首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 175 毫秒
1.
湖北省空中水资源分析   总被引:9,自引:0,他引:9  
向华  周月华  王海军 《湖北气象》2007,26(2):134-138
利用湖北省77站地面大气水汽压资料,计算了湖北省整层大气可降水量,分析了湖北省整层大气年、季平均可降水量的时空分布特征以及湖北省整层大气可降水量与地面降水的关系,发现夏季是湖北省整层大气可降水量最高的一个季节,而从时间分布上看,湖北省自然致雨的概率以春季为最高;从空间分布上看,湖北省自然致雨的概率以鄂西南为最高。通过多雨年与少雨年比较,认为少雨年与多雨年的差异,空中水汽含量偏少是一个方面,但不是主要方面,主要是由于成雨的概率不高。多雨年降雨系统较强,且非常稳定,容易出现连续性降水,系统之间配合较好,利于水汽辐合成雨,少雨年与之相反,但仍有可开发的降雨时段,仍具有开发前景。  相似文献   

2.
湖北省不同资料反演大气可降水量的误差分析   总被引:1,自引:3,他引:1  
王继竹  郭英莲  徐桂荣  付志康  龙利民  韩芳蓉 《气象》2014,40(11):1308-1315
利用常规探空、秒级原始探空、GPS/MET、微波辐射计、GFS再分析资料以及区域中尺度WRF模式的预报场资料计算整层可降水量,对多种资料计算的整层可降水量进行误差特征和原因分析,结果表明:秒级探空和常规探空计算的整层可降水量基本一致。GPS/MET、微波辐射计、GFS以及WRF计算的整层可降水量与常规(秒级)探空的相关系数分别为0.94、0.92、0.93、0.80,有降水时GPS/MET和微波辐射计与常规探空的相关系数分别下降到0.85和0.81,但有降水时GPS/MET误差分布较集中,而有降水时微波辐射计误差显著增大,主要由于1~2 km处水汽密度误差异常增大。除微波辐射计和GFS宜昌站计算的整层可降水量为相对常规探空偏高,其他资料均为偏低,GPS/MET宜昌和恩施站平均偏低3 mm,GFS武汉和恩施站分别偏低1和7 mm,WRF恩施平均偏低2 mm,WRF武汉和宜昌平均偏低6~8 mm。GFS恩施站可降水量偏低是由于GFS资料中恩施地面气压比实际偏低,但其露点温度整层均比常规探空偏高。除GFS恩施站外,GFS武汉、GFS宜昌和WRF 3站的露点温度相对常规探空资料露点温度均表现为:850 hPa以下偏低,850 hPa以上偏高。WRF 12 h预报场的整层可降水量与常规探空整层可降水量的相关性和误差均优于24 h预报场。  相似文献   

3.
利用地面露点温度求算整层大气可降水量的经验关系式,对2002年1月至2007年7月典型月(1月、4月、7月、10月)内蒙古地区117个地面观测站上空的大气可降水量进行计算,分析了近5年内蒙古地区大气可降水量的时空分布特征。分析结果表明,内蒙古7月份是大气可降水量最大的月份,月平均大气可降水量达到2.497cm。内蒙古大气可降水量分布的高值区在阴山到大兴安岭一线沿山的东南侧。大气可降水高值区与年平均降水量分布高值区相比,大气可降水高值区在河套地区有西伸的倾向,而大气可降水量的空间分布梯度在东部的呼伦贝尔有减小的倾向。  相似文献   

4.
四川上空大气可降水量时空分布特征   总被引:4,自引:0,他引:4  
本文利用94个气象台站30 a地面湿度参量资料,采用通过地面水汽压计算大气可降水量的经验公式,分析了四川上空大气可降水量时空分布特征,初步评估了四川地区的空中水资源。结果表明:(1)四川地区空中水资源十分丰富,开发潜力巨大:东部盆地区全年大气可降水量为1178.11 cm、降水效率8.98%;西部高山高原区全年大气可降水量为321.06 cm、降水效率21.16%。(2)大气可降水量和降水效率空间分布明显不均匀,东部盆地区大气可降水量远远高于西部高山高原区,降水效率则是西部高山高原区高于东部盆地区。(3)大气可降水量季节变化明显,一年之中夏季最多,秋季次之,冬季最少。西部高山高原区大气可降水量季节差异尤其显著。(4)30 a来,大气可降水量波动略呈线性增多,大气可降水量年际变化小。   相似文献   

5.
利用襄樊市各县(市)1978-2007年地面水汽压和降水资料,计算分析了该市空中云水资源的时空分布状况,并对其人工增雨潜力进行了评价分析.结果表明:襄樊市年大气可降水量随年代递增呈微弱增多趋势,20世纪90年代、21世纪头7年分别比20世纪70年代末到80年代增加19 cm、22 cm;空中水汽含量月季变化明显,7月最大,8月次之,1月最少;空中水汽含量四季分配不均,夏季远大于冬季,秋季略高于春季;各地自然降水产出率,2月、11月较大,夏季和冬季的12月份较小,7月份最小;增雨潜力四季变化存在较大差异,其中夏季最大,大多在78%以上.秋季9、10月次之,大部在75%以上,冬季2月、11月最小,大部在72%以下;地理分布上,增雨潜力是南部大于北部.  相似文献   

6.
根据1993年我国28个台站地面及高空气象要素资料,拟合出这28个台站所在地区整层大气可降水量同地面湿度参量(地面水汽压、地面露点)关系的经验表达式,并且在此基础上,通过引进地理纬度ψ和海拔高度H两个参量,将经验系数参数化,建立起由地面湿度参量计算整层大气可降水量的经验计算模式.另外还拟合出这些地区整层大气有效水汽含量同可降水量关系的经验表达式,提出一个先由地面湿度参量计算整层大气可降水量,再由此计算出整层大气有效水汽含量的方法.  相似文献   

7.
一、山区人工增水问题的提出新疆是干旱、半干旱地区,降水稀少.占全国面积1/6的新疆,降水总量只占全国的4%;全疆年平均降水量仅150mm,不足全国平均值的1/4.准噶尔盆地中部年降水量只有50mm,南疆塔里木盆地中心年降水量只有10mm左右,年降水量在250mm以上的地区,只占全疆总面积的23%.由此可见,干旱缺水,是新疆一个固有的、长期存在的问题. 解决水的问题,不外乎“开源”和“节流”两种办法.在“开源”方面,长期以来  相似文献   

8.
王娜  顾伟宗  邱粲  孟祥新  周放 《高原气象》2021,40(1):159-168
利用山东省气象站的降水量资料和JRA-55、NCEP/NCAR再分析资料,分析了1962-2016年山东夏季整层大气可降水量、降水转化率、水汽通量及输送路径的分布特征和变化规律,探讨了夏季降水与水汽通量及其散度的相关性和多雨年的水汽来源。结果表明:从常年值来看,山东平均夏季降水量为401.2 mm,大气可降水量为3478.8 mm,降水转化率为11.5%。降水转化率和降水量的时空演变特征更加一致,经向水汽输送和局地水汽通量散度与地面有效降水的关系更加密切,当大气可降水量充沛、外部水汽输送充足并出现局地水汽辐合时,更加有利于山东南部地区降水的发生发展,从而形成夏季降水量和降水转化率气候特征表现出东南地区大于西北地区的空间分布型态。西北太平洋、南海、孟加拉湾和鄂霍茨克海至日本海是造成山东夏季降水异常偏多的重要水汽源地,巴尔喀什湖至贝加尔湖地区是重要的冷空气输送区域;当山东上游盛行偏西风时,自新疆和青藏高原至内蒙古的狭长带出现异常水汽扰动并发展,是由水汽异常引起的水汽通量异常对山东局地降水异常贡献的主要条件。  相似文献   

9.
利用临颍站1970-1999年和2005年人工及自动站观测资料,分析了临颍大气可降水量及降水转化率的时间分布,结果表明:大气可降水量夏季最大,秋季次之;夏秋两季降水转化率为6%~7%。因此,夏秋两季人工增雨潜力较大。  相似文献   

10.
GPS遥感的大气可降水量与局地降水关系的初步分析   总被引:24,自引:1,他引:24       下载免费PDF全文
该文利用2002年“973”项目安徽GPS外场试验和2000年北京GPS/VAPOR试验积累的资料对GPS遥感的大气可降水量与局地降水之间关系进行了定量分析。结果表明:在降水前后, GPS遥感的大气可降水量有很大的变化; 在2002年入梅前后, 其变化甚至大于30mm; 在海拔高的山区台站, 2hGPS遥感的大气可降水量增量和本站是否发生降水关系密切; 多数情况下, 降水出现在GPS遥感的大气可降水量迅速增加的3~4h内; 每小时降水量峰值和GPS遥感的大气可降水量增量的大小有关。  相似文献   

11.
张玉娟 《气象科技》2007,35(1):61-65
用1951年1月至2003年12月NCEP/NCAR再分析格点比湿、垂直速度资料,以及杭州站降水量资料,分析了杭州地区对流层整层可降水量、低层空气垂直上升运动强度以及地面降水量的演变特点。结果发现,可降水量与低层空气垂直上升运动具有显著的年代际变化,且这两者均利于降水的时段,降水量不一定偏多,这说明空中水资源具有很大的开发空间。对杭州6月大气可降水量的长期变化特征与全球同纬度地区作了对比,发现近53年来,杭州地区6月份降水量处于下降趋势。  相似文献   

12.
地基微波辐射计对乌鲁木齐暴雨天气过程的观测分析   总被引:1,自引:0,他引:1  
MP-3000A是一种新型大气探测仪器,可以连续得到从地面到10km高度上高分辨率的温度、相对湿度、水汽廓线以及液态水廓线。通过选取2011年5月1日的微波辐射计观测数据,分析在降水发生前后的水汽密度和液态水含量的变化,发现大气降水与水汽密度和液态水含量有很紧密的联系。大气中的可降水量一般会维持在25mm,当大气中的可降水量值超过50mm,液态水含量值开始增加的时候,发生降水的可能性增大;降水过后,液态水含量若是没有回落到0.0mm以内,在未来的2~3h内还是会发生降水,因此研究微波辐射计探测的大气水汽密度和液态水含量,将有助于提高短时、临近预报的准确度。  相似文献   

13.
为了利用人工增雨技术合理开发六盘山地区空中水资源,首先需要了解该地区水汽场、地形对当地降水的影响和空中水资源的特征及典型降水过程中云系的降水效率。本文采用欧洲中期天气预报中心(ECMWF)发布的高时空分辨率ERA5再分析数据集和中分辨率成像光谱仪(MODIS)数据,通过统计分析研究了该地区水汽的输送、地形强迫作用下的辐合抬升状况和地形云参量特征,并分别利用WRF模式数值模拟的输出结果和ERA5再分析数据,估算2016~2017年夏季自西向东移经该山区的多次混合降水云系的水凝物降水效率。研究结果表明:位于西北地区东部的六盘山地区具有较为丰沛的大气可降水量和更强的水汽输送。受亚洲季风影响,夏季偏南风向六盘山地区输送了丰沛的水汽,山区成为相对湿度高值区;春、夏、秋季午后山区云量(CF)达70%及以上,夏季云水路径(CWP)和云光学厚度(COT)均明显大于周边地区。在夏季降水过程中,地形引起的动力场对降水有明显的影响,在日降水量5 mm以上强度的过程中,气流遇迎风坡地形产生明显辐合抬升,且辐合抬升越强时降水强度越大。夏季典型降水系统中,山区水凝物降水效率平均约为48.1%,空中还有较大部分的水凝物未能成为降水。因此作为水源涵养地的六盘山地区夏季空中水资源相对丰富而降水量不足,空中水资源具有一定开发空间。  相似文献   

14.
利用1948—2009年的NCEP再分析资料获取多年平均大气可降水量,分析我国大气可降水量的空间分布和季节变化,并选用2001年的资料与同期探空资料进行对比验证.结果表明:我国大气可降水量的空间分布总趋势是低纬大于高纬,平原大于高原,沿海地区大于内陆地区;季节变化明显,冬季大气可降水量较小,夏季较大;NCEP资料与探空资料的计算结果基本一致.  相似文献   

15.
This study analyzes the relationships of stable isotopes in precipitation with temperature, air pressure and humidity at different altitudes, and the potential influencing mechanisms of control factors on the stable isotopes in precipitation in Southwest China. There appear marked negative correlations of the δ18O in precipitation with precipitation amount, vapor pressure and atmospheric precipitable water (PW)at the Mengzi, Simao and Tengchong stations on the synoptic timescale; the marked negative correlations between the δ18O in precipitation and the diurnal mean temperature at 400 hPa, 500 hPa, 700 hPa and 850hPa are different from the temperature effect in middle-high-latitude inland areas. In addition, the notable positive correlation between the δ18O in precipitation and the dew-point deficit △Td at different altitudes is found at the three stations. Precipitation is not the only factor generating an amount effect. Probably,the amount effect is related to the variations of atmospheric circulation and vapor origins. On the annual timescale, the annual precipitation amount weighted-mean δ18O displays negative correlations not only with annual precipitation but also with annual mean temperature at 500 hPa. It can be deduced that, in the years with an abnormally strong summer monsoon, more warm and wet air from low-latitude oceans is transported northward along the vapor channel located in Southwest China and generates abnormally strong rainfall on the way. Meanwhile, the abnormally strong condensation process will release more condensed latent heat in the atmosphere, and this will lead to a rise of atmospheric temperature during rainfall but a decline of δ18O in the precipitation. On the other hand, in the years with an abnormally weak summer monsoon, the precipitation and the atmospheric temperature during rainfalls decrease abnormally but the δ18O in precipitation increases.  相似文献   

16.
长江流域水分收支以及再分析资料可用性分析   总被引:9,自引:0,他引:9  
赵瑞霞  吴国雄 《气象学报》2007,65(3):416-427
首先利用实测资料定量计算了长江流域水分收支的各分量,包括降水、径流、蒸发、水汽辐合等,分析其季节循环、年际变化以及线性趋势变化。结果表明,多年平均该流域是水汽汇区,主要来自平均流输送造成的水汽辐合,而与天气过程密切相关的瞬变波则主要造成流域的水汽辐散。蒸发所占比例接近于径流,对流域水分循环十分重要。大部分要素的季节变化和年际变化都很大,只有蒸发和大气含水量的年际变化较小。降水和平均流输送造成的水汽辐合一般在6月达到年内最大,12月达到年内最小,而径流和大气含水量则一般滞后1个月于7月达到年内最大,1月降为年内最小。1958—1983年,夏半年降水略微增加,冬半年略微减少,各月实测径流为弱的增长趋势,但均不显著,年平均蒸发亦无显著的趋势变化。然后将实测资料同ECMWF及NCEP/NCAR再分析资料作进一步对比分析,以检验两套再分析资料对长江流域水分循环的描述能力。在量值上,NCEP/NCAR再分析资料中的降水、蒸发、径流均比实测偏大很多,大气含水量及由平均流输送所造成的水汽辐合则偏小很多;ECMWF再分析资料中的降水量、径流量基本上与实测接近,蒸发量偏大,大气含水量及由平均流输送所造成的水汽辐合偏小,但比NCEP/NCAR再分析资料要接近实测。另外,该两套再分析资料均可以较好地描述长江流域水分收支的季节循环和年际变化,而且同样是ECMWF再分析资料与实测资料的一致性更好。但是两套再分析资料在1958—1983年均存在十分夸张的线性趋势变化,尤其是ECMWF再分析资料。  相似文献   

17.
利用常规观测资料、数值预报物理量场和NCEP/NCAR每日4次全球再分析网格点资料,对2010年03月28日发生在克州境内的一场罕见大风、沙尘暴天气过程进行了诊断分析,探讨了这次强风沙天气的成因,结果表明:高空低压槽和地面冷锋及锋后强冷平流、高空急流的加强及高空形成的次级环流使高空动量有效下传到地面起到了积极的动能作用,大风沙尘上空螺旋度上负下正的垂直分布与大风沙尘的出现有很好的对应关系,大风沙尘发生前后压、温、湿要素出现的剧烈突变对预报也有很好的指示意义。  相似文献   

18.
利用23.8GHz和31.65GHz双频地基微波辐射计观测资料,结合卫星云图、雷达、探空和自记雨量计等资料分析了2005年4月在河南新乡观测的不同云系影响时大气垂直积分含水量(V)和云中液态含水量(L)的演变特征,对4月8日低槽云系影响时V、L的特征进行了分析。结果表明:双频辐射计对空中水汽和液态水反映灵敏,不同天气背景时对应有不同的V、L值分布。云液水含量L的变化与云量的增减有关。降水开始之前,水汽含量V值有明显波动,液态水含量L值也有明显增加,一般增大到0.4mm时即出现降水。这些现象对降水开始有指示意义,可预测云系正处于降水产生的阶段,可应用于人工增雨作业。此外,根据微波辐射计观测资料分析了大气水汽、云液水和地面降水之间的定量关系,云中液态水仅占汽态水的8.7‰左右,落回地面的降水占空中水汽量的18%左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号