首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A complete yearly record (1988) of surface measurements is used to examine the atmospheric diurnal secondary circulations over the entire area of Hong Kong in conjunction with spatial and temporal variations of surface temperature, wind speed and rainfall. Evidence of atmospheric diurnal secondary circulations is found at 10 sites. The occurrence of a summer morning rainfall maximum over the coast results from the interaction of the large-scale summer monsoon and local mesoscale secondary circulations. The afternoon onshore secondary circulation accelerates the advection of warm, humid unstable air and, coupled with the upward orographic lifting, produces enhanced rainfall along windward mountain ridges.Dynamical and scaling considerations suggest that the blocking effect is negligible and the primary forcing mechanism is land-sea temperature difference, but terrain effects are also important. Although the secondary circulation system's strength and timing vary, the circulation behaves like a classic sea-land breeze circulation, complicated by superimposed mountain-valley breezes.  相似文献   

2.
Summary Chaco jet events (CJEs) are a subset of South American low-level jet events to the east of the Andes, characterized by enhanced poleward penetration and by a strong impact on precipitation over southeastern South America. The present study uses the Eta model short range weather forecasts produced operationally in the Brazilian Center for Weather Forecasts and Climate Studies (Centro de Previs?o de Tempo e Estudos Climáticos, CPTEC) to characterize the CJEs and the related precipitation during the 1997–1998 warm season. An enhanced diurnal cycle in precipitation with respect to that found during the warm season mean can be recognized during CJEs in Eta/CPTEC model output, with preference for a nocturnal maximum over southern Brazil, Uruguay, and the central part of northern Argentina, and a daytime maximum near high topography (northwestern Argentina, the Brazilian Planalto). The analysis of thermodynamic and dynamic forcing appearing during CJEs, helps to explain the modeled precipitation cycle: the nocturnal maximum is mostly explained by enhanced low-level convergence at night, while the diurnal one is mainly a response to radiative warming. Boundary-layer convergence, and convective instability, present within the CJEs environment, work together to provide both dynamic forcing and potential for convection. The simulated precipitation cycle is complemented with surface observations of “current weather” that corroborate the main oscillations found in simulated precipitation.  相似文献   

3.
迟静  周玉淑  冉令坤  周括  沈新勇 《大气科学》2021,45(6):1400-1414
利用ERA-Interim再分析资料、常规气象观测资料、CMORPH(CPC MORPHing technique)融合降水资料以及WRF(Weather Research and Forecasting)高分辨率数值模拟结果,对2017年7月13~14日吉林地区的极端降水天气过程的环流背景和触发机制进行了分析。结果表明:(1)东北冷涡环流控制下,副高北抬与中纬度锋区形成了有利的大尺度环流背景。降水发生在冷涡底部与副高之间的平直纬向环流中,东北冷涡南部的低槽、低空切变线、高低空急流是影响此次降水的重要天气系统;(2)在高层辐散低层辐合的有利动力条件下,极端的水汽输送与吉林地区西低东高地形的阻挡和强迫抬升是极端降水产生的重要原因;(3)中高层有干冷空气入侵,伴随高空动量下传至低空,加强了低空急流发展,低空急流发展至地面附近产生超低空急流后,加强了上升运动。南北经向动量输送交汇加强了低层风辐合切变,切变线上对流发展与永吉附近小地形的抬升作用,诱导永吉县产生极端降水。  相似文献   

4.
Summary An exceptional rainstorm affected the eastern coast of Peninsular Malaysia during 9–11 December 2004 as a result of a westward propagating tropical disturbance known as the Borneo vortex. Rainfall totals near the storm center exceeded 600 mm and led to flash floods, loss of life and severe damage in the area. This study presents the results of a numerical simulation of this event using the fifth generation of the Penn State – NCAR Mesoscale Model (MM5). The model successfully simulated the synoptic circulation and reproduced the episode with comparable spatial patterns and total accumulated amount of precipitation to the observed. Various sensitivity experiments showed that the local topography is decisive in shaping the rainfall distribution during the storm episode. The role of the terrain elevation appears to be to block the westward progression of the system and inhibit excessive rainfall in the inland areas of Peninsular Malaysia. To the north of the storm center where coastal terrain elevation is relatively high, orography plays an important role in the rainfall by providing an additional forcing for moist air lifting. An additional fake dry simulation suggested that latent heat release is crucial for the development of the storm. Without latent heating, the vertical coupling of low-level convergence and upper level divergence is weakened and the vertical motion associated with the storm is suppressed.  相似文献   

5.
Effects of aerosol radiative forcing on the diurnal and seasonal cycles of precipitation over West Africa and eastern Atlantic Ocean are investigated for the boreal summer season: June–July–August. An eight year (2000–2007) average of GCM simulated rainfall data is compared with the corresponding TRMM rainfall data. The comparison shows that the amplitude of the diurnal cycles of rainfall over land and ocean are reasonably well simulated. Over land, the phase of the simulated diurnal cycle of precipitation peaks several hours earlier than that of the TRMM data. Corresponding differences over the ocean(s) are relatively smaller. Some of the key features of the aerosol induced model simulated field anomalies are: (a) aerosol direct radiative forcing which increases the atmospheric stability and reduces the daytime moist convection and convective precipitation; (b) the aerosol induced changes in the diurnal cycle of precipitation are out of phase with those of the TRMM data over land, but are in-phase over the ocean; (c) aerosols reduce the amplitude of the diurnal cycle of precipitation over land and enhance it over ocean. However, the phase of the diurnal cycle is not affected much by the aerosol radiative forcing both over land and ocean. During the boreal summer, aerosol radiative forcing and induced circulation and precipitation cool the Sahel and the southern part of Sahara desert more than the adjacent areas to the north and south, thereby shifting the peak meridional temperature gradient northward. Consequently, an anomalous easterly jet is found north of its climatological location. This anomalous jet is associated with increased cyclonic circulation to the south of its axis, resulting in an anomalous monsoon rain belt in the Sahel.  相似文献   

6.
曾勇  周玉淑  杨莲梅 《大气科学》2019,43(2):372-388
2016年7月31日至8月1日新疆西部发生了一次罕见的大暴雨过程,利用常规观测资料、FY-2G卫星TBB(Black-Body Temperature)资料和NCEP/NCAR(1°×1°)再分析资料,在天气尺度环流背景和中尺度系统分析的基础上,利用WRF(Weather Research and Forecasting)模式对此次大暴雨过程进行了高分辨率数值模拟,利用模拟资料对大暴雨的形成进行了分析。结果表明:此次暴雨发生在稳定维持的"两脊一槽"环流形势下,巴尔喀什湖低槽、高空偏西急流、低空偏东急流和近地面辐合线是造成此次大暴雨过程的主要天气系统。中尺度云团沿近地面的辐合线在天山迎风坡附近不断生成,云团生成后,在向东北方向移动过程中,经过伊犁地区上空时,受天山地形抬升影响不断发展增强,造成伊犁地区出现持续性较强降水。天山迎风坡附近持续较长时间的辐合线是造成此次新疆西部大暴雨的直接中尺度系统,其生成与低层风场辐合、低空急流和地形均有关系。低层辐合引发的垂直运动在地形迎风坡附近加强,风场辐合及地形抬升共同导致强垂直运动发展并维持,类似于"列车效应",不断生成的尺度更小的对流系统沿着辐合线持续移过新疆西部的伊犁地区,是该次暴雨持续的重要原因。  相似文献   

7.
The formation mechanism of diurnal rainfall in Taiwan is commonly recognized as a result of local forcings involving solar thermal heating and island-scale land–sea breeze (LSB) interacting with orography. This study found that the diurnal variation of the large-scale circulation over the East Asia-Western North Pacific (EAWNP) modulates considerably the diurnal rainfall in Taiwan. It is shown that the interaction between the two LSB systems—the island-scale LSB and the large-scale LSB over EAWNP—facilitates the formation of the early morning rainfall in western Taiwan, afternoon rainfall in central Taiwan, and nighttime rainfall in eastern Taiwan. Moreover, the post-1998 strengthening of a shallow, low-level southerly wind belt along the coast of Southeast China appears to intensify the diurnal rainfall activity in Taiwan. These findings reveal the role of the large-scale LSB and its long-term variation in the modulation of local diurnal rainfall.  相似文献   

8.
在2012年7月21日北京特大暴雨过程天气尺度环流背景分析的基础上,主要用WRF模式对该次暴雨过程进行了高分辨率的模拟。利用模拟资料分析了影响此次北京特大暴雨的辐合线及辐合线上生成的中尺度低涡的热动力结构及其演变。从热力场来看,来自于西北和东北方向的强冷空气与西南和东南暖湿气流的长时间对峙形成的辐合以及中低层冷空气从西北和东北方向向西南的入侵迫使整层暖湿空气抬升,以及低空急流的暖湿平流与低空弱冷空气之间形成的"西冷东暖"的结构,对对流不稳定的触发有一定作用,有助于该次特大暴雨的发生。对流层低层的西(东)南风与西北风之间形成了一条持续时间长的辐合切变线,切变线上不断有中尺度低涡生成并沿切变线发展移动,模拟资料分析表明,低涡不断沿切变线生成并移动经过北京从而对该次暴雨造成影响,这与"列车效应"现象类似。切变线上生成的中尺度低涡位置也同时处于急流左前侧和山前,低涡加强和发展时对应有暴雨的明显增强,是直接造成北京特大暴雨的中尺度系统,其生成与低层辐合、低空急流及地形均有关系。低层辐合引发的垂直运动在地形迎风坡附近得到加强,低层辐合及地形抬升共同导致了强垂直运动的发展和维持,是暴雨持续的重要原因。大气中层有下沉气流与低层上升气流相互作用,在大气中低层形成一系列中尺度环流,房山附近一直有中尺度环流的垂直上升支维持,也是暴雨中心出现在房山的原因之一。  相似文献   

9.
The record-breaking mei-yu in the Yangtze-Huaihe River valley (YHRV) in 2020 was characterized by an early onset, a delayed retreat, a long duration, a wide meridional rainbelt, abundant precipitation, and frequent heavy rainstorm processes. It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation (QBWO) during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu, a northward shift and stagnation of the rainbelt, and the occurrence and persistence of heavy rainstorm processes. Correspondingly, during the mei-yu season, the monsoon circulation subsystems, including the western Pacific subtropical high (WPSH), the upper-level East Asian westerly jet, and the low-level southwesterly jet, experienced periodic oscillations linked with the QBWO. Most notably, the repeated establishment of a large southerly center, with relatively stable latitude, led to moisture convergence and ascent which was observed to develop repeatedly. This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes. Moreover, two blocking highs were present in the middle to high latitudes over Eurasia, and a trough along the East Asian coast was also active, which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths. The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV. The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH, which was observed to be favorable for excessive rainfall over YHRV.  相似文献   

10.
The morning diurnal precipitation maximum over the coastal sea upstream of the Philippines during intraseasonal westerly wind bursts is examined from observations and numerical model simulations. A well-defined case of precipitation and large-scale circulation over the coastal sea west of the Philippines during 17?C27 June 2004 is selected as a representative case. The hypothesis is that the mesoscale diurnal circulation over the Philippines and a large-scale diurnal circulation that is induced by large-scale differential heating over Asian continent and the surrounding ocean interact to produce the offshore precipitation maximum during the morning. Three-hourly combined satellite microwave and infrared rainfall retrievals define the morning rainfall peak during this period, and then later the stratiform rain area extends toward the open sea. A control numerical simulation in which a grid-nudging four-dimensional data assimilation (FDDA) is applied to force the large-scale diurnal circulation represents reasonably well the morning rainfall maximum. An enhanced low-level convergence similar to observations is simulated due to the interaction of the local- and large-scale diurnal circulations. The essential role of the local-scale diurnal circulation is illustrated in a sensitivity test in which the solar zenith angle is fixed at 7?am to suppress this diurnal circulation. The implication for climate diagnosis or modeling of such upstream coastal sea precipitation maxima is that the diurnal variations of both the local- and the large-scale circulations must be taken into consideration.  相似文献   

11.
Summary ?Mountains profoundly impact precipitation systems in Taiwan, particularly in areas occupying roughly two-thirds of the island’s landmass. This study examines the terrain structures possibly affecting the formation of rainfall systems in northern Taiwan by analyzing radar data, surface rainfall data, and simulation results from MM5 (Fifth-Generation NCAR/Penn State Mesoscale Model) under a weak synoptic influence condition. More specifically, this study analyzes precipitation systems formed in three different days with different ambient wind directions (i.e., southwesterly, southerly and south-southeasterly flows) in a low Froude number regime in Mei-Yu (or Baiu) season. The southwesterly (southerly) predominant wind was blocked by CMR (central mountain range) over southwestern (southern) Taiwan. Consequently, the southwesterly (southerly) winds were diverted around southern Taiwan, traveled northward following the terrain contour of CMR and then converged in northeastern (northern) Taiwan to produce a NE-SW (N-S) orientated convergence area. As anabatic flow and onshore flow intensified in northern Taiwan and thus enhanced the existing convergence in the late morning and early afternoon, the precipitation system appeared over slope first and then moved down the slope following the predominant wind direction. Upwards motion persisted in this convergence region, and initiated a new precipitation system. Consequently, rainfall accumulation was orientated in a NE-SW (N-S) direction in northern Taiwan. On the windward side of CMR in central Taiwan, precipitation was first produced in the slope by anabatic flow and was generated in lower land because of the interaction between down slope and onshore flow in the late afternoon. When the flow was predominantly from the south-southeast, the convergence due to the splitting of the predominant over western Taiwan became weaken after onshore flow over west coast developed since the direction of onshore flow was against the splitting predominant flow. Precipitation only appeared in the sloping areas of northwestern and central Taiwan in the relatively dry environment resulting from the anabatic flow. Several sensitivity tests indicated that the lee-side convergence in a low Froude number regime superimposed by anabatic flow and onshore flow is important for producing rainfall in northern Taiwan. The prevailing wind direction determined the orientation of the rainfall accumulation in northern Taiwan. The high relative humidity is important for precipitation to form in lower elevations. Received February 9, 2001; Revised November 23, 2001  相似文献   

12.
“07.7”淮河流域梅雨锋暴雨的地形敏感性试验   总被引:2,自引:2,他引:0       下载免费PDF全文
尹宜舟  沈新勇  李焕连 《高原气象》2009,28(5):1085-1094
利用WRFV2.2中尺度数值模式, 对2007年7月8~9日发生在淮河流域的梅雨锋暴雨进行了模拟及相关的地形敏感性试验。结合这次暴雨过程特征, 详细分析了大别山地区地形及皖东南地区地形分别对安徽北部、 湖北北部和河南东南角、 江苏中部降水的影响。结果表明: 在这次降水过程中, 如果没有大别山地区的地形, 安徽北部一带的700 hPa天气系统的发展或移动速度更快, 相关区域降水将加大, 地形在鄂豫地区产生的切变消失, 相应的降水消失, 且地形切变与气流切变叠加时降水更大, 在一定的系统配置条件下, 大别山地区的地形可以影响江苏地区降水的发生\, 发展; 如果没有皖东南地区的地形, 安徽北部系统略有发展, 大别山地区的地形切变作用减弱, 江苏中部的降水大范围减小。  相似文献   

13.
基于欧洲中心ERA5再分析资料、NCEP再分析资料、卫星和雷达资料以及MICAPS气象资料,运用天气学方法对2020年4月13日四川省攀枝花市发生的冷平流强迫类雷暴天气过程进行综合分析。结果表明:本次雷暴过程混合了冰雹、短时强降水、雷暴大风等多种天气,其主要影响系统为200 hPa高空急流、500 hPa高原槽、700 hPa切变线和西南急流以及地面辐合线。200~500 hPa西北干冷空气顺高原槽南下对本次过程起主导作用,弱的700 hPa西南急流为本地输送了水汽和不稳定能量,中低层切变线和地面辐合线促进了暖湿气流的辐合抬升。此外,“上冷下暖”的气层结构、中低层较强的垂直风切变、气流的低层辐合与高层辐散、适宜的0℃和-20℃层高度、较强的CAPE和K指数、较大的700~500 hPa温度垂直递减率等因素也是本次雷暴天气过程发生发展的关键。   相似文献   

14.
15.
Summary A set of mesoscale numerical simulations using the Emanuel and Kain-Fritsch deep convection schemes has been performed in order to determine the sensitivity of the forecast-especially, the rainfall-to the scheme used. The study is carried out for two cases of heavy precipitation in the coastal zone of the Western Mediterranean, where the topographic forcing is of primary influence. The first one, characterized by an almost stationary synoptic situation, is dominated by warm, moist advection at low levels; the second one, of frontal type, presents a much stronger dynamic forcing at upper levels. Although the comparison attempt is conditioned by the limited number of considered cases, the numerical results provide at least some preliminary conclusions. The inclusion of a convective scheme improves the forecast precipitation, through two actions: directly, producing more realistic rainfall patterns in areas of convection; indirectly, avoiding excessive precipitation in areas with orographic or dynamical upward forcing by drying and stabilizing the atmosphere upstream. In particular, the Kain-Fritsch scheme seems to be more sensitive to the orographic forcing, in agreement with observations.With 21 Figures  相似文献   

16.
以NCEP资料为初始场和侧边界条件,利用WRF模式对东、西天山地形对2015年12月9—12日大暴雪影响进行敏感性试验,从降水强度和分布等方面对比分析模拟结果,探讨地形在暴雪过程中的作用,对成因进行初步研究分析,结果表明:(1)此次强降雪发生是高空西南急流抽吸、低层风切变及风速辐合、偏北风与地形强迫抬升、地面冷锋移动缓慢等共同造成的。(2)此次暴雪天气过程,地形对强降雪的落区、强度影响很大,东、西天山高度与强降雪强度正相关,东、西天山高度降低、强降雪落区沿环流方向移动。(3)地形动力强迫整体上增强次级环流圈。近地面上升速度中心出现在迎风坡山脚至山腰区域,并向两侧递减,与此次大暴雪中心落区以及乌鲁木齐附近测站降雪量分布吻合,东、西天山地形高度降低50%,近地面上升速度中心值减少30%。地形强迫东、西天山峡谷近地面生成辐合中心和辐合线,辐合中心强度与地形高度正相关。(4)地形强迫抬升有加强水汽辐合汇聚的作用,东、西天山地形高度降低50%,水汽通量与水汽通量散度减少30%。  相似文献   

17.
霍飞  江志红  刘征宇 《大气科学》2014,38(2):352-362
本文首先利用最大协方差分析方法,探讨青藏高原积雪与中国降水之间的联系,发现中国夏末秋初(8~10月,简称ASO)降水与前期及同期高原积雪有着显著联系,当春夏季青藏高原西部多雪时,其后ASO中国长江及其以南地区多雨,而东部沿海的狭长区域少雨。进一步引入最大响应估计等方法,研究中国区域降水对高原积雪异常的响应及其可能的物理机制,结果表明,冬春季高原多雪异常可持续到夏季,并通过改变地表热力状况,导致ASO南亚高压减弱,同时在高、低空激发出两支波列:高层200 hPa波列沿中高纬西风急流传播,自高原经蒙古到达日本呈现明显的“负—正—负”位势高度异常传播,日本上空为气旋性异常环流;低层850 hPa波列起于高原,经孟加拉湾至中国南海,沿着西南气流传播,导致台湾附近的反气旋性异常环流,其西侧的偏南气流,将南海丰富的水汽输送至中国南部湖南、广西;而高层中心位于日本的气旋性异常环流西侧的偏北气流利于北方天气尺度扰动向南移动,它们为长江中下游及其以南地区多雨提供了有利条件。进一步计算定常波波数也表明,高层西风急流与低层西南季风气流作为波导,有利于高原上空的扰动沿着高、低空2支通道向东传播。由于东部沿海浙江、福建为正位势高度异常区,低层反气旋性异常环流则抑制了该区域的降水。  相似文献   

18.
Summary A new typhoon model named as GRAPES_TCM is applied to study the pre-landfall erratic track of Typhoon Haitang (2005), which hit China twice in mid-July by making landfall in Taiwan and Fujian provinces consecutively. The model is based on the Chinese Global/Regional Assimilation and PrEdiction System (GRAPES) and put into real-time operational test since 2004. It predicts almost correctly the pre-landfall loop and sharp turn of Haitang and its asymmetric rainfall distribution. Haitang’s erratic track is well explained by the potential vorticity (PV) theory on tropical cyclone motion, with the typhoon center moving toward the area of maximum wave-number 1 (WN1) PV tendency most of the time. Among the terms contributing to the WN1 PV tendency, the horizontal advection of PV is dominant with the diabatic heating and residual terms also being not negligible. A sensitivity experiment is carried out with removal of the Taiwan terrain to determine its importance in the erratic track of Haitang and it is found that the basic erratic feature of Haitang’s track remians unchanged although it tends to have a larger loop and a weaker northward turn, which suggests that Taiwan terrain may not be a key factor here. The sudden change of Haitang’s moving direction is always accompanied by a newly-generated or re-intensified WN1 PV center in the southern semicircle, which circles around the TC center cyclonically afterwards and weakens in the north or northwestern part. A phase-lock WN1 PV forcing related to diabatic heating is proposed to be the major contributor, the importance of which is magnified as it is in phase with the WN1 horizontal advection of PV. The intrusion of mid-level warm and dry air, as well as the existence of a low-level southwesterly jet, is considered to be the main reasons for such a phase-lock of the diabatic heating forcing on the PV tendency field that finally results in the erratic track of Haitang.  相似文献   

19.
引入一维加权平均的谱分析方法定量研究四川地形强迫对该区域降水分布的影响。结果表明:纬向地形和冬季降水谱峰锁相于同一波长(475.8 km),呈共振关系,地形与其他季节降水呈漂移关系,这与经向和纬向上环流变动有关,即冬季纬向环流占主导,纬向地形触发的大气波动对冬季降水策动作用大;夏季降水是各种不同尺度系统相互作用的结果,地形是重要因素之一。经向和纬向地形特征尺度分别为296.8 km和475.8 km,反映了地形强迫的中尺度特征,且纬向地形谱峰比经向大1个数量级,纬向强迫更明显。夏季降水谱峰比冬季大2个数量级,降水系统纬向特征尺度比冬季小约150 km,说明夏季在纬向地形强迫下,降水系统尺度减小的同时其强度大大增加,这在一定程度上可以解释中尺度对流性降水在夏季偏多。四川夏季最大降水位于雅安地区,其地形扰动比四川整体扰动更明显,故产生的降水也更大。夏季降水和经向地形锁相于同一波长(37.1 km),经向地形对雅安夏季强降水起关键作用。  相似文献   

20.
Summary  The development and movement of sea breezes under the influence of a thermally induced synoptic coastal trough and coastal terrain are simulated. These simulations are analyzed in the context of an extensive observational data set. The synoptic trough acts to determine the presence and intensity of the sea breeze through the advection of warm air in the surface layer whereas local topography acts to enhance the breeze and turn the low-level flow. Interaction between the sea breeze circulation and the trough assists trough movement across the coastline. Received June 16, 1999/Revised November 3, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号