首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
The observed long-term trends in extreme temperatures in Hong Kong were studied based on the meteorological data recorded at the Hong Kong Observatory Headquarters from 1885-2008. Results show that, over the past 124 years, the extreme daily minimum and maximum temperatures, as well as the length of the warm spell in Hong Kong, exhibit statistically significant long-term rising trends, while the length of the cold spell shows a statistically significant decreasing trend. The time-dependent return period analysis also indicated that the return period for daily minimum temperature at 4°C or lower lengthened considerably from 6 years in 1900 to over 150 years in 2000, while the return periods for daily maximum temperature reaching 35°C or above shortened drastically from 32 years in 1900 to 4.5 years in 2000. Past trends in extreme temperatures from selected weather stations in southern China from 1951-2004 were also assessed. Over 70% of the stations studied yielded a statistically significant rising trend in extreme daily minimum temperature, while the trend for extreme maximum temperatures was found to vary, with no significant trend established for the majority of stations.  相似文献   

2.
Earth surface temperatures are changing worldwide together with the changes in the extreme temperatures. The present study investigates trends and variations of monthly maximum and minimum temperatures and their effects on seasonal fluctuations at different climatological stations of Maharashtra and Karnataka states of India. Trend analysis was performed on annual and seasonal mean maximum temperature (TMAX) and mean minimum temperature (TMIN) for the period 1969 to 2006. During the last 38 years, an increase in annual TMAX and TMIN has occurred. At most of the locations, the increase in TMAX was faster than the TMIN, resulting in an increase in diurnal temperature range. At the same time, annual mean temperature (TM) showed a significant increase over the study area. Percentiles were used to identify extreme temperature indices. An increase in occurrence of warm extremes was observed at southern locations, and cold extremes increased over the central and northeastern part of the study area. Occurrences of cold wave conditions have decreased rapidly compared to heat wave conditions.  相似文献   

3.
江苏省近45a极端气候的变化特征   总被引:13,自引:8,他引:5  
利用江苏省35个测站1960—2004年45 a的逐日最高温度、最低温度、日降水量资料集,分析了近45 a江苏省极端高温、极端低温以及极端降水的基本变化特征。结果表明:(1)多年平均年极端高温的空间分布表现为西高东低,而极端低温则表现为自北向南的显著增加,极端降水的发生频次自南向北逐渐减少;(2)极端高温在江苏中部以及南部大部分地区有上升趋势,而西北地区则有弱的下降趋势;全省极端低温表现为显著的升高趋势;极端降水频次在南部地区有增加的趋势,北部减少趋势,中部则无变化趋势。(3)江苏极端高温、低温和极端降水的年际和年代际变化具有区域性差异,其中极端降水频次变化的区域性差异最为明显。  相似文献   

4.
Daily maximum and minimum temperatures from 29 low-lying and mountain stations of 7 countries in Central Europe were analyzed. The analysis of the annual variation of diurnal temperature range helps to distinguish unique climatic characteristics of high and low altitude stations. A comparison of the time series of extreme daily temperatures as well as mean temperature shows a good agreement between the low-lying stations and the mountain stations. Many of the pronounced warm and cold periods are present in all time series and are therefore representative for the whole region. A linear trend analysis of the station data for the period 1901–1990 (19 stations) and 1951–1990 (all 29 stations) shows spatial patterns of similar changes in maximum and minimum daily temperatures and diurnal temperature range. Mountain stations show only small changes of the diurnal temperature range over the 1901–1990 period, whereas the low-lying stations in the western part of the Alps show a significant decrease of diurnal temperature range, caused by strong increase of the minimum temperature. For the shorter period 1951–1990, the diurnal temperature range decreases at the western low-lying stations, mainly in spring, whereas it remains roughly constant at the mountain stations. The decrease of diurnal temperature range is stronger in the western part than in the eastern part of the Alps.  相似文献   

5.
ABSTRACT

Trends in indices based on daily temperature and precipitation are examined for two periods: 1948–2016 for all stations in Canada and 1900–2016 for stations in the south of Canada. These indices, a number of which reflect extreme events, are considered to be impact relevant. The results show changes consistent with warming, with larger trends associated with cold temperatures. The number of summer days (when daily maximum temperature >25°C) has increased at most locations south of 65°N, and the number of hot days (daily maximum temperature >30°C) and hot nights (daily minimum temperature >22°C) have increased at a few stations in the most southerly regions. Very warm temperatures in both summer and winter (represented by the 95th percentile of their daily maximum and minimum temperatures, respectively) have increased across the country, with stronger trends in winter. Warming is more pronounced for cold temperatures. The frost-free season has become longer with fewer frost days, consecutive frost days, and ice days. Very cold temperatures in both winter and summer (represented by the 5th percentile of their daily maximum and minimum temperatures, respectively) have increased substantially across the country, again with stronger trends in the winter. Changes in other temperature indices are consistent with warming. The growing season is now longer, and the number of growing degree-days has increased. The number of heating degree-days has decreased across the country, while the number of cooling degree-days has increased at many stations south of 55°N. The frequency of annual and spring freeze–thaw days shows an increase in the interior provinces and a decrease in the remainder of the country. Changes in precipitation indices are less spatially coherent. An increase in the number of days with rainfall and heavy rainfall is found at several locations in the south. A decrease in the number of days with snowfall and heavy snowfall is observed in the western provinces, while an increase is found in the north. There is no evidence of significant changes in the annual highest 1-day rainfall and 1-day snowfall. The maximum number of consecutive dry days has decreased, mainly in the south.  相似文献   

6.
北京地区城郊极端温度事件的变化趋势及差异分析   总被引:1,自引:0,他引:1  
利用北京地区城郊16个气象观测站1979~2008年逐日平均、最高和最低温度的均一化资料,分析了近30年北京地区城、郊区极端温度事件发生频次(强度)的变化趋势,并对比了城郊差异以及城市热岛强度对城郊差异的影响.研究结果显示:从发生频次来看,近30年城区极端低温事件的减小幅度[5.94 d (10 a)-1]高于郊区的减小幅度[-5.28 d (10 a)-1],而极端高温事件的增加幅度在城区[4.33 d (10 a)-1]和郊区[4.42 d (10 a)-1]之间差别不大,定量化的诊断结果进一步证明了城区和郊区在极端温度事件发生频次上的差别很小.从发生强度来看,近30年城区极端温度事件的年平均发生强度明显高于郊区,但在变化趋势上,城区极端低温事件的减弱幅度略高于极端高温事件的增强幅度,相差0.042℃(10 a)-1,而在郊区极端低温事件的减弱幅度却略低于极端高温事件的增强幅度,相差0.052℃(10 a)-1.城郊差异的定量化分析结果表明,极端温度事件在城区强度一般大于郊区强度,城区与郊区强度差值均为正值(除1982年和1985年极端高温事件强度差值为负).热岛强度与极端温度事件城郊差异的相关性统计发现,极端温度事件发生频次和发生强度在城郊之间的差别与热岛强度均没有明显的相关特征,该结果说明城市热岛效应对北京超大城市市区和郊区影响基本一致,其差异性是有限的.  相似文献   

7.
利用河南省1957-2005年逐日降水,最高、最低和日平均气温资料,分析了近50 a河南省极端天气事件的变化趋势。结果表明:1957-2005年河南省暴雨日数、极端降水事件和严重干燥事件发生频率都在增加,但其线性趋势并不显著;暴雨和极端降水的变化趋势呈明显的南北差异;异常高温事件增加而异常低温事件减少,暖冬的趋势比较显著;高温日数和低温日数都显著减少,其变化趋势的空间分布具有很好的一致性。  相似文献   

8.
1957-2005年河南省降水和温度极端事件变化   总被引:10,自引:0,他引:10  
 利用河南省1957-2005年逐日降水,最高、最低和日平均气温资料,分析了近50 a河南省极端天气事件的变化趋势。结果表明:1957-2005年河南省暴雨日数、极端降水事件和严重干燥事件发生频率都在增加,但其线性趋势并不显著;暴雨和极端降水的变化趋势呈明显的南北差异;异常高温事件增加而异常低温事件减少,暖冬的趋势比较显著;高温日数和低温日数都显著减少,其变化趋势的空间分布具有很好的一致性。  相似文献   

9.
1955-2005年中国极端气温的变化   总被引:27,自引:0,他引:27  
利用1955-2005年中国234站逐日最高、最低气温资料,通过计算趋势系数等,研究了中国年、季极端气温变化趋势的时空特征。结果表明:空间分布上,我国年和四季的极端低温均表现出稳定的增温趋势;年、春季和夏季极端高温在黄河下游地区出现了较明显的降温趋势,而在华南地区增温趋势较显著;时间演变上,无论年还是四季,极端低温的增温幅度明显大于极端高温的增幅;极端气温在四季均有增温趋势,尤其以冬季的升温最明显;年极端高温和低温的年代际变化基本一致。  相似文献   

10.
利用1961—2010年西北干旱区83个气象观测站的日气温资料,通过线性倾向率、百分位法及Mann-Kendall法得出西北干旱区极端高温的具体变化特征。用百分位法对西北干旱区日气温数据进行处理,确定极端高温指标的阈值,得出极端高温强度和极端高温事件的频率。结论如下:自1989年开始,西北干旱区年极端高温呈显著上升趋势,空间上西部大于东部,局部地区盆地南缘大于北缘;极端高温日数呈明显的上升趋势;四季极端高温均有上升趋势,秋季增长率最高、冬季最低,秋季极端高温日数增长速率最大;季极端高温及高温日数高值区分布在西北干旱区西北和东南部的盆地边缘,干旱区沙漠边缘及戈壁区;西北干旱区年、季极端高温日数均与年平均气温相关性突出。  相似文献   

11.
The objective of the present study is to apply a wide range of efficient trend estimation methods for understanding how temperature extremes are locally changing. Temporal patterns of changes in extreme daily maximum or minimum temperature at homogeneous climate stations located in Belgium and their associations with changes in climate means are examined for the period 1952/1953 until present. A considerable amount of work is devoted to the formulation of extreme value models in the presence of non-stationarity. The covariate process is considered to be linear in time or/and in the North Atlantic Oscillation index as well. Additional insights on historical changes in frequency and amplitude of temperature extremes are obtained with the non-parametric quantile-perturbation approach.  相似文献   

12.
Two approaches of statistical downscaling were applied to indices of temperature extremes based on percentiles of daily maximum and minimum temperature observations at Beijing station in summer during 1960-2008. One was to downscale daily maximum and minimum temperatures by using EOF analysis and stepwise linear regression at first, then to calculate the indices of extremes; the other was to directly downscale the percentile-based indices by using seasonal large-scale temperature and geo-potential height records. The cross-validation results showed that the latter approach has a better performance than the former. Then, the latter approach was applied to 48 meteorological stations in northern China. The cross-validation results for all 48 stations showed close correlation between the percentile-based indices and the seasonal large-scale variables. Finally, future scenarios of indices of temperature extremes in northern China were projected by applying the statistical downscaling to Hadley Centre Coupled Model Version 3 (HadCM3) simulations under the Representative Concentration Pathways 4.5 (RCP 4.5) scenario of the Fifth Coupled Model Inter-comparison Project (CMIP5). The results showed that the 90th percentile of daily maximum temperatures will increase by about 1.5℃, and the 10th of daily minimum temperatures will increase by about 2℃ during the period 2011-35 relative to 1980-99.  相似文献   

13.
《大气与海洋》2013,51(2):243-256
Abstract

Trends and variations in daily temperature and precipitation indices in southern Québec are examined for the period 1960–2005. The indices are based on daily temperature and daily precipitation which have been recently adjusted at 53 climatological stations. The adjustments were made for site relocation, changes in observing programs, known instrument changes and measurement program deficiencies. The results show that the surface air temperature has increased in southern Québec over 1960–2005. Significant warming is evident in the western, southern and central parts of the province but the increasing trends become smaller toward the east. The warming is greater during the winter although many significant increasing trends are found in the summer. The analysis of the temperature extremes strongly indicates the occurrence of more nights with extreme high temperatures in all seasons. The temperature indices also suggest an increase in the number of thaw/frost days during the winter (days with maximum temperature above 0°C and minimum temperature below 0°C), a decrease in the length of the frost season, an increase in the length of the growing season, a decrease in heating degree days and an increase in cooling degree days. The precipitation indices show an increase in the annual total rainfall although many stations indicate decreasing trends during the summer. The number of days with rain has increased over the region whereas the number of days with snow and the total snow amounts have decreased over the past 46 years.  相似文献   

14.
Changes of temperature extremes over China were evaluated using daily maximum and minimum temperature data from 591 stations for the period 1961--2002. A set of indices of warm extremes, cold extremes and daily temperature range (DTR) extremes was studied with a focus on trends. The results showed that the frequency of warm extremes (F_WE) increased obviously in most parts of China, and the intensity of warm extremes (I_WE) increased significantly in northern China. The opposite distribution was found in the frequency and intensity of cold extremes. The frequency of high DTR extremes was relatively uniform with that of intensity: an obvious increasing trend was located over western China and the east coast, while significant decreases occurred in central, southeastern and northeastern China; the opposite distribution was found for low DTR extreme days. Seasonal trends illustrated that both F_WE and I_WE showed significant increasing trends, especially over northeastern China and along the Yangtze Valley basin in spring and winter. A correlation technique was used to link extreme temperature anomalies over China with global temperature anomalies. Three key regions were identified, as follows: northeastern China and its coastal areas, the high-latitude regions above 40oN, and southwestern China and the equatorial eastern Pacific.  相似文献   

15.
近40年我国极端温度变化趋势和季节特征   总被引:16,自引:4,他引:12       下载免费PDF全文
利用1961—2000年我国194个测站逐日最高温度和最低温度器测资料,结合具有实际意义的季节极端温度指数,分析了我国近40年极端温度事件的年变化趋势和季节特征。对年极端气候指数的研究表明:绝对阈值定义的冷暖指数由于无法考虑南北气候差异,其结果不理想。百分比阈值所得的冷暖指数中,冷日指数和暖日指数具有不对称性,冷夜指数和暖夜指数具有较强的对称性。对季节极端温度指数研究表明:冬季极端冷指数变化趋势最为明显,夏季极端暖指数的变化趋势次之,春、秋两季极端冷指数的变化趋势不明显;年和季节尺度的极端冷暖指数均反映出增暖趋势。  相似文献   

16.
An iterative chi-square method is applied to determine recent climate change of extremes of daily minimum temperature at two locations between an 18-year recent period and a 36-year prior period. The method determines for each of two locations in northwestern North America, Bozeman, Montana, USA and Coldstream, British Columbia, Canada, which values of the extreme daily weather elements are most significantly different between the prior years and the recent years and gives a measure of the weekly significance of that difference. Determination was made of the average percent of each recent year date (plotted weekly) that was impacted by extreme weather due to climate change as well as the percentage change in the frequency of the number of extreme days for each period of contiguous significant weeks. During the recent period at both locations, most weeks experienced a greater number of days of extreme high minimum temperature and a fewer number of days of extreme low minimum temperature. The weekly percentage changes indicate that extreme high minimum temperatures at both Bozeman and Coldstream are increasing at the rate of about 10% per decade, with a close corresponding decrease of extreme low minimum temperatures. The major changes in climate were very similar at both locations, with greatest warming occurring during the late winter and early spring and during the late July to August period.  相似文献   

17.
前人在研究极端气温时,大多关注其长期变化趋势,而对其年代际变化的研究较少。本文利用1961~2016年全国839个台站的逐日最高气温、最低气温和日平均气温资料,重点分析了我国冬季极端低温指数的年代际变化特征。本文采用谐波分解提取了每个台站冬季极端低温指数前四波分量,将其作为年代际变化分量,并将其累计方差贡献大于25%的台站认为发生了明显的年代际变化的台站。结果表明:呈明显年代际变化的台站主要位于长江以北地区、新疆北部以及青藏高原东部地区。其中,长江以北地区及新疆北部地区的年代际变化在1979年后较为一致,据此可将1979年之后的时段大致划分为前冷期(1979~1986年)、暖期(1987~2007年)和后冷期(2008~2016年)三个时期。上述两个地区的冬季极端低温指数的年代际变化与东大西洋/西俄罗斯遥相关型联系在一起,该遥相关型的年代际变化对应着乌拉尔山阻塞型环流频次和东亚大槽强度的年代际变化。  相似文献   

18.
1951~2002年中国平均最高、最低气温及日较差变化   总被引:74,自引:8,他引:66  
利用1951~2002年全国733个台站的月平均最高、最低气温资料,对我国年、季平均最高、最低气温变化趋势的空间分布状况和时间变化特征进行了分析.结果表明:近52年来,我国平均最高气温的变化特征呈现北方增暖明显、南方变化不明显或呈弱降温趋势;年平均最低气温全国各地基本一致,呈明显的变暖趋势;无论是年还是季,平均最低气温的增暖幅度明显大于平均最高气温的增幅;我国年平均日较差多呈下降趋势,并在我国北方地区尤为明显,各季平均日较差亦均呈下降趋势,并以冬季的下降幅度为最大;年平均最高气温和最低气温的变化在年代际变化上基本呈现较为一致的步伐,即52年来主要的变暖均是从20世纪80年代中期开始,均在90年代后期达到了近52年来的历史新高,近年来又略有回落.  相似文献   

19.
近半个世纪辽宁省气温、降水极值特征分析   总被引:10,自引:4,他引:6  
利用辽宁省53个气象站近半个世纪以来的气温、降水极值资料,分析了辽宁省气温、降水极值的时空变化特征。结果表明:辽宁省累年极端最高、最低气温具有区域性,辽西极端最高气温最高,辽东极端最低气温最低,累年极端日降水的局域性较强;最高气温极值多发生在6~8月,但有很多地区都出现在6月,最低气温极值最易发生在1月,降水极值在7月或8月出现最多;最高气温极值和日降水极值的趋势性较弱,而最低气温极值的升温趋势十分显著,且远大于平均气温的增幅;最高(低)气温极值异常主要存在5(4)个空间型,各空间型均存在一定的时间变化特征;最高、最低气温和日降水极值具有不完全一致的长、短周期,但分别以9年、18年、11年左右的周期振动最强;近46年来三个极值要素均出现过增温或减少的突变。  相似文献   

20.
董丹宏  黄刚 《大气科学》2015,39(5):1011-1024
本文利用中国740个气象台站1963~2012年均一化逐日最高温度和最低温度资料,分析了中国地区最高、最低气温和日较差变化趋势的区域特征及其与海拔高度的关系。结果表明:近50年气温的变化趋势无论是年或季节变化,最低温度的增温幅度都高于最高温度,且其增温显著区域都对应我国高海拔地区。除了春季,其他季节最高、最低温度及日较差的升温幅度随着海拔高度的升高而增大,其中最高温度的变化趋势与海拔高度的相关性最好。同一海拔高度上,最高、最低温度在不同年代的增幅具有不一致性:20世纪80年代,二者变化幅度最小;20世纪90年代,二者增幅最大,尤以低海拔地区最为明显。2000 m以上高海拔地区:最高温度和最低温度的变化趋势在20世纪90年代以前变化较小,而在近十年增幅十分明显;日较差季节变化大:夏季减小,冬季增加。20世纪90年代以前,最高、最低温度随海拔高度变化不大,而近20年随海拔高度升高,最高、最低温度的变化趋势几乎都是先减小后增加。高海拔地区比低海拔地区对全球变化反应更明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号