首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 125 毫秒
1.
中国东部上地幔各向异性研究   总被引:9,自引:0,他引:9  
对布设在中国东部的固定和流动宽频带地震台网共65个台站记录作远震SKS波形资料偏振分析,采用SC方法和叠加分析求得每一个台站的SKS快波偏振方向和快、慢波的时间延迟,获得了中国东部上地幔各向异性图像。中国东部的各向异性快波方向从华南的近EW方向到华北的NWW-SEE方向,再到东北的NW-SE方向,由南向北呈顺时针旋转的趋势。快、慢波时间延迟范围是0.41-1.52s。通过分析研究区各向异性特征,认为中国东部上地幔各向异性可能与中国大陆受印度板块与欧亚板块的碰撞以及太平洋板块和菲律宾海板块向欧亚板块下方的俯冲的共同作用有关。在中国西部地壳增厚隆起的同时,物质向东挤出,使得东部上地幔物质向东和东南方向流动。中国东部大陆岩石圈和岩石圈下的上地幔物质在板块的相互作用下产生变形,使上地幔橄榄岩等晶体的晶格优势取向沿物质流动方向。各向异性快波方向与岩石圈的伸展方向和GPS得到的速度场方向一致,表明中国东部壳幔变形具有垂直连贯变形特征。  相似文献   

2.
首都圈地区SKS波分裂研究   总被引:7,自引:2,他引:5       下载免费PDF全文
通过分析首都圈数字地震台网的49个宽频带和甚宽带台站的远震SKS波形资料,采用最小切向能量的网格搜索法和叠加分析方法,求得每一个台站的SKS快波偏振方向和快、慢波的时间延迟,获得了首都圈地区上地幔各向异性图象.首都圈地区的各向异性快波方向基本上呈WNW-ESE方向,快、慢波时间延迟为0.56-1.56 s.研究表明,首都圈地区上地幔存在明显的各向异性,引起各向异性的主要原因是研究区受太平洋板块俯冲作用下软流圈物质变形,使得上地幔橄榄岩等晶体的晶格优势取向沿物质流动方向.另外,中国大陆受印度板块与欧亚板块的强烈碰撞,大陆西部地壳增厚隆起,同时造成物质东向挤出,使得首都圈地区上地幔物质沿快波方向变形.通过研究区各向异性快波方向和伸展运动方向与GPS测量得到的速度场对比分析,首都圈地区壳幔变形可能具有垂直连贯变形特征.  相似文献   

3.
中国大陆上地幔各向异性和壳幔变形模式   总被引:2,自引:0,他引:2  
近10年来,中国布设的宽频带地震台站大幅度增加.宽频带地震记录中含有大量的剪切波分裂信息,它在揭示中国大陆上地幔的各向异性特征起重要作用.本文对这些台站的远震SKS和(或)SKKS记录,采用最小切向能量的分析方法,确定各台站剪切波分裂的快波偏振方向和延迟时间.此外,还收集了前人在中国大陆及其周边地区的剪切波分裂研究的部分结果,形成拥有1020个剪切波分裂参数对的数据集.这些分裂参数展示了复杂的上地幔各向异性图像.统计分析表明,中国大陆存在较强的上地幔各向异性,平均的剪切波时间延迟为0.95 s,其中西部地区为1.01 s,东部地区为0.92 s.西部地区的各向异性强度略大于东部地区.在大尺度意义下,青藏高原及天山地区,其SKS波分裂和地表变形数据共同支持岩石圈变形模式,即地壳与岩石圈地幔是连贯变形的;东部地区的平均快波偏振方向近似平行于绝对板块运动方向,上地幔各向异性归因于软流圈流动.中部的鄂尔多斯至四川盆地一带为东、西部两种变形模式的过渡带,各向异性结构较为复杂,表现为"化石"各向异性和(或)双层各向异性.印度板块和欧亚板块的碰撞是中国大陆西部上地幔各向异性的主要影响因素,东部地区则与太平洋板块和菲律宾板块向欧亚板块俯冲有关.  相似文献   

4.
通过分析首都圈数字地震台网的49个宽频带和甚宽带台站的远震SKS波形资料,采用最小切向能量的网格搜索法和叠加分析方法,求得每一个台站的SKS快波偏振方向和快、慢波的时间延迟,获得了首都圈地区上地幔各向异性图象.首都圈地区的各向异性快波方向基本上呈WNW-ESE方向,快、慢波时间延迟为0.56——1.56s.研究表明,首都圈地区上地幔存在明显的各向异性,引起各向异性的主要原因是研究区受太平洋板块俯冲作用下软流圈物质变形,使得上地幔橄榄岩等晶体的晶格优势取向沿物质流动方向.另外,中国大陆受印度板块与欧亚板块的强烈碰撞,大陆西部地壳增厚隆起,同时造成物质东向挤出,使得首都圈地区上地幔物质沿快波方向变形.通过研究区各向异性快波方向和伸展运动方向与GPS测量得到的速度场对比分析,首都圈地区壳幔变形可能具有垂直连贯变形特征.   相似文献   

5.
利用青藏高原东北缘区域数字地震台网43个台站的远震SKS波形资料,采用最小能量法和旋转相关法得到台站下方上地幔介质各向异性的分裂参数:快波偏振方向(φ)和快慢波时间延迟(δt)。研究结果表明:在塔里木盆地东南缘区域,各向异性快波方向与该区域的断裂走向存在明显的夹角,该盆地向柴达木盆地的俯冲方向一致,各向异性归因为古构造运动遗留下的"化石各向异性",且由于壳幔物质的拆沉作用,推测该区域壳幔之间存在解耦作用;在祁连—河西走廊区,SKS快波偏振方向呈NW-SE,与主要断裂带的走向一致;在西秦岭北缘断裂带附近,观测到快慢波时间延迟有着较大的变化,可能是岩石圈变形和软流圈物质流动共同导致;在鄂尔多斯板块内,快波方向呈NW-SE方向,可能暗示青藏高原深部物质分叉绕流运动。青藏高原东北缘不同区域台站下方的各向异性均具有差异性,进一步证实了青藏高原东北缘地区构造变形的复杂性。  相似文献   

6.
鄂尔多斯块体及周缘上地幔各向异性研究   总被引:2,自引:0,他引:2  
对布设在鄂尔多斯块体及周缘的固定和流动宽频带地震台网共111个台站记录作远震SKS(SKKS)波形资料偏振分析,采用最小切向能量的网格搜索和叠加分析求得每一个台站的SKS(SKKS)快波偏振方向和快、慢波的延迟时间,获得了鄂尔多斯块体及周缘上地幔各向异性图像.在鄂尔多斯块体西缘和北缘,各向异性的快波方向为NW-SE方向,一致性较好;在鄂尔多斯多斯块体南缘,快波方向主要是NWW-SEE和近EW方向;在鄂尔多斯块体东缘,快波方向总体表现为近EW方向,间有NEE-SWW方向和NWW-SEE方向.在鄂尔多斯块体内部,快波方向在北部是近NS方向,而南部则是近EW方向.快、慢波的时间延迟范围是0.48~1.50s,鄂尔多斯块体内部的时间延迟平均值小于其周缘地区.通过分析研究区各向异性特征,认为构造稳定的鄂尔多斯块体内部的各向异性主要来自于古老的华北克拉通保存的"化石"各向异性;青藏高原东北缘向NE方向的推挤,造成岩石圈NW-SE方向的拉张伸展,鄂尔多斯块体西缘和北缘下的上地幔物质沿NW-SE方向发生了形变,使得上地幔中橄榄岩的晶格排列方向平行于物质形变的方向;在鄂尔多斯块体南缘,刚性的华北块体和扬子块体碰撞作用,使得各向异性快波方向平行于两个刚性块体的碰撞边界和秦岭造山带的走向.结合该区域绝对板块运动和速度结构研究,认为在秦岭造山带下可能存在一个青藏高原物质东流的地幔流通道;在鄂尔多斯块体东缘的汾河地堑和太行山,相对复杂的各向异性特征可能由于西太平板块俯冲、区域伸展构造、造山运动等共同作用引起的.对于YCI台得到的各向异性参数(快波方向变化范围是45°~106°,时间延迟变化范围是0.6~1.5s)随事件反方位角呈现出π/2周期的变化,符合双层各向异性模型.基于0.125Hz的主频和实测的各向异性参数,我们模拟得到了最佳的双层各向异性模型,下层φlower=132°,δtlower=0.8s,上层φupper=83°,δtupper=0.5s.上层各向异性归功于古老克拉通保留的"化石"各向异性,下层各向异性则受到了青藏高原东北缘NE方向推挤导致的岩石圈NW-SE方向的拉张伸展作用.通过该区域各向异性快波方向与全球定位系统(GPS)的观测结果的对比分析,鄂尔多斯块体的周缘壳幔变形符合垂直连贯变形模式,而其内部变形复杂,有待进一步研究.  相似文献   

7.
本文对布设在华北克拉通东西两块体交界区域的宽频带流动地震观测台阵和部分固定台站的远震波形记录开展了SKS波分裂研究.结果显示,鄂尔多斯块体内部的各向异性比较弱,剪切波分裂导致的时间延迟一般小于0.7s.鄂尔多斯块体东缘的山西断陷带和太行山以及华北平原西部均表现出了比较强的各向异性,时间延迟大于1.0s.特别是在太行山地区观测到的ENE趋向的快波偏振方向明显不同于鄂尔多斯块体和华北平原地区的近E-W和ESE方向的快波偏振方向.在华北克拉通东西两块体交界过渡带的太行山地区观测到的显著上地幔各向异性及变化可能对应于围绕鄂尔多斯块体东南角的局部软流圈绕流,而后者可能起因于鄂尔多斯块体的逆时针旋转以及青藏高原软流圈沿秦岭大别造山带向东的流动.  相似文献   

8.
南北构造带南段上地幔各向异性特征   总被引:13,自引:6,他引:7       下载免费PDF全文
对布设在南北构造带南段的中国地震科学探测台阵项目一期350个宽频带流动台站和中国地震台网90个宽频带固定台站记录的远震XKS(SKS、SKKS和PKS)波形资料作偏振分析,采用最小切向能量的网格搜索法和"叠加"分析方法求得每一个台站的XKS波的快波偏振方向和快、慢波的时间延迟,获得了南北构造带南段上地幔各向异性图像.结果显示研究区的各向异性具有明显的南北分区特征,北部的快波方向为近N-S方向,而南部主要表现为近E-W方向,且北部的平均时间延迟小于南部.分析表明,具有厚岩石圈的北部的各向异性主要由岩石圈变形引起,是一种垂直连贯变形模式;具有薄岩石圈的南部的各向异性主要由软流圈地幔流引起,缅甸和巽达板片的后撤/回转作用产生了指向西南的软流圈地幔流,在岩石圈底部和软流圈之间产生了一个水平差异运动,产生了一个与简单剪切一致的软流圈变形结构,从而产生了南部观测的各向异性.  相似文献   

9.
山东地区上地幔各向异性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过分析山东地区数字地震台网37个宽频带地震台站的远震SKS波形资料,使用最小能量法和旋转相关法求得每一个台站的SKS快波偏振方向和快、慢波时间延迟,获得了山东地区上地幔各向异性图像.该研究区的各向异性快波方向基本呈WNW-ESE方向,快、慢波时间延迟为0.73-1.71 s.研究表明,山东地区上地幔存在明显的各向异性...  相似文献   

10.
青藏高原东北缘上地幔各向异性研究   总被引:21,自引:13,他引:8       下载免费PDF全文
通过分析位于青藏高原东北缘的区域数字地震台网30个台站的远震SKS波形资料,采用最小切向能量的网格搜索法和叠加分析方法求得每一个台站的SKS快波偏振方向和快、慢波的时间延迟,获得了青藏高原东北缘上地幔各向异性图像.从得到结果看,青藏高原东北缘的各向异性快波方向基本上呈NW-SE方向,并有一顺时针旋转趋势,快、慢波时间延迟是0.70~1.51 s.青藏高原东北缘的SKS快波偏振方向与区域内主要构造断裂走向基本一致;各向异性快波偏振方向变化与区域内最小平均主压应力方向变化相似,也与由GPS测量得到的速度场方向变化相似.研究表明青藏高原东北缘上地幔物质在区域构造应力场的作用下,发生了顺时针旋转的形变以至流动,使得上地幔中橄榄岩的晶格排列方向平行于物质形变或流动方向,上地幔变形和上覆地壳变形可能存在垂直连贯变形特征.  相似文献   

11.
Seismic anisotropy of upper mantle in eastern China   总被引:6,自引:0,他引:6  
Based on the polarization analysis of teleseismic SKS waveform data recorded at 65 seismic stations which respectively involved in the permanent and temporary broadband seismograph networks deployed in eastern China, the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by use of SC method and the stacking analysis method, and then the image of upper mantle anisotropy in eastern China was acquired. In the study region, from south to north, the fast-wave polarization directions are basically EW in South China, gradually clockwise rotate to NWW-SEE in North China, then to NW-SE in Northeast China. The delay time falls into the interval [0.41 s, 1.52 s]. Anisotropic characteristics in eastern China indicate that the upper mantle anisotropy is possibly caused by both the collision between the Indian and Eurasian Plates and the subduction from the Pacific and Philippine Sea Plates to the Eurasian Plate. The collision between two plates made the crust of western China thickening and uplifting and the material eastwards extruding, and then caused the upper mantle flow eastwards and southeastwards. The subduction of Pacific Plate and Philippine Sea Plate has resulted in the lithosphere and the asthenosphere deformation in eastern China, and made the alignment of upper mantle peridotite lattice parallel to the deformation direction. The fast-wave polarization direction is consistent with the direction of lithosphere extension and the GPS velocity direction, implying that the crust-upper mantle deformation is possibly a vertically coherent deformation. Supported by Special Project for the Fundamental R & D of Institute of Geophysics, China Earthquake Administration (Grant No. DQJB06B06), Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100), China Digital Earthquake Observation Network Project “North China Seismic Array”, and National Natural Science Foundation of China (Grant Nos. 40334041 and 40774037)  相似文献   

12.
Based on the polarization analysis of teleseismic SKS waveform data recorded at 49 seismic stations in Capital Area Seismograph Network,the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by using the grid searching method of minimum transverse energy and the stacking analysis method,and then we acquired the image of upper mantle anisotropy in Capital area.In the study area,the fast-wave polarization direction is basically WNW-ESE,and the delay time falls into the interval from 0.56 s to 1.56 s.The results imply that the upper mantle anisotropy in Capital area is mainly caused by the subduc-tion of the Pacific plate to Eurasian plate.The subduction has resulted in the asthenospheric material deformation in Capital area,and made the alignment of upper mantle peridotite lattice parallel to the deformation direction.And the collision between the Indian and Eurasian plates made the crust of western China thickening and uplifting and material eastwards extruding,and then caused the upper mantle flow eastwards,and made the upper mantle de-formation direction parallel to the fast-wave direction.The deformation model of the crust and upper mantle is possibly vertically coherent deformation by comparing the fast-wave polarization direction with the direction of lithospheric extension and the GPS velocity direction.  相似文献   

13.
南北构造带北段上地幔各向异性特征   总被引:9,自引:5,他引:4       下载免费PDF全文
对布设在南北构造带北段的中国地震科学探测台阵项目二期674个宽频带流动台站和鄂尔多斯台阵21个宽频带流动台站记录的远震XKS(SKS、SKKS和PKS)波形资料作偏振分析,采用最小切向能量的网格搜索法和"叠加"分析方法求得每一个台站的XKS波的快波偏振方向和快、慢波的时间延迟,并结合该区域出版的122个固定台站的分裂结果,获得了南北构造带北段上地幔各向异性图像.快波方向分布显示青藏高原东北缘、阿拉善块体和鄂尔多斯块体西缘的快波方向主要表现为NW—SE方向,秦岭造山带的快波方向为近E—W方向,鄂尔多斯块体内部的快波方向在北部为近N—S方向,南部表现为近E—W方向.时间延迟分布来看,鄂尔多斯块体的时间延迟不仅明显小于其周缘地区,而且小于其他构造单元,特别是在高原东北缘、阿拉善块体和鄂尔多斯块体的交汇地区的时间延迟很大,反映了构造稳定单元的时间延迟小于构造活跃单元.通过比较快波方向的横波分裂测量值与地表变形场模拟的预测值,并结合研究区地质构造和岩石圈结构特征分析表明,在青藏高原东北缘、阿拉善块体和鄂尔多斯块体西缘各向异性主要由岩石圈变形引起,地表变形与地幔变形一致,地壳耦合于地幔,是一种垂直连贯变形模式;秦岭造山带的各向异性不仅来自于岩石圈,而且其岩石圈板块驱动的软流圈地幔流作用不可忽视;鄂尔多斯块体内部深浅变形不一致,具有弱的各向异性、厚的岩石圈和构造稳定的特征,我们认为其各向异性可能保留了古老克拉通的"化石"各向异性.  相似文献   

14.
Seismic anisotropy of upper mantle in Sichuan and adjacent regions   总被引:9,自引:0,他引:9  
Based on the polarization analysis of teleseismic SKS waveform data recorded at 94 broadband seis-mic stations in Sichuan and adjacent regions, the SKS fast-wave direction and the delay time between the fast and slow shear waves were determined at each station using the grid searching method of minimum transverse energy and the stacking analysis method, and the image of upper mantle anisot-ropy was acquired. The fast-wave polarization directions are mainly NW-SE in the study area, NWW-SEE to its northeast and NS to its west. The delay time falls into the interval [0.47 s, 1.68 s]. The spatial variation of the fast-wave directions is similar to the variation of GPS velocity directions. The anisotropic image indicates that the regional tectonic stress field has resulted in deformation and flow of upper mantle material, and made the alignment of upper mantle peridotite lattice parallel to the di-rection of material deformation. The crust-upper mantle deformation in Sichuan and adjacent regions accords with the mode of vertically coherent deformation. In the eastern Tibetan Plateau, the crustal material was extruded to east or southeast due to SE traction force of the upper mantle material. The extrusion might be obstructed by a rigid block under the Sichuan Basin and the crust has been de-formed. After a long-term accumulation of tectonic strain energy, the accumulative energy suddenly released in Yingxiu town of the Longmenshan region, and Wenchuan MS8.0 earthquake occurred.  相似文献   

15.
Over the past 10 years,the number of broadband seismic stations in China has increased significantly.The broadband seismic records contain information about shear-wave splitting which plays an important role in revealing the upper mantle anisotropy in the Chinese mainland.Based on teleseismic SKS and SKKS phases recorded in the seismic stations,we used the analytical method of minimum transverse energy to determine the fast wave polarization direction and delay time of shear-wave splitting.We also collected results of shear-wave splitting in China and the surrounding regions from previously published papers.From the combined dataset we formed a shear-wave splitting dataset containing 1020 parameter pairs.These splitting parameters reveal the complexity of the upper mantle anisotropy image.Our statistical analysis indicates stronger upper mantle anisotropy in the Chinese mainland,with an average shear-wave time delay of 0.95 s;the anisotropy in the western region is slightly larger(1.01 s)than in the eastern region(0.92 s).On a larger scale,the SKS splitting and surface deformation data in the Tibetan Plateau and the Tianshan region jointly support the lithospheric deformation mode,i.e.the crust-lithospheric mantle coherent deformation.In eastern China,the average fast-wave direction is approximately parallel to the direction of the absolute plate motion;thus,the upper mantle anisotropy can be attributed to the asthenospheric flow.The area from the Ordos block to the Sichuan Basin in central China is the transition zone of deformation modes between the east and the west regions,where the anisotropy images are more complicated,exhibiting"fossil"anisotropy and/or two-layer anisotropy.The collision between the Indian Plate and the Eurasian Plate is the main factor of upper mantle anisotropy in the western region of the Chinese mainland,while the upper mantle anisotropy in the eastern region is related to the subduction of the Pacific Plate and the Philippine Sea Plate beneath the Eurasian Plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号