by strong aftershock into account in the probabilistic seismic hazard analysis and the seismic design.  相似文献   

7.
较大的余震可能造成额外损失并有二次触发建筑物受灾的风险。为研究余震序列衰减规律,文章尝试采用指数衰减模型拟合分析5个不同地区余震序列,并借助修正赤池信息准则、贝叶斯信息准则与调整后R2,分析其与传统余震衰减模型的性能。结果表明,指数模型描述余震序列衰减规律的能力与修正的大森余震模型、修正的拉伸指数模型接近。尤其对于四川长宁MS6.0余震序列和云南彝良MS5.7余震序列,指数模型表现优于其他两种模型。指数模型参数具有明确的物理意义:参数A与r之和能够准确代表强震后的实际初始余震数,5个余震序列初始余震数偏差均小于1.70%;参数k可作为反映余震序列衰减快慢的特征值,k值越大则余震序列衰减越慢,其值与主震震级呈反比例关系。  相似文献   

8.
Long period body waves data recorded by the China Digital Seismograph Network (CDSN) are inverted for the seismic moment tensors of the April 26, 1990, Gonghe, QinghaiM S=6.9 earthquake and itsM S=5.0 after-shock occurred on May 7, 1990. In the inversion, the generalized reflection-transmission coefficient matrix method is used to generate Green’s function. From the inversion it is obtained that the rupture process of theM S=5.0 aftershock is relatively simple, and that of the main shock is rather complex. There are at least two events during main shock rupture process with an interval about 35 seconds. The focal mechanisms of two events are roughly the same as that of the aftershock, all of them were mainly reverse dip-slipping faulting with minor left-lateral strike-slip motion. These results indicate that the Gonghe earthquake was the result of the farther extension of one NWW-SEE striking buried fault on the southern margin of Gonghe basin from shallower depth to deeper depth and from NW to SE under the action of a nearly horizontal NE direction compressive stress. Contribution No. 95A0111, Institute of Geophysics, SSB, China.  相似文献   

9.
Based on abundant aftershock sequence data of the Wenchuan MS8.0 earthquake on May 12, 2008, we studied the spatio-temporal variation process and segmentation rupture characteristic. Dense aftershocks distribute along Longmenshan central fault zone of NE direction and form a narrow strip with the length of 325 km and the depth between several and 40 km. The depth profile (section of NW direction) vertical to the strike of aftershock zone (NE direction) shows anisomerous wedgy distribution characteristic of aftershock concentrated regions; it is related to the force form of the Longmenshan nappe tectonic belt. The stronger aftershocks could be divided into northern segment and southern segment apparently and the focal depths of strong aftershocks in the 50 km area between northern segment and southern segment are shallower. It seems like 'to be going to rupture' segment. We also study focal mechanisms and segmentation of strong aftershocks. The principal compressive stress azimuth of aftershock area is WNW direction and the faulting types of aftershocks at southern and northern segment have the same proportion. Because aftershocks distribute on different secondary faults, their focal mechanisms present complex local tectonic stress field. The faulting of seven strong earthquakes on the Longmenshan central fault is mainly characterized by thrust with the component of right-lateral strike-slip. Meantime six strong aftershocks on the Longmenshan back-range fault and Qingchuan fault present strike-slip faulting. At last we discuss the complex segmentation rupture mechanism of the Wenchuan earthquake.  相似文献   

10.
According to geological tectonics and seismic activites this paper devided North China (30°–45°N, 105°–130°E) into four areas. We analyzed the North China earthquake catalogue from 1970 to 1986 (from 1965 to 1986 for Huabei, the North China, plain region) and identified forty-two bursts of aftershock. Seven of them occurred in aftershock regions of strong earthquakes and seventeen of them in the seismic swarm regions. The relation between strong earthquakes with the remaining eighteen bursts of aftershocks has been studied and tested statistically in this paper. The result of statistical testing show that the random probabilityp of coincidence of bursts of aftershock with subsequent strong earthquakes is less than six percent. By Xu’sR scoring method the efficacy of predicting strong earthquake from bursts of aftershock is estimated greater than 39 percent. Following the method proposed in the paper we analyzed the earthquake catalogue of China from 1987 to June, 1988. The results show that there was only one burst of aftershock occurred on Jan. 6, 1988 withM=3.6 in Xiuyan of Northeast China. It implicates that a potential earthquake withM S⩽5 might occur in one year afterwards in the region of Northeast China. Actually on Feb. 25, 1988 an earthquake withM S=5.3 occurred in Zhangwu of Northeast China. Another example is Datong-Yanggao shock on October 18, 1989 which is a burst of aftershock. Three hours after an expected shock withM =6.1 took place in the same area. Two examples above have been tested in practical prediction and this shows that bursts of aftershocks are significant in predicting strong earthquakes. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 273–280, 1991. Part of earthquake catalogue is from Jinbiao Chen, Peiyan Chen and Quanlin Li.  相似文献   

11.
Introduction In recent years the study of the digital seismology has made great progress due to the wide use of the broadband digital records. And many fine results of the focal theory have obtained. The focal theory mainly studies the physical process of the seismic fracture and production of the seismic wave, as well as its traveling process. One of the great progresses is to simulate the fracture process in the active fault. Especially a new concept of the fracture mechanics has been intro…  相似文献   

12.
The 2016 MW7.8 Kaikoura (New Zealand) earthquake was the most complex event ever instrumentally recorded and geologically investigated, as it ruptured on more than 12 fault segments of various geometries. To study the mainshock rupture characteristics, geodetic methods like InSAR and GPS play an essential role in providing satisfactory spatial resolution. However, early strong aftershocks may cause extra ground deformation which bias the mainshock rupture inversion result. In this paper, we will focus on studying the MW 6.3 aftershock, which is the only M6+ thrust slip aftershock that occurred only 30 minutes after the Kaikoura mainshock. We will relocate the hypocenter of this event using the hypo2000 method, make the finite fault model (FFM) inversion for the detailed rupture processes and calculate the synthetic surface displacement to compare with the observed GPS data and figure out its influence on the mainshock study. Although we are not able to resolve the real ruptured fault of this event because of limited observation data, we infer that it is a west-ward dipping event of oblique slip mechanism, consistent with the subfault geometries of the Kaikoura mainshock. According to the inverted FFM, this event can generate 10–20 cm ground surface displacement and affect the ground displacement observation at nearby GPS stations.  相似文献   

13.
Summary The time of occurrence and the magnitude of the largest aftershock in relation to the main shock have been studied for India and its neighbourhood based on the USCGS data during the years 1963–1971. It is found that the largest aftershock occurs within 2 hours after the main shock in about 50% of the cases and frequency of occurrencen(t) of the largest aftershocks decreases hyper-bolically with the intervalt after the main event and could be represented by a law of the formn(t)=At –h whereA andh are constants. The probability of occurrence of the largest aftershock within 2 hours of the main shock is found to be higher over island are regions of the world. The difference (M 0M 1) of the magnitude of the largest aftershockM 1 to that of the main shockM 0 as a measure of aftershock activity does not show any marked regional variation over India and its neighbourhood, as was reported by Mogifor Japan. Examination of the values ofM 1/M 0 and the constantb in Gutenberg-Richter's frequency magnitude relationship reveals a range of variation in both; high values ofM 1/M 0 have been found to be associated with high values ofb in many tectonic earthquakes and thus not, restricted to reservoir associated seismic activity.  相似文献   

14.
A complete catalog of aftershock sequences is provided for main earthquakes with ML 5.0, which occurred in the area of Greece and surrounding regions the last twenty-seven years. The Monthly Bulletins of the Institute of Geodynamics (National Observatory of Athens) have been used as data source. In order to get a homogeneous catalog, several selection criteria have been applied and hence a catalog of 44 aftershock sequences is compiled. The relations between the duration of the sequence, the number of aftershocks, the magnitude of the largest aftershock and its delay time from the main shock as well as the subsurface rupture length versus the magnitude of the main shock are calculated. The results show that linearity exists between the subsurface rupture length and the magnitude of the main shock independent of the slip type, as well as between the magnitude of the main shock (M) and its largest aftershock (Ma). The mean difference M–Ma is almost one unit. In the 40% of the analyzed sequences, the largest aftershock occurred within one day after the main shock.The fact that the aftershock sequences show the same behavior for earthquakes that occur in the same region supports the theory that the spatial and temporal characteristics are strongly related to the stress distribution of the fault area.  相似文献   

15.
Summary The aftershock activity associated with the North Aegean Sea earthquake of February 19, 1968 (M s =7.1) has been studied with emphasis on the time and magnitude distributions. Regarding the focal mechanism it was noted that the sense of first motion remains rather unchanged throughout the sequence.The secondary series are not distinct in space or time or mechanism from the primary sequence. Although the main shock was followed by almost 3000 aftershocks (M L 2.1) which form the basis for this study, principal strain has been released by the main shock which is responsible for the 82 per cent of total strain release in the sequence.  相似文献   

16.
In the light of the single scattering model of coda originating from local earthquakes, and based on the aftershock coda registered respectively at the 4 short period stations installed near the foci shortly after theM7.6 Lancang andM7.2 Gengma earthquakes, this paper has tentatively calculated the rate of amplitude attenuation and theQ c-value of the coda in the Lancang and Gengma areas using a newly-founded synthetic determination method. Result of the study shows the rate of coda amplitude attenuation demonstrates remarkable regional differences respectively in the southern and northern areas. The southern area presents a faster attenuation (Q c=114), whereas the northern area shows a slower attenuation (Q c=231). The paper also discusses the reasons causing such differences. Result of the study also suggests a fairly good linear relation between the coda source factorA o(f) and the seismic moment and the magnitude. Using the earthquake scaling law, the following formulas can be derived: lgM 0=lgA 0(f)+17.6,M D=0.67lgA 0(f)+1.21 and logM 0=1.5M D+15.79. In addition, the rates of amplitude attenuationβ s andβ m are respectively calculated using the single scattering and multiple scattering models, and the ratioβ sm=1.20−1.50 is found for the results respectively from the two models. Finally, the mean free pathL of the S-wave scattering in the southern and northern areas are determined to be 54 km and 122 km respectively by the relations which can distinguish between the inherentQ i and scatteringQ s, testify to this areas having lowQ-values correspond to stronger scatterings. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 71–82, 1992. This study is partly supported by the Seismological Science Foundation of the State Seismological Bureau of China, and the present English version of the paper is translated from its Chinese original by Wenyi Xia, Seismological Bureau of Yunnan Province.  相似文献   

17.
针对九寨沟MS7.0地震之后不同时间段的余震序列目录,利用推定最大余震震级,给出了实际最大余震震级的估计值。结果表明,推定最大余震震级随主震后时间尺度的延长而趋于稳定,且该值与实际发生的最大余震的震级一致。需要强调的是,就九寨沟地震序列而言,当余震数据较为完备时,采用主震后较短时间段内(1~2天)的余震目录就可以较准确地估算出主震区域内可能发生的最大余震震级。实际上,主震后12h(0.5天)的余震数据已完全可以给出最大余震震级的有效下限。此外,计算中我们采用了里氏震级ML和面波震级MS的余震目录,结果显示,2种震级类型目录的估算结果完全一致,表明利用推定最大余震震级估算实际最大余震震级的方法不受震级类型的影响。据此,该最大余震震级快速评估方法可进一步推广应用于我国大陆地区中强震后强余震灾害分析评估中。目前的拟合技术也显示出随着测震技术的不断进步以及余震识别能力的提高,快速评估方法可以在主震后短时间(<1天)内准确地预测可能发生的最大余震震级。  相似文献   

18.
2019年12月26日湖北应城发生M4.9有感地震,其震感波及武汉大部分地区。为了分析该地震的发震构造及余震活动性,本文利用波形拟合方法测定了不同速度模型下该地震的震源机制解和矩心深度,并用Bootstrapping抽样反演技术评价反演结果;此外,利用模板匹配技术匹配主震和目录余震波形,获取了更为完整的余震目录。结果显示,应城地震以走滑为主,矩心深度7.5km左右,矩震级MW4.67;应城地震有1个前震和17个余震,余震序列缺少M2~4事件,表明应城地震为孤立型地震,M2以下地震的b值为0.8。  相似文献   

19.
采用CAP方法反演2010年玉树7.1级地震序列前震、主震及余震19个ML≥4.0事件的震源机制解,19个结果以走滑类型为主,前震、主震的震源机制解十分接近,反映出前震、主震之间密切的联系;震源深度集中在7~12 km,震源最浅(4.5 km)与最深(34 km)的两个余震事件具有明显的逆冲性质,表现出明显的边界特征;19个事件的震中分布在甘孜-玉树断裂北支玉树-隆宝断裂上,目前已经证明该断裂即为玉树地震的发震构造。自SE-NW沿玉树-隆宝断裂走向拉一剖面,观察震源深度沿剖面的变化情况,可看出玉树-隆宝断裂西北段震源深度要大于东南段,该段主要是余震活动的中后期,因此在地震活动的中后期,余震向地壳深部扩展,断裂累积的应变能得到更进一步的释放;P轴方位角优势分布集中在220°~230°,T轴方位优势分布集中在310°~320°,两个优势分布互相垂直性与单个事件的沙滩球应力轴一样,说明玉树地震的震源机制解类型较为简单;玉树周边地区应力场分布比较均匀,并不像汶川周边地区那么复杂,本次玉树地震为巴颜喀拉地块与羌塘块体边界处甘孜-玉树断裂应变能量的正常释放。  相似文献   

20.
On the basis of about 300 earthquake wave forms observed in the Shidian M S=5.9 sequences on April 12, 2001 recorded in Kunming Digital Seismic Network, the spectra of shear wave have been used to estimate the focal parameters of these earthquake sequences. The results show that within the magnitude range of 1.5–5.3, the seismic moments are 1010–1016 N·m, the corner frequencies are 0.2–0.8 Hz, radii of the focal rupture are 200–2 500 m and the stress drops are 0.1×105–20×105Pa. Through the statistical analyses of variation of corner frequency f c and stress drop Δσ with time, it is discovered that the average corner frequency of the foreshock sequences is obviously lower than that of the aftershock sequences. Contrarily, the average stress drops Δσ of the foreshock sequences are clearly higher than that of the aftershocks. It is considered that these variation characteristics of average corner frequency and stress drops before and after the main shock have index significance to the precursory information before a strong earthquake. The higher stress drops for the foreshock sequences show that the higher shear stresses have been stored in the area of main shock. After the main shock, most of the stresses have been released, so the aftershock sequences show a rupture process of lower stresses. Foundation item: Scientific and Technological Key Project of Yunnan Province (2001NG46)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号