首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 119 毫秒
1.
环境气流及非绝热加热对热带气旋结构和移动的影响   总被引:4,自引:0,他引:4  
设计一个三层的准地转斜压模式,研究了不同结构环境气流和环境非绝热加热场中热带气旋移动路径和结构的特征.数值试验的结果表明:(1)无外界影响下热带气旋向西北方向移动,垂直速度场有明显的螺旋结构;(2)热带气旋主要受基本环境气流引导,非对称环流中的小扰动干扰了热带气旋的移动;(3)非绝热加热场对热带气旋影响较大,热带气旋有向加热中心移动的倾向,同时热带气旋的水平、垂直结构都有较大的变化.  相似文献   

2.
应用NCEP/NCAR再分析资料,对冬季登陆我国的0428和7427号台风过程的冷空气作用和水汽特征进行了研究,结果表明:在初冬季节,东亚大槽引导的冷空气可以到达热带洋面的台风外围;台风与出海高压相向而行, 外围气压梯度增强对台风强度的加强和维持起作用;弱冷空气在低层侵入仍在温暖海面上的台风,气旋扰动加强使台风加强;当强冷空气侵入台风中心中层时会破坏其暖心结构,使其填塞消亡。台风生成于水汽通量辐合带内,其生成和发展引起水汽汇合的扰动,加强水汽的辐合,使水汽辐合带加强;一旦台风脱离水汽辐合带后,不能继续获取大量水汽,则会逐渐减弱消亡;冬季台风过程没有强的水汽输送带。  相似文献   

3.
皮冬勤  管兆勇 《气象科学》2016,36(3):283-290
1998年夏季长江流域降水异常增多,发生了严重的洪涝灾害。本文利用1979-2011年的NCEP再分析月平均资料、Hadley中心的月平均海表温度资料和中国160站降水资料,分析了1998年夏季长江流域强降水的成因。结果表明:1998年夏季,印度尼西亚地区为非绝热加热正异常区,而其东北侧海域的非绝热加热为负异常或较小的正异常,由此形成了西南-东北向的异常加热梯度,使得印度尼西亚地区大气受到异常加热,低层辐合,高层辐散,而在热带西太平洋地区则为低层辐散,高层辐合,形成了西南-东北向垂直环流圈。热带西太平洋地区的低层异常辐散气流可作为异常涡度源,强迫出位于南海中国地区的反气旋性环流。同时,来自印度尼西亚北侧的扰动能量在南海地区辐合,有利于南海地区这一异常反气旋环流的维持。南海地区异常反气旋环流西北侧的西南气流,携带大量热带西太平洋及南海地区的水汽,输送到我国南方地区,并与控制中国东北地区的气旋性环流西南侧的西北气流交汇辐合于长江流域,有利于降水异常事件的产生。  相似文献   

4.
利用T213、ECMWF数值预报资料和热带气旋历史资料,对1117号强台风“纳沙”造成广西持续大范围暴雨的成因进行分析,造成广西大范围暴雨的主要原因是:“纳沙”登陆后,副热带高压强大,台风环流与副热带高压之间气压梯度增大,其右侧辐合加强,深厚偏东气流给台风输送了大量的水汽和能量,西南风急流与副高西侧强东南气流形成辐合,北方冷空气从低层南下,东北风与台风后部的东南风形成切变产生对流降水;加上台风自身带来的降水、急流降水以及冷空气入侵降水三部分相接,组成了“纳沙”影响期间的持续性强降水过程.  相似文献   

5.
非绝热加热对热带气旋非对称结构影响的数值试验   总被引:4,自引:4,他引:4  
利用含非绝热加热强迫的正压涡度方程。将非绝热加热作适当的参数化处理。对初始对称 热带气旋作了一系列数值试验,结果表明:不仅β项、平流项在热带气旋非对称结构的形成中有重要作用,而且非绝热加热对热带气旋的非对称结构亦有重要影响,从而验证了非绝热加热是热带气旋非对称结构形成的一种可能机制的结论。  相似文献   

6.
2003年夏季梅雨期强弱江淮气旋成因对比分析   总被引:5,自引:4,他引:1       下载免费PDF全文
在位涡框架下,利用位涡反演方法,对2003年夏季梅雨期间沿梅雨锋东移的一次弱江淮气旋的形成和维持过程进行了分析,并与强气旋的结果进行了对比。结果表明:对流层中高层的扰动在低层气旋中心位势高度降低或地面低压减压中起主要作用,而中低层的扰动起反作用,低层热力异常呈现一个弱的周期性作用。但在强江淮气旋的形成和发展过程中,中高层强迫对低层气旋发展期间的加深或地面低压的减压几乎没有贡献,中低层的非绝热加热是低层气旋加深或地面低压下降的主要贡献者。  相似文献   

7.
热带气旋"黄蜂"动热力特征演变的模拟分析   总被引:9,自引:1,他引:8  
以"中国登陆台风试验"项目的目标热带气旋"黄蜂"为对象,用高分辨数值模式成功模拟了其近海加强和登陆减弱的过程,从定量和时间演化角度细致分析了热带气旋(TC)各阶段的动、热力特征,包括对流加热特性、温湿结构、稳定度、涡散度、垂直运动、垂直环流、水平环流等基本动、热力因子的时空结构特征,揭示了该热带气旋的大量结构特点,如对流加热的强盛和非对称性、强热带风暴的无眼结构、低层的东暖西冷结构、涡度的准圆形对称结构、东/西侧环流正/斜压性的差异、低层辐合和上升运动的准周期振荡等等.这些结构特征的揭示对深入细致地研究和认识南海热带气旋的特点和演变机理具有重要学术意义.  相似文献   

8.
作者对2005年1月初北半球一次强冷空气爆发、越过赤道并影响南半球天气作了较深入的分析.此次冷空气活动引发了东亚的寒潮和大风降温;跨越赤道,在那里形成强烈扰动和强对流天气;并进入南半球,在澳大利亚夏季风槽中激发了强的对流活动,使季风低压发展增强,达到了热带气旋的强度;该热带低压又正好处于南半球中高纬西风槽前,沿槽前西北气流向南深入内陆,在澳大利亚的西澳、北澳和昆士兰等州引发了强降水,进一步确认了我国学者李宪之早在上世纪30年代提出的冬半球强冷空气爆发可以越过赤道并激发夏半球对流活动与热带气旋这一精辟的观点.此外,还揭示出冷空气活动使Hadley环流增强,利于冬季风维持.最后提出了伴有强烈扰动的冬季风环流系统的模型.  相似文献   

9.
贾小龙  李崇银 《气象学报》2007,65(6):837-855
利用中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG)的大气环流模式(SAMIL-R42L9)研究了热带大气季节内振荡(MJO)的模拟对积云对流参数化方案的敏感性,结果表明两种对流参数化方案——湿对流调整方案(MCA)和Zhang-McFarlane(1995年)方案对MJO的模拟能力有明显的差异。MCA方案较好地模拟出了MJO的基本特征,包括季节内的时间尺度和向东的传播。Zhang-McFarlane(1995年)对流方案模拟的MJO振幅非常弱,而且缺乏连续的传播特征,在MJO的演变过程中弱的低层水汽辐合使MJO难以维持和传播。两种不同的对流参数化方案产生的非绝热加热垂直廓线明显不同,Zhang-McFarlane(1995年)方案产生的非绝热加热强度在对流层各层过于一致,没有明显的最大加热层,而且平均的加热强度太弱,这是该方案难以模拟出合理的MJO的主要原因之一。因此,模式对热带大气季节内振荡的模拟能力很大程度上依赖于所使用的积云对流参数化方案,当积云参数化方案改变时模式模拟的MJO也发生明显变化,而非绝热加热廓线是对流参数化方案影响MJO模拟的一个重要影响因子。3种不同的非绝热加热垂直分布的敏感性试验表明,当最大的加热层位于对流层中低层尤其是对流层中层时,更容易产生出与观测较为接近的季节内的扰动,而当最大加热位于对流层高层时,更易于激发出西传的扰动。  相似文献   

10.
针对2005年7月22日的发生于华北的暴雨中尺度对流系统,在用中尺度ARPS模式数值模拟和分析云场、动力场以及微物理过程释放的潜热垂直分布和作用特征的基础上,通过改变主要微物理过程潜热做敏感性数值试验,研究和分析了潜热对云系发展演变、云系宏观动力场、水汽场、云场和降水的影响,总结出云暖区潜热的影响途径。结果表明,在对流云团中,5000 m以上微物理过程起加热作用,以下起冷却作用。不同物理过程潜热加热的云层高度不同:高层起加热作用的主要为水汽凝结、云冰初生和雪凝华增长、霰撞冻云水过程;中层起加热/冷却作用的主要为水汽凝结、霰/雹融化过程;低层雨水的蒸发过程起冷却作用。微物理过程潜热通过影响云系和降水发展过程、云系动力场,进而影响水汽场、云场和降水。忽略霰/雹融化潜热,相当于增加云系暖区潜热,促进了低层气旋性环流的形成,增强了低层动力场的辐合,使得低层辐合区增多、增强;中低层水汽通量辐合区增多、面积扩大,明显地促进了对流云系的发展,增大了含水量和覆盖范围,云系的降水量显著增加,强降水区覆盖范围扩大。即使减少20%的凝结潜热,云系的发展也受到极大抑制,没有气旋性环流生成,低层辐合区缩小、强度降低,水汽通量辐合区也同样缩小、强度降低,云系对流发展减弱、含水量降低,因此,降水量大为减小,降水范围也显著缩小。此外,微物理过程潜热还影响到此次中尺度对流系统发展演变过程,改变了云系的形态、影响到系统的移动和系统中对流云团的发展强度和分布情况。  相似文献   

11.
The purpose of this paper is to explore how a tropical cyclone forms from a pre-existing large-scale depression which has been observed and associated with cross-equatorial surges in the western North Pacific. Tropical cyclone Bilis(2000) was selected as the case to study.The research data used are from the results of the non-hydrostatic mesoscale model(MM5),which has successfully simulated the transformation of a pre-existing weak large-scale tropical depression into a strong tropical storm.The scale separation technique is used to separate the synoptic-scale and sub-synoptic-scale fields from the model output fields. The scale-separated fields show that the pre-existing synoptic-scale tropical depression and the subsynoptic scale tropical cyclone formed later were different scale systems from beginning to end.It is also shown that the pre-existing synoptic-scale tropical depression did not contract to become the tropical cyclone. A series of weak,sub-synoptic-scale low and high pressure systems appeared and disappeared in the synopticscale depression,with one of the low systems near the center of the synoptic-scale depression having deepened to become the tropical cyclone. The roles of the synoptic-scale flow and the sub-synoptic scale disturbances in the formation of the tropical cyclone are investigated by diagnoses of the scale-separated vertical vorticity equation.The results show that the early development of the sub-synoptic scale vortex was fundamentally dependent on the strengthening synoptic-scale environmental depression.The depression was strengthened by cross-equatorial surges,which increased the convergence of the synoptic-scale depression at low levels and triggered the formation of the tropical cyclone.  相似文献   

12.
2003年夏季梅雨期一次强气旋发展的位涡诊断分析   总被引:10,自引:2,他引:8  
赵兵科  吴国雄  姚秀萍 《大气科学》2008,32(6):1241-1255
通过位涡诊断和回推轨迹分析, 对2003年夏季梅雨期间一次强江淮气旋的发展过程进行了研究。结果表明: 气旋发展初期, 非绝热加热在气旋的低层发展中起了主要作用, 随后由于高层水平平流的增强, 通过垂直平流使高低层大值位涡耦合在一起, 从而使气旋迅速发展。从中、 高、 低层对位涡柱形成所起的作用来看, 低层主要是非绝热加热, 中层是垂直平流, 而高层主要是水平平流; 从构成气旋的气流来说, 在气旋迅速发展阶段, 低层主要以西南暖湿气流为主, 高层 (500 hPa以上) 主要以沿急流轴下降的高层干冷气流和对流层底层流向气旋东北部并迅速上升的暖湿气流为主。高低层冷暖空气的相互作用主要发生在600 hPa及以上层次, 因凝结加热引起的垂直运动通过垂直平流可能在冷暖气流相互作用和上下大位涡的垂直耦合中发挥了重要作用。  相似文献   

13.
GLOBAL ATMOSPHERIC SEASONAL-MEAN HEATING: DIABATIC VERSUS TRANSIENT HEATING   总被引:1,自引:0,他引:1  
With the ERA40 reanalysis daily data for 1958-2001, the global atmospheric seasonal-mean diabatic heating and transient heating are computed by using the residual diagnosis of the thermodynamic equation. The three-dimensional structures for the two types of heating are described and compared. It is demonstrated that the diabatic heating is basically characterized by strong and deep convective heating in the tropics, shallow heating in the midlatitudes and deep cooling in the subtropics and high-latitudes. The tropical diabatic heating always shifts towards the summer hemisphere, but the midlatitude heating and high-latitude cooling tend to be strong in the winter hemisphere. On the other hand, the transient heating due to transient eddy transfer is characterized by a meridional dipole pattern with cooling in the subtropics and heating in the mid- and high-latitudes, as well as by a vertical dipole pattern in the midlatitudes with cooling at lower levels and heating in the mid- and higher-levels, which gives rise to a sloped structure in the transient heating oriented from the lower levels in the high latitudes and higher levels in the midlatitudes. The transient heating is closely related to a storm track along which the transient eddy activity is much stronger in the winter hemisphere than in the summer hemisphere. In Northern Hemisphere, the transient heating locates in the western oceanic basin, while it is zonally-oriented in Southern Hemisphere, for which the transient heating and cooling are far separated over South Pacific during the cold season. The transient heating tends to cancel the diabatic heating over most of the globe. However, it dominates the mid-tropospheric heating in the midlatitudes. Therefore, the atmospheric transient processes act to help the atmosphere gain more heat in the high-latitudes and in the mid-troposphere of midlatitudes, reallocating the atmospheric heat obtained from the diabatic heating.  相似文献   

14.
李靓  胡啸  王小光  康志明 《气象》2016,42(11):1325-1334
利用常规气象观测资料、NCEP/NCAR 1°×1°的月平均再分析资料、NOAA卫星观测的OLR资料和中国气象局台风年鉴资料,对2014年8月西北太平洋和南海无TC生成的原因进行了诊断分析,结果表明:极地冷空气南侵,造成8月上中旬副热带高压偏东偏南,下旬冷空气减弱,副热带高压偏西偏南,致使副热带高压南侧偏东信风与赤道西风的汇合区位置异常偏南;马斯克林高压偏弱,导致索马里急流和东印度洋越赤道气流也弱,印度半岛中低层季风低压或季风槽极其不活跃。澳大利亚高压路径偏东或偏西和势力偏弱,则南海南部越赤道气流亦弱。8月上中旬台风主要源地的海表温度明显偏低,不能酿成低层高温高湿的大气;月内西北太平洋和南海大气的对流活动很弱,层结较稳定、风速垂直切变大,均不利于TC发生发展。在南海到菲律宾以东洋面低层为弱的正涡度区和负散度区,有辐合上升运动,但垂直速度很小,不能满足TC尺度的环流发生和发展;南亚高压和副高南侧东风扰动造成对流层高层为弱上升区,不能形成高空辐散机制,不利于上升气流维持和加强。故此,8月在异常偏南的ITCZ中生成的4个热带扰动最终均未能发展成台风。  相似文献   

15.
利用位涡方程和热力适应原理,讨论了因非绝热加热的空间不均匀性导致的大气 动力特征的变化,进一步阐明了副热带地区的深对流凝结潜热加热的垂直非均匀性使副热带高压在中低空出现在热源区以东,在高空出现在热源区以西。在此基础上,深入研究了水平非均匀加热对大气环流的影响。结果表明加热区以北,虽然非绝热加热消失,但存在加热的水平梯度在西风环流的背景下在高低层造成深厚的负涡度强迫。因而高层热源北部边界附近的西风向南偏转进入加热区,造成加热区北部边界及其以北发生次级辐散;低层热源区的南风发生反气旋偏转,汇入加热区外的西风气流中,造成低层加热区北部边界及其以北发生次级辐合。结果该区域产生了垂直上升运动及负的涡度强迫源,对应着异常强烈的反气旋环流。该负涡度强迫源还通过能量频散,在西风带中以Rossby波的形式向中高纬传播,影响中高纬地区的异常环流型。  相似文献   

16.
利用位涡方程和热力适应原理,讨论了因非绝热加热的空间不均匀性导致的大气动力特征的变化,进一步阐明了副热带地区的深对流凝结潜热加热的垂直非均匀性使副热带高压中低空出现在低源区以东,在高空出现在热源区以西。在此基础上,深入研究了水平非均匀加热对大气环流的影响。结果表明加热区以北,虽然非绝热加热消失,但存在加热的水平梯度在西风环流的背景下在高低层造成深厚的负涡度强迫。因而高层热源北部边界附近的西风向南偏转进入加热区,造成加热区北部边界及其以北发生次级辐散;低层热源区的南风发生反气旋偏转,汇入加热区外的西风气流中,造成低层加热区北部边界及其以北发生次级辐合。结果该区域产生了垂直上升运动及负的涡度强迫源,对应着异常强烈的反气旋环流。该负涡强度迫源还通过能量散射,在西风带中以Rossby波的形式向中高纬传播,影响中高纬地区的异常环流型。  相似文献   

17.
1. IntroductionMuch attention has been paid to the role playedby diabatic heating in the genesis and intensificationof tropical cyclone (TC). Based on a two-dimensionalprimitive equation model, Li (1984) proposed that theevolution of TC should be different if the maximumheating appears at different height. Yang et al. (1995)found that abrupt intensification of TC at the mid-latitudes is closely related to the vertical structure ofconvective heating. May and Holland (1998) suggestedthat the…  相似文献   

18.
南北半球大气环流与气候的相互作用   总被引:10,自引:2,他引:10  
本文研究了冬半球大气环流对夏半球热带气旋及降水的影响。发现近百年北大西洋、北太平洋、北印度洋热带气旋数的变化分别与南大西洋高压、澳洲高压以及南印度洋高压的强弱有明显的关系。南半球澳洲附近、南太平洋、南印度洋的热带气旋数的变化与北半球亚洲大陆的冷空气活动有密切的联系。 冬半球的环流对夏半球降水的影响也很显著。我国旱涝与澳洲高压强度相关密切,而南半球印尼及澳洲附近的降水则与北半球西伯利亚高压的强度和位置的变化有较密切的联系。 在两个半球的相互作用中,冬半球经常处于主动的地位,而夏半球的气候则深受其影响。并且在东亚到澳洲一带这种两个半球间的作用最为活跃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号