首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 17-yr equilibrium simulations using the NCAR CCM3 (T42 resolution) were performed to investigate the regional scale impacts of land cover change and increasing CO2 over China. Simulations with natural and current land cover at CO2 levels of 280, 355, 430, and 505 ppmv were conducted. Results show statistically significant changes in major climate fields (e.g. temperature and surface wind speed) on a 15-yr average following  相似文献   

2.
中国区域陆面覆盖变化的气候效应模拟研究   总被引:3,自引:0,他引:3  
基于MODIS和CLCV陆面覆盖资料,利用区域气候模式RegCM4分别进行两组24年(1978-2001年)的数值模拟试验,研究中国区域陆面覆盖变化对区域气候的影响。结果表明,以荒漠化和植被退化为主要特征的陆面覆盖变化通过改变陆面能量、水分平衡与大尺度环流进而对气候要素产生重要影响。夏季,中国南方地区普遍降温,季风边缘区及藏北高原气温升高,降水减少;季风边缘区与西北地区气温年际波动加剧;内蒙古中东部地区西南风增强,进而水汽输送增强,一定程度上增加了该地区降水。冬季,中国东部地区偏北气流增强,更多干燥冷空气南下,使得黄河以南地区降水减少、气温降低。  相似文献   

3.
Using a climate model with a sophisticated land surface scheme, simulations were conducted to explore the impact of increases in leaf-level carbon dioxide (CO2) on evaporation, temperature and other land surface quantities. Fifty-one realizations were run, for each of four Januarys and four Julys for CO2 concentrations at leaf-level of 280, 375, 500, 650, 840 and 1,000 ppmv. Atmospheric CO2 concentration was held constant at 375 ppmv in all experiments. Statistically significant decreases in evaporation and increases in temperature occur in specific regions as leaf-level CO2 is increased from 280 to 375 ppmv. These same areas expand geographically, and the magnitude of the changes increase as leaf-level CO2 is increased further suggesting that changes are caused by the increase in leaf-level CO2 and are not internal model variability. As leaf-level CO2 is increased further, larger areas of the continental surface are affected by increasing amounts and a statistically significant change in precipitation is seen. The increase in leaf-level CO2 from 280 ppmv to 375 ppmv causes statistically significant changes in the evaporation over 12% of continental surfaces in July. This increases to 25% at 500 ppmv, 35% at 650 ppmv, 41% at 840 ppmv and 47% at 1,000 ppmv. This affects temperature and rainfall by similar amounts, generally in coincident regions. An analysis of these results over key regions shows that the probability density functions of the latent heat flux and temperature are affected non-uniformly. There is a shift in the latent heat flux probability density function to lower values, mainly through the reduction in the upper tail of the distribution. The temperature probability density function shifts to higher values, mainly through an increase in the upper tail of the distribution indicating that the impact is focussed on extremes. Given that there are a suite of well evaluated land surface models that include the biogeochemical effects of increasing CO2 we suggest that the inclusion of such a model should be a recommended component of climate models used in future assessment reports by the Intergovernmental Panel on Climate Change.  相似文献   

4.
Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative Last Glacial Maximum (LGM) climate response to different mechanisms over China. Model simulations of the present day (PD) climate and the LGM climate change are in good agreement with the observation data and geological records, especially in the simulation of precipitation change. Under the PD and LGM climate, changes of earth orbital parameters have a small influence on the annual mean temperature over China.However, the magnitude of the effect shows a seasonal pattern, with a significant response in winter. Thus,this influence cannot be neglected. During the LGM, CO2 concentration reached its lowest point to 200 ppmv. This results in a temperature decrease over China. The influences of CO2 concentration on climate show seasonal and regional patterns as well, with a significant influence in winter. On the contrary, CO2concentration has less impact in summer season. In some cases, temperature even increases with decreasing in CO2 concentration. This temperature increase is the outcome of decrease in cloud amount; hence increase the solar radiation that reached the earth's surface. This result suggests that cloud amount plays a very important role in climate change and could direct the response patterns of some climate variables such as temperature during certain periods and over certain regions. In the Tibetan Plateau, the temperature responses to changes of the above two factors are generally weaker than those in other regions because the cloud amount in this area is generally more than in the other areas. Relative to the current climate, changes in orbital parameters have less impact on the LGM climate than changes in CO2 concentration. However,both factors have rather less contributions to the climate change in the LGM. About 3%-10% changes in the annual mean temperature are contributed by CO2.  相似文献   

5.
近20年中国土地利用变化影响区域气候的数值模拟   总被引:2,自引:0,他引:2  
陈海山  李兴  华文剑 《大气科学》2015,39(2):357-369
区域尺度土地利用/土地覆盖变化(LUCC)的气候效应以及土地覆盖数据的不确定性, 一直是LUCC研究不可忽视的关键问题。本研究基于最新的遥感资料, 采用新的区域气候模式RegCM4.0, 探讨了1990年至2010年中国LUCC对区域气候的影响。结果表明, 中国区域LUCC使得局地气温和日较差发生了显著改变, 而降水及低层环流场变化不显著;LUCC的影响存在季节性差异, 其中, 夏秋季响应程度较大且主要体现在边界层内。就LUCC对气候影响的机理各地区有所不同, 华北地区LUCC的气候效应主要受蒸散发作用主导, 而长江流域则由反照率与蒸散发共同作用。这些结果均说明, 较短时间尺度的LUCC气候效应主要体现在其局地范围, 且在不同的季节有所差异。  相似文献   

6.
Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative Last Glacial Maximum (LGM) climate response to different mechanisms over China. Model simulations of the present day (PD) climate and the LGM climate change are in good agreement with the observation data and geological records, especially in the simulation of precipitation change. Under the PD and LGM climate,changes of earth orbital parameters have a small influence on the annual mean temperature over China.However, the magnitude of the effect shows a seasonal pattern, with a significant response in winter. Thus,this influence cannot be neglected. During the LGM, CO2 concentration reached its lowest point to 200 ppmv. This results in a temperature decrease over China. The influences of CO2 concentration on climate show seasonal and regional patterns as well, with a signi cant influence in winter. On the contrary, CO2 concentration has less impact in summer season. In some cases, temperature even increases with decreasing in CO2 concentration. This temperature increase is the outcome of decrease in cloud amount; hence increase the solar radiation that reached the earth's surface. This result suggests that cloud amount plays a very important role in climate change and could direct the response patterns of some climate variables such as temperature during certain periods and over certain regions. In the Tibetan Plateau, the temperature responses to changes of the above two factors are generally weaker than those in other regions because the cloud amount in this area is generally more than in the other areas. Relative to the current climate, changes in orbital parameters have less impact on the LGM climate than changes in CO2 concentration. However,both factors have rather less contributions to the climate change in the LGM. About 3%-10% changes in the annual mean temperature are contributed by CO2.  相似文献   

7.
Summary Using a high resolution regional climate model we perform multiple January simulations of the impact of land cover change over western Australia. We focus on the potential of reforestation to ameliorate the projected warming over western Australia under two emission scenarios (A2, B2) for 2050 and 2100. Our simulations include the structural and physiological responses of the biosphere to changes in climate and changes in carbon dioxide. We find that reforestation has the potential to reduce the warming caused by the enhanced greenhouse effect by as much as 30% under the A2 and B2 scenarios by 2050 but the cooling effect declines to 10% by 2100 as CO2-induced warming intensifies. The cooling effect of reforestation over western Australia is caused primarily by the increase in leaf area index that leads to a corresponding increase in the latent heat flux. This cooling effect is localized and there were no simulated changes in temperature over regions remote from land cover change. We also show that the more extreme emission scenario (A2) appears to lead to a more intense response in photosynthesis by 2100. Overall, our results are not encouraging in terms of the potential to offset future warming by large scale reforestation. However, at regional scales the impact of land cover change is reasonably large relative to the impact of increasing carbon dioxide (up to 2050) suggesting that future projections of the Australian climate would benefit from the inclusion of projections of future land cover change. We suggest that this would add realism and regional detail to future projections and perhaps aid detection and attribution studies.  相似文献   

8.
北方土地利用变化对中国夏季气候可能影响的敏感性试验   总被引:1,自引:0,他引:1  
为考察中国北方地区当代土地利用变化对中国夏季气候的可能影响,以区域气候模式RegCM3为模拟工具,利用1992年和1999年的土地利用资料,进行了中国地区植被覆盖变化的敏感性试验。结果表明,中国北方地区土地利用/植被覆盖的改变,将通过影响大气环流和改变陆地—大气或植被—大气之间的能量平衡状态等,对降水和气温等产生较大影响。  相似文献   

9.
The impact of land cover change on the atmospheric circulation   总被引:9,自引:1,他引:9  
 The NCAR Community Climate Model (version 3), coupled to the Biosphere Atmosphere Transfer scheme and a mixed layer ocean model is used to investigate the impact on the climate of a conservative change from natural to present land cover. Natural vegetation cover was obtained from an ecophysiologically constrained biome model. The current vegetation cover was obtained by perturbing the natural cover from forest to grass over areas where land cover has been observed to change. Simulations were performed for 17 years for each case (results from the last 15 years are presented here). We find that land cover changes, largely constrained to the tropics, SE Asia, North America and Europe, cause statistically significant changes in regional temperature and precipitation but cause no impact on the globally averaged temperature or precipitation. The perturbation in land cover in the tropics and SE Asia teleconnect to higher latitudes by changing the position and strength of key elements of the general circulation (the Hadley and Walker circulations). Many of the areas where statistically significant changes occur are remote from the location of land cover change. Historical land cover change is not typically included in transitory climate simulations, and it may be that the simulation of the patterns of temperature change over the twentieth century by climate models will be further improved by taking it into account. Received: 27 May 1999 / Accepted: July 2000  相似文献   

10.
The Yangtze River Delta Economic Belt is one of the most active and developed areas in China and has experienced quick urbanization with fast economic development. The weather research and forecasting model (WRF), with a single-layer urban canopy parameterization scheme, is used to simulate the influence of urbanization on climate at local and regional scales in this area. The months January and July, over a 5-year period (2003–2007), were selected to represent the winter and summer climate. Two simulation scenarios were designed to investigate the impacts of urbanization: (1) no urban areas and (2) urban land cover determined by MODIS satellite observations in 2005. Simulated near-surface temperature, wind speed and specific humidity agree well with the corresponding measurements. By comparing the simulations of the two scenarios, differences in near-surface temperature, wind speed and precipitation were quantified. The conversion of rural land (mostly irrigation cropland) to urban land cover results in significant changes to near-surface temperature, humidity, wind speed and precipitation. The mean near-surface temperature in urbanized areas increases on average by 0.45?±?0.43°C in winter and 1.9?±?0.55°C in summer; the diurnal temperature range in urbanized areas decreases on average by 0.13?±?0.73°C in winter and 0.55?±?0.84°C in summer. Precipitation increases about 15% over urban or leeward areas in summer and changes slightly in winter. The urbanization impact in summer is stronger and covers a larger area than that in winter due to the regional east-Asian monsoon climate characterized by warm, wet summers and cool, dry winters.  相似文献   

11.
This study assesses the sensitivity of the fully coupled NCAR-DOE PCM to three different representations of present-day land cover, based on IPCC SRES land cover information. We conclude that there is significant model sensitivity to current land cover characterization, with an observed average global temperature range of 0.21 K between the simulations. Much larger contrasts (up to 5 K) are found on the regional scale; however, these changes are largely offsetting on the global scale. These results show that significant biases can be introduced when outside data sources are used to conduct anthropogenic land cover change experiments in GCMs that have been calibrated to their own representation of present-day land cover. We conclude that hybrid systems that combine the natural vegetation from the native GCM datasets combined with human land cover information from other sources are best for simulating such impacts. We also performed a prehuman simulation, which had a 0.39 K ~higher average global temperature and, perhaps of greater importance, temperature changes regionally of about 2 K. In this study, the larger regional changes coincide with large-scale agricultural areas. The initial cooling from energy balance changes appear to create feedbacks that intensify mid-latitude circulation features and weaken the summer monsoon circulation over Asia, leading to further cooling. From these results, we conclude that land cover change plays a significant role in anthropogenically forced climate change. Because these changes coincide with regions of the highest human population this climate impact could have a disproportionate impact on human systems. Therefore, it is important that land cover change be included in past and future climate change simulations.  相似文献   

12.
Using a regional climate model MM5 nested with an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate responses of the mid-Holocene climate to different factors over China. Model simulations of the mid-Holocene climate change, especially the precipitation change, are in good agreement with the geologic records. Model results show that relative to the present day (PD) climate, the temperature over China increased in the mid-Holocene, and the increase in summer is more than that in winter. The summer monsoon strengthened over the eastern China north of 30°N, and the winter monsoon weakened over the whole eastern China; the precipitation increased over the west part of China, North China, and Northeast China, and decreased over the south part of China.The sensitive experiments indicate that changes in the global climate (large-scale circulation background),vegetation, earth orbital parameter, and CO2 concentration led to the mid-Holocene climate change relative to the PD climate, and changes in precipitation, temperature and wind fields were mainly affected by change of the large-scale circulation background, especially with its effect on precipitation exceeding 50%. Changes in vegetation resulted in increasing of temperature in both winter and summer over China, especially over eastern China; furthermore, its effect on precipitation in North China accounts for 25% of the total change.Change in the orbital parameter produced the larger seasonal variation of solar radiation in the mid-Holocene than the PD, which resulted in declining of temperature in winter and increasing in summer; and also had an important effect on precipitation with an effect equivalent to vegetation in Northeast China and North China. During the mid-Holocene, CO2 content was only 280×10-6, which reduced temperature in a very small magnitude. Therefore, factors affecting the mid-Holocene climate change over China from strong to weak are large-scale circulation pattern, vegetation, earth orbital parameter, and CO2 concentration.  相似文献   

13.
The Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 3 (RegCM3) is used to investigate the climate effects of land use change related to agriculture over China. The model is driven by the European Center for Medium-range Weather Forecast 40-yr Re-Analysis (ERA40)data. Two sets of experiments for 15 yr (1987-2001) are conducted, one with the potential vegetation cover and the other the agricultural land use (AG). The results show that the AG effects on temperature are weak over northern China while in southern China a significant cooling is found in both winter (December-January-February) and summer (June-July-August). The mean cooling in the sub-regions of South China (SC) in winter and the sub-regions of Southeast (SE) China in summer are found to be the greatest,up to 0.5℃ and 0.8℃, respectively. In general, the change of AG leads to a decrease of annual mean temperature by 0.5-1℃ in southern China. Slight change of precipitation in western China and a decrease of precipitation in eastern China are simulated in winter, with the maximum reduction reaching -7.5% over SE. A general decrease of precipitation over northern China and an increase over southern China are simulated in summer,in particular over SE where the increase of precipitation can be up to 7.3%. The AG effects on temperature and precipitation show strong interannual variability. Comparison of the climate effects between AG and the present-day land use (LU) is also performed. In southern China, the ratio of temperature (precipitation)changes caused by AG and LU is greater than (closer to) the ratio of the number of grid cells with changed vegetation cover due to AG and LU variations.  相似文献   

14.
利用全球模式CCM3嵌套区域模式MM5的方法研究了末次盛冰期海陆分布、植被和大尺度环流背景场变化对末次盛冰期气候变化的作用。模式结果表明:与现代相比,末次盛冰期东亚地区海陆分布发生的变化造成这一地区冬季减温,夏季增温,这个变化对中国东部近海地区的温度和降水产生明显的影响,尤其是对降水的影响。它使得中国东部地区降水减少,由此造成的降水减少占末次盛冰期降水减少的25%—50%。海陆分布的变化对内陆和中国西部地区影响很小。末次盛冰期中国东部地区植被发生了明显的变化,温带和寒带植物南移,热带植物的覆盖范围减少。中国东部地区植被的巨大变化对温度产生了影响,使该地区冬季增温,夏季减温,年平均温度变化不大。末次盛冰期全球气候发生巨大的变化,即大尺度环流背景场变化。它使得中国地区的温度和降水产生显著变化,这个变化造成中国地区温度降低,并且决定了温度变化的主要分布和变化特征,东北地区是中国末次盛冰期降温最大的地区,青藏高原的降温超过同纬度的东部地区等。同时,大尺度背景场的变化还控制着降水的变化,末次盛冰期中国西部地区和东北地区降水的变化几乎完全是背景场变化引起的,其对华北和华东地区降水的影响大约为50%—75%。综合我们研究的影响末次盛冰期中国地区气候变化的因子,按影响程度由大到小排序为:大尺度环流背景场、海陆分布变化、植被变化、CO2浓度变化和地球轨道参数变化。  相似文献   

15.
By using the improved regional climate model (BCC_RegCM1.0), a series of modeling experiments are undertaken to investigate the impacts of historical land-use changes (LUCs) on the regional climate in China. Simulations are conducted for 2 years using estimated land-use for 1700, 1800, 1900, 1950, and 1990. The conversion of land cover in these periods was extensive over China, where large areas were altered from forests to either grass or crops, or from grasslands to crops. Results show that, since 1700, historical LUCs have significant effects on regional climate change, with rainfall increasing in the middle and lower reaches of the Yangtze River Basin, Northwest China, and Northeast China, but decreasing by different degrees in other regions. The air temperature shows significant warming over large areas in recent hundred years, especially from 1950 to 1990, which is consistent with the warming caused by increasing greenhouse gases. On the other hand, historical LUCs have obvious effects on mean circulation, with the East Asian winter and summer monsoonal flows becoming more intensive, which is mainly attributed to the amplifled temperature difference between ocean and land due to vegetation change. Thus, it would be given more attention to the impacts of LUCs on regional climate change.  相似文献   

16.
土地利用变化对我国区域气候影响的数值试验   总被引:29,自引:0,他引:29  
使用RegCM2区域气候模式单向嵌套澳大利亚CSIRO R21L9全球海-气耦合模式,通过将中国区域植被覆盖由理想状况改变为实际状况的数值试验对比分析,探讨了当代中国土地利用变化对中国区域气候的影响,并对结果进行了统计显著性检验。研究表明,土地利用的变化,会导致我国西北等地区年平均降水减少,导致年平均气温在内陆部分地区升高和在沿海个别地区降低,引起许多地方夏季日平均最高气温升高,而冬季日平均最低气温则在我国东部部分地区降低的同时在西北地区升高,土壤湿度的变化表现为大范围的降低。研究同时表明,相同的土地变化在不同的地理环境下引起的气候要素变化有一定的不一致性。  相似文献   

17.
Potential effects of climate change on a semi-permanent prairie wetland   总被引:4,自引:0,他引:4  
We assessed the potential effects of a greenhouse gas-induced global climate change on the hydrology and vegetation of a semi-permanent prairie wetland using a spatially-defined, rule-based simulation model. An 11-yr simulation was run using current versus enhanced greenhouse gas climates. Projections of climatic change were from the Goddard Institute for Space Studies (GISS) general circulation model. Simulations were also run using a range of temperature (+2 and +4 °C) and precipitation change values (–20, –10, 0, +10, +20%) to determine the responsiveness of wetland vegetation and hydrology to a variety of climate scenarios.Maximum water depths were significantly less under the enhanced greenhouse gas scenario than under the current climate. The wetland dried in most years with increased temperature and changes in precipitation. Simulations also revealed a significant change in the vegetation, from a nearly balanced emergent cover to open water ratio to a completely closed basin with no open water areas. Simulations over a range of climate change scenarios showed that precipitation changes (particularly increases) had a greater impact on water levels and cover ratios when the temperature increase was moderate (+2 °C).These potential changes in wetland hydrology and vegetation could result in a dramatic decline in the quality of habitat for breeding birds, particularly waterfowl. Continued research on climate and wetland modeling is needed.  相似文献   

18.
利用NCAR CAM4.0模式,针对潜在植被和当代植被两种典型土地覆盖类型,通过平衡态试验探讨土地利用/土地覆盖变化(land use/land cover change, LUCC)对气候的影响。结果表明,LUCC对气温日较差有明显影响。日较差的响应与LUCC变化的区域有紧密的联系。在中纬度,LUCC引起日较差减小,这主要由日最高气温的降低造成。在低纬度东亚地区,日较差的减小主要由日最高气温的降低造成;而在印度半岛,日较差的减小主要由日最低气温的升高决定。这种区域性的差异,主要是由于植被蒸腾和冠层蒸发的作用,LUCC能够显著调节气温日较差的变化。  相似文献   

19.
Human activities have notably affected the Earth’s climate through greenhouse gases(GHG), aerosol, and land use/land cover change(LULCC). To investigate the impact of forest changes on regional climate under different shared socioeconomic pathways(SSPs), changes in surface air temperature and precipitation over China under low and medium/high radiative forcing scenarios from 2021 to 2099 are analyzed using multimodel climate simulations from the Coupled Model Intercomparison Project Phase 6(CMIP...  相似文献   

20.
The regional climate effects of vegetation change in arid and semi-arid regions of China, which has experienced serious grassland degradation, are investigated in this study using the Weather Research and Forecasting (WRF) regional climate model. Two long-term simulation experiments (from January 1, 1980 to March 1, 2010), one with the land cover derived from the original United States Geological Survey’s (USGS) data (denoted as CTL) and the other (denoted as SEN) with a modification of the former one by vegetation degradation in arid and semi-arid regions of China, are undertaken to investigate the influence of land cover change on regional climate over arid and semi-arid regions of China. The possible mechanisms of how land cover change affects the regional climate in arid and semi-arid regions of China are also examined. The simulation results indicate that when compared with the observation datasets, the WRF model simulates the spatial pattern of observed temperature and precipitation quite well. After vegetation degradation over the arid and semi-arid regions of China, the net radiation and evaporation are reduced mainly within the degraded areas in summer, consistent with the reduction in precipitation and the increase in 2-m air temperature (T2 m).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号