首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.  相似文献   

2.
Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated into numerical models with four-dimensional variational (4DVAR) data assimilation. A mesoscale model and its 4DVAR system are used to access the impacts of assimilating GPS-PWV and hourly rainfall observations on the short-range prediction of a heavy rainfall event on 20 June 2002. The heavy precipitation was induced by a sequence of meso-β-scale convective systems (MCS) along the mei-yu front in China. The experiments with GPS-PWV assimilation cluster and also eliminated the erroneous rainfall successfully simulated the evolution of the observed MCS systems found in the experiment without 4DVAR assimilation. Experiments with hourly rainfall assimilation performed similarly both on the prediction of MCS initiation and the elimination of erroneous systems, however the MCS dissipated much sooner than it did in observations. It is found that the assimilation-induced moisture perturbation and mesoscale low-level jet are helpful for the MCS generation and development. It is also discovered that spurious gravity waves may post serious limitations for the current 4DVAR algorithm, which would degrade the assimilation efficiency, especially for rainfall data. Sensitivity experiments with different observations, assimilation windows and observation weightings suggest that assimilating GPS-PWV can be quite effective, even with the assimilation window as short as 1 h. On the other hand, assimilating rainfall observations requires extreme cautions on the selection of observation weightings and the control of spurious gravity waves.  相似文献   

3.
The Atmospheric Infrared Sounder(AIRS) provides twice-daily global observations of brightness temperature, which can be used to retrieve the total column ozone with high spatial and temporal resolution.In order to apply the AIRS ozone data to numerical prediction of tropical cyclones, a four-dimensional variational(4DVAR) assimilation scheme on selected model levels is adopted and implemented in the mesoscale non-hydrostatic model MM5. Based on the correlation between total column ozone and potential vorticity(PV), the observation operator of each level is established and five levels with highest correlation coefficients are selected for the 4DVAR assimilation of the AIRS total column ozone observations. The results from the numerical experiments using the proposed assimilation scheme for Hurricane Earl show that the ozone data assimilation affects the PV distributions with more mesoscale information at high levels first and then influences those at middle and low levels through the so-called asymmetric penetration of PV anomalies.With the AIRS ozone data being assimilated, the warm core of Hurricane Earl is intensified, resulting in the improvement of other fields near the hurricane center. The track prediction is improved mainly due to adjustment of the steering flows in the assimilation experiment.  相似文献   

4.
Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated into numerical models with four-dimensional variational (4DVAR) data assimilation. A mesoscale model and its 4DVAR system are used to access the impacts of assimilating GPS-PWV and hourly rainfall observations on the short-range prediction of a heavy rainfall event on 20 June 2002. The heavy precipitation was induced by a sequence of meso-β-scale convective systems (MCS) along the mei-yu front in China.The experiments with GPS-PWV assimilation successfully simulated the evolution of the observed MCS cluster and also eliminated the erroneous rainfall systems found in the experiment without 4DVAR assimilation. Experiments with hourly rainfall assimilation performed similarly both on the prediction of MCS initiation and the elimination of erroneous systems, however the MCS dissipated much sooner than it did in observations. It is found that the assimilation-induced moisture perturbation and mesoscale low-level jet are helpful for the MCS generation and development. It is also discovered that spurious gravity waves may post serious limitations for the current 4DVAR algorithm, which would degrade the assimilation efficiency, especially for rainfall data. Sensitivity experiments with different observations, assimilation windows and observation weightings suggest that assimilating GPS-PWV can be quite effective, even with the assimilation window as short as 1 h. On the other hand, assimilating rainfall observations requires extreme cautions on the selection of observation weightings and the control of spurious gravity waves.  相似文献   

5.
A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However,the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front,and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently,the heavy rainfall forecast was improved.  相似文献   

6.
利用WRF(Weather research and forecasting)模式及模式模拟的资料,采用Hybrid ETKF-3DVAR(ensemble transform Kalman filter-three-dimensional variational data assimilation)方法同化模拟雷达观测资料。该混合同化方法将集合转换卡尔曼滤波(ensemble transform Kalman filter)得到的集合样本扰动通过转换矩阵直接作用到背景场上,利用顺序滤波的思想得到分析扰动场;然后通过增加额外控制变量的方式把"流依赖"的集合协方差信息引入到变分目标函数中去,在3DVAR框架基础下与观测数据进行融合,从而给出分析场的最优估计。试验结果表明,Hybrid ETKF-3DVAR同化方法相比传统3DVAR可以提供更为准确的分析场,Hybrid方法雷达资料初始化模拟的台风涡旋结构与位置比3DVAR更加接近"真实场",对台风路径预报也有明显改进。通过对比Hybrid S试验与Hybrid F试验发现,Hybrid的正效果主要来源于混合背景误差协方差中的"流依赖"信息,集合平均场代替确定性背景场带来的效果并不显著。  相似文献   

7.
This study explores the use of the hierarchical ensemble filter to determine the localized influence of ob-servations in the Weather Research and Forecasting ensemble square root filtering (WRF-EnSRF) assimilation system. With error correlations between observations and background field state variables considered, the adaptive localization approach is applied to conduct a series of ideal storm-scale data assimilation experiments using simulated Doppler radar data. Comparisons between adaptive and empirical localization methods are made, and the feasibility of adaptive locali-zation for storm-scale ensemble Kalman filter assimilation is demonstrated. Unlike empirical localization, which relies on prior knowledge of distance between observations and background field, the hierarchical ensemble filter provides con-tinuously updating localization influence weights adaptively. The adaptive scheme improves assimilation quality during rapid storm development and enhances assimilation of reflectivity observations. The characteristics of both the observation type and the storm development stage should be considered when identifying the most appropriate localization method. Ultimately, combining empirical and adaptive methods can optimize assimilation quality.  相似文献   

8.
在四维变分同化中运用集合协方差的试验   总被引:1,自引:1,他引:1  
张蕾  邱崇践  张述文 《气象学报》2009,67(6):1124-1132
利用浅水方程模式和模式模拟资料进行数值试验比较3种不同的背景误差协方差矩阵处理方法对四维变分(4DVAR)资料同化的影响.3种背景误差协方差矩阵分别是:(1)对单一变量将背景误差协方差矩阵简化为对角矩阵;(2)将背景误差协方差矩阵的作用简化为高斯过滤;(3)由预报集合生成背景误差协方差矩阵并利用奇异值分解技术解决矩阵的求逆.通过一系列数值试验,比较不同观测密度、不同观测误差下3种背景误差协方差处理方法对4DVAR同化效果的影响.结果表明,背景误差协方差的结构对4DVAR有重大影响.当观测资料的空间密度不够高时,采用对角矩阵得不到满意的结果.高斯过滤方案可以明显改善同化结果,但是对背景误差特征长度比较敏感.第3种方法采用的背景误差协方差矩阵是流型依赖的,而且并不以显式的方式出现在目标函数中.避免了对它求逆的复杂运算.由于做了降维处理,在观测点的密度较低和观测误差较大时可望取得较好的同化结果,同化效果较为稳定.  相似文献   

9.
This paper examines how assimilating surface observations can improve the analysis and forecast ability of a fourdimensional Variational Doppler Radar Analysis System(VDRAS).Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational(4DVAR) data assimilation system.A squall-line case observed during a field campaign is selected to investigate the performance of the technique.A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions.The surface-based cold pool,divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation.Three experiments—assimilating radar data only,assimilating radar data with surface data blended in a mesoscale background,and assimilating both radar and surface observations with a 4DVAR cost function—are conducted to examine the impact of the surface data assimilation.Independent surface and wind profiler observations are used for verification.The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations.It is also shown that the additional surface data can help improve the analysis and forecast at low levels.Surface and low-level features of the squall line—including the surface warm inflow,cold pool,gust front,and low-level wind—are much closer to the observations after assimilating the surface data in VDRAS.  相似文献   

10.
We present the results of the impact of the 3D variational data assimilation (3DVAR) system within the Weather Research and Forecasting (WRF) model to simulate three heavy rainfall events (25–28 June 2005, 29–31 July 2004, and 7–9 August 2002) over the Indian monsoon region. For each event, two numerical experiments were performed. In the first experiment, namely the control simulation (CNTL), the low-resolution global analyses are used as the initial and boundary conditions of the model. In the second experiment (3DV-ANA), the model integration was carried out by inserting additional observations in the model’s initial conditions using the 3DVAR scheme. The 3DVAR used surface weather stations, buoy, ship, radiosonde/rawinsonde, and satellite (oceanic surface wind, cloud motion wind, and cloud top temperature) observations obtained from the India Meteorological Department (IMD). After the successful inclusion of additional observational data using the 3DVAR data assimilation technique, the resulting reanalysis was able to successfully reproduce the structure of convective organization as well as prominent synoptic features associated with the mid-tropospheric cyclones (MTC). The location and intensity of the MTC were better simulated in the 3DV-ANA as compared to the CNTL. The results demonstrate that the improved initial conditions of the mesoscale model using 3DVAR enhanced the location and amount of rainfall over the Indian monsoon region. Model verification and statistical skill were assessed with the help of available upper-air sounding data. The objective verification further highlighted the efficiency of the data assimilation system. The improvements in the 3DVAR run are uniformly better as compared to the CNTL run for all the three cases. The mesoscale 3DVAR data assimilation system is not operational in the weather forecasting centers in India and a significant finding in this study is that the assimilation of Indian conventional and non-conventional observation datasets into numerical weather forecast models can help improve the simulation accuracy of meso-convective activities over the Indian monsoon region. Results from the control experiments also highlight that weather and regional climate model simulations with coarse analysis have high uncertainty in simulating heavy rain events over the Indian monsoon region and assimilation approaches, such as the 3DVAR can help reduce this uncertainty.  相似文献   

11.
Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate derived from radar composite reflectivity has been proposed and tested in a numerical simulation of the Chicago floods of 17–18 July 1996. The methodology is based on the one-dimensional variation scheme (1DVAR) assimilation approach introduced by Fillion and Errico but applied here using the Ka...  相似文献   

12.
We investigated the impact of tuning the length scale of the background error covariance in the Weather Research and Forecasting(WRF) three-dimensional variational assimilation(3DVAR) system.In particular,we studied the effect of this parameter on the assimilation of high-resolution surface data for heavy rainfall forecasts associated with mesoscale convective systems over the Korean Peninsula.In the assimilation of high-resolution surface data,the National Meteorological Center method tended to exaggerate the length scale that determined the shape and extent to which observed information spreads out.In this study,we used the difference between observation and background data to tune the length scale in the assimilation of high-resolution surface data.The resulting assimilation clearly showed that the analysis with the tuned length scale was able to reproduce the small-scale features of the ideal field effectively.We also investigated the effect of a double-iteration method with two different length scales,representing large and small-length scales in the WRF-3DVAR.This method reflected the large and small-scale features of observed information in the model fields.The quantitative accuracy of the precipitation forecast using this double iteration with two different length scales for heavy rainfall was high;results were in good agreement with observations in terms of the maximum rainfall amount and equitable threat scores.The improved forecast in the experiment resulted from the development of well-identified mesoscale convective systems by intensified low-level winds and their consequent convergence near the rainfall area.  相似文献   

13.
GPS掩星反演大气温湿资料具有高垂直分辨率、高精度、受云和降水影响小等优点,针对GRAPES同化预报系统,发展设计了一种既考虑预报模式高度-地形追随垂直坐标不均匀分层特点,又结合掩星反演资料特性的新适应性垂直稀疏化方案。通过个例试验和批量试验,探索了该适应性稀疏化方案对分析预报质量的影响。试验结果表明:选取合适的稀疏参数,新稀疏化方案的GPS掩星反演资料对背景场的调整更加有效,分析场质量更高;位势高度、比湿、温度和风场等预报场的均方根误差均更小;适应性稀疏化方案对改善台风路径预报具有积极作用。批量试验则进一步证实了适应性稀疏化方案对分析场质量有明显的改善作用。  相似文献   

14.
利用国家气象中心中尺度业务数值预报模式GRAPES-MESO v3.0,以2010年6月1~30日为例,开展地面降水率1DVAR(one-dimensional variational assimilation)同化方案在GRAPES-3DVAR(three-dimensional variational assimilation)同化系统中的应用试验研究(ASSI试验),并以未加降水资料同化的试验为对照试验(CNTL试验),以评估全国1h加密雨量资料在模式中同化应用的效果。结果表明:1)在相对湿度背景误差和降水率观测误差范围内,1DVAR同化方案能够对湿度廓线进行有意义的调整,使分析降水向观测降水靠近;ASSI试验对初始温、压、湿、风场的修正主要为正效果;2)对2010年6月17~21日江南、华南连续性降水过程进行了分析,整体而言ASSI试验对逐日及逐时降水强度的预报普遍强于CNTL试验,与实况更加接近;3)ASSI试验对2010年6月1~30日08时起报的0~24 h模式预报的小雨、中雨、大雨、暴雨、大暴雨各个降水量级TS评分及ETS评分相比CNTL试验均有较明显提高,预报偏差也更接近于1;4)ASSI试验较CNTL试验能更好地模拟雨带的分布、雨带演变特征和降水强度的变化;5)对降水所做的典型个例和统计检验分析从不同角度说明了地面降水资料1DVAR同化方案在GRAPES-3DVAR系统中的应用改善了GRAPES-MESO v3.0的降水模拟效果。  相似文献   

15.
中国地形复杂,模式地形与实际观测地形存在一定高度差异,因此设计合理的复杂地形下地面观测资料的同化方案有利于使我国目前仅用作探测手段的地面观测资料(常规地面观测站和地面自动站)在中尺度数值模式中得到充分利用。作者在MM5_3DVAR同化系统中利用近地层相似理论将地面观测资料进行直接三维变分同化分析,并对地面资料同化方案设计中是否需要考虑模式与实际观测站地形高度差异进行探讨研究。研究结果表明:通过近地层相似理论将地面观测资料同化到数值模式能起到一定的作用,并且地面观测资料(温度、 湿度、 风场、 地面气压)中各物理量同化到数值模式都能影响24小时降水数值结果,但各物理量起的作用大小不一样,其中影响最大的是温度,其次为湿度;地面观测资料同化方案设计有必要考虑模式地形与实际观测站地形高度差异,适当考虑这种高度差异能取得较好的结果。  相似文献   

16.
GRAPES模式切线性垂直扩散方案的误差分析和改进   总被引:2,自引:0,他引:2       下载免费PDF全文
针对GRAPES四维变分同化系统的升级, 研究了GRAPES模式垂直扩散方案线性化问题。通过2005年8月7—27日21个个例的批量试验, 发现在GRAPES模式垂直扩散方案源代码的基础上逐句线性化得到的切线性垂直扩散方案即使能通过正确性测试试验, 在少数情况下也会存在很大误差。切线性模式计算的扰动气压场和扰动风场可能出现明显异常, 这种异常与垂直扩散方案中地表动量通量的强非线性有关。如果在切线性垂直扩散方案中忽略地表动量通量扰动, 既可以避免异常的出现, 又不影响其他正常时刻的计算精度。修改后的切线性垂直扩散方案能够在所有变量上一致地提高切线性模式的计算精度。  相似文献   

17.
多普勒雷达资料在冷涡强对流天气中的同化应用试验   总被引:3,自引:0,他引:3  
陈力强  杨森  肖庆农 《气象》2009,35(12):12-20
应用WRF模式的三维变分同化系统(WRF-3DVAR),对沈阳多普勒天气雷达资料在东北冷涡暴雨个例中的同化应用进行了试验.研制了多普勒雷达资料质量控制系统,实现了对径向风和反射率因子的直接同化,不但可以反演中尺度三维气象要素场,而且可以为模式提供初始场.以天气尺度资料为背景场同化多普勒雷达资料,WRF-3DVAR可以较好地反演冷涡中尺度对流系统的三维结构,反演的地面强对流辐散气流及在对流层中层涡旋都符合中尺度系统概念模型,通过与实际地面探测资料进行了对比,风场环流基本接近,同化了雷达资料的气象要素场可为预报业务提供较好的包含中小尺度系统的实时三维分析场.通过冷涡个例同化试验,应用WRF-3DVAR同化雷达资料后,中尺度模式对对流降水的预报总体有正的影响,对强对流中的一些中小尺度雨团的预报也略有改善.  相似文献   

18.
With available high-resolution ocean surface wind vectors retrieved from the U.S. Naval Research Laboratorys WindSat on Coriolis, the impact of these data on genesis and forecasting of tropical storm Henri is examined using the non-hydrostatic, fifth-generation mesoscale model (MM5) of Pennsylvania State University-National Center for Atmospheric Research plus its newly released three-dimensional variational data assimilation (3DVAR) system. It is shown that the assimilation of the WindSat-retrieved ocean surface wind vectors in the 3DVAR system improves the model initialization fields by introducing a stronger vortex in the lower troposphere. As a result, the model reproduces the storm formation and track reasonably close to the observations. Compared to the experiment without the WindSat surface winds, the WindSat assimilation reduced an error between the model simulated track and observations of more than 80 km and also improved the storm intensity by nearly 2 hPa. It suggests that these data could provide early detection and prediction of tropical storms or hurricanes.  相似文献   

19.
Based on a cloud model and the four-dimensional variational (4DVAR) data assimilation method developed by Sun and Crook (1997), simulated experiments of dynamical and microphysical retrieval from Doppler radar data were performed. The 4DVAR data assimilation technique was applied to a cloud scale model with a warm rain parameterization scheme. The 3D wind, thermodynamical, and microphysical fields were determined by minimizing a cost function, defined by the difference between both radar observed radial velocities and reflectivities and their model predictions. The adjoint of the numerical model was used to provide the gradient of the cost function with respect to the control variables. Experiments have demonstrated that the 4DVAR assimilation method is able to retrieve the detailed structure of wind, thermodynamics, and microphysics by using either dual-Doppler or single-Doppler information. The quality of retrieval depends strongly on the magnitude of constraint with respect to the variables. Retrieving the temperature field, cloud water and water vapor is more difficult than the recovery of the wind field and rainwater. Accurate thermodynamic retrieval requires a longer assimilation period. The inclusion of a background term, even mean fields from a single sounding, helped reduce the retrieval errors. Less accurate velocity fields were obtained when single-Doppler data were used. It was found that the retrieved velocity is sensitive to the location of the retrieval domain relative to the radars while the other fields have very little changes. Two radar volumetric scans are generally adequate for providing the evolution, although the use of additional volumes improves the retrieval. As the amount of the observations decreases, the performance of the retrieval is degraded. However, the missing observations can be compensated by adding a background term to the cost function. The technique is robust to random errors in radial velocity and calibration errors in reflectivity. The boundary conditions from the dual-Doppler synthesized winds are sufficient for the retrieval. When the retrieval is mainly controlled by the observations in the regions away from the boundaries, the simple boundary conditions from velocity azimuth display (VAD) analysis are also available. The microphysical retrieval is sensitive to model errors.  相似文献   

20.
针对一次华南暴雨过程,采用WRF区域中尺度模式进行了控制试验和同化试验.利用WRF-3DVAR同化系统同化了常规探空和地面观测资料,分析了两种资料对初值场的影响,以及对降水和各物理量预报效果的影响.结果表明:同化能改进初始场,并可改进暴雨落区和强度预报;同化可提高WRF模式对风场、温度场、高度场以及水汽场的预报能力.但有一定的时效性;同时同化探空和地面资料,比仅同化探空资料对大气低层物理量的预报能力要提高较多.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号