首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
梅雨期区域边界水汽输送模型及其数值试验   总被引:6,自引:0,他引:6  
通过诊断分析,提出梅雨期中国区域边界水汽输送特征模型,即高原中部区域西边界与低纬南海、西太平洋南边界为水汽输送流入主体,西太平洋东边界为水汽“流出”主体。数值模拟研究表明:1998年洪涝特大暴雨过程6月与7月份水汽输送通道特征存在差异,6月中下旬长江流域暴雨过程以西边界与南边界水汽流共同输送为主体,其中南海西太平洋区域水汽输送显著,7月份水汽输送过程以高原中部区域西边界“水汽流”为主体。因此,高原中部区域西边界与中国区域南边界的水汽输送对长江流域特大暴雨的形成均具有重要的作用。区域边界水汽流的时空特征分析及其理论模型将为长江流域暴雨预报提供科学依据。  相似文献   

2.
季风梅雨带水汽输送与动力强迫源结构   总被引:1,自引:0,他引:1  
对长江流域季风梅雨水汽输送特征、长江流域夏季旱涝过程与强信号强迫源(青藏高原与低纬海洋)遥相关动力结构以及季风梅雨过程水汽输送源汇结构等有关研究成果及观点进行综述,给出季风梅雨水汽输送流型与强迫源遥相关物理图像,即由青藏高原动力强迫效应形成的低纬海洋-高原-长江流域远距离水汽输送流型,以及海洋强信号区(南海、西太平洋暖池、赤道东太平洋等区域)热力异常构成长江流域梅雨期洪涝、暴雨等灾害性气候异常特征。研究结果揭示了长江流域洪涝及其暴雨形成过程二维Rossby波列或低频波传播能量的动力机制。  相似文献   

3.
2012年7月21日北京特大暴雨过程的水汽输送特征   总被引:6,自引:0,他引:6  
王婧羽  崔春光  王晓芳  崔文君 《气象》2014,40(2):133-145
利用NCEP再分析资料,根据水汽收支方程计算2012年7月21日北京特大暴雨时期华北东北部暴雨区域的水汽收支情况并分析水汽输送特征。得到以下结论:经向水汽输送在此次暴雨过程中起主要作用,暴雨区内水汽主要来源于中、低层(500 hPa以下)的南边界。暴雨区内水汽的辐合与暴雨发生的时间和空间具有较好一致性,在低层水汽的辐合起主要作用,中高层水汽垂直输送作用更为显著。HYSPLIT后向轨迹模拟得到的结果显示根据水汽源地划分影响此次暴雨过程水汽输送路径主要有:从孟加拉湾、南海地区处于中低层直接北上的西南路径,以及中层以下从我国东部海域(黄海、东海为主)进入内陆之后北折向东北偏北方向运动的L形高湿路径;同时高层沿着西风带西北路径的干空气输送也对此次强降水有重要影响。三者中从东部海域到达暴雨区的水汽贡献率最大,而孟加拉湾、南海的水汽输送对于此次强降水起到了明显的增强作用。  相似文献   

4.
利用NCEP/NCAR每日4次全球再分析1°×1°网格资料,计算了2004年7月华南汛期暴雨过程中的水汽收支,通过对华南地区暴雨期水汽输送路径的分析,揭示了不同地理区域的水汽来源对华南暴雨特征的可能影响.结果表明.在暴雨期.暴雨区的水汽主要是从南边界和西边界流入的,东边界和北边界则流出,并且水汽的流入、流出主要在中低层进行.来自南边界的水汽要大于来自西边界的,在流入边界上,水汽通量的垂直分布存在差异.在南边界上水汽在低层由南往北输送,在高层从北往南输送,维持了陆地与海洋之间的水汽循环.  相似文献   

5.
利用NCEP再分析资料、地面观测资料和GDAS资料,对2018年8月27日—9月1日广东受季风低压影响发生的超历史极值、持续性特大暴雨天气过程的水汽输送特征进行了详细分析,同时利用Hysplit后向轨迹模式对水汽来源进行了诊断分析。结果表明:持续性特大暴雨过程期间,我国华南沿海为北半球的水汽汇合区,水汽主要来源于印度洋,经印度半岛北上至青藏高原南部向东转进入华南上空;另一部分水汽来源于西北太平洋和南海地区,三支水汽汇聚于华南上空,建立了稳定、持续的水汽输送通道,使得此次特大暴雨过程范围广、持续时间长。降水发生前期水汽辐合中心位于华南东部沿海,29日开始逐渐向西移动,于夜间达到峰值,水汽辐合最为明显,31日夜间其中心进一步西移并趋于减弱;水汽通量势函数高值区的变化与此次过程中降水峰值的逐日变化对应良好。逐日水汽辐合表现出明显的日变化特点,白天水汽辐合减弱,夜间明显加强,此次持续性特大暴雨过程呈现出季风降水特征。华南区域南边界是主要的水汽输入边界,且水汽输入主要集中在低层,尤其是华南中东部南边界的水汽输入量持续较高;29日夜间开始华南区域南边界的水汽输入量明显增大,30日达到最大,与大范围大暴雨和特大暴雨的区域及时段基本吻合。  相似文献   

6.
利用常规观测资料、区域自动站资料、NCEP/NCAR逐6 h再分析资料,对2021年6月28日~7月4日柳州持续性暴雨的环流形势和水汽输送特征进行了分析。结果表明:500 hPa南支槽和副热带高压的对峙导致850 hPa低涡切变稳定少动,为暴雨区建立了稳定、持续的水汽通道;南海夏季风的爆发为暴雨区提供源源不断的水汽,水汽输送大值带主要位于700 hPa以下,以边界层925 hPa水汽辐合最强;从水汽收支看,南边界为主要水汽输入边界,东边界则为水汽主要输出边界,越往高层水汽出流越明显;南边界水汽输入对于区域水汽净流入的贡献主要在700 hPa以下,且越往低层南边界水汽贡献越明显;柳州北部元宝山脉对水汽的流出有一定阻挡作用,925 hPa以下北边界的水汽流出比南边界的流入小一个量级。   相似文献   

7.
淮河流域2003年梅雨时期降水与水汽输送的关系   总被引:4,自引:6,他引:4       下载免费PDF全文
徐敏  田红 《气象科学》2005,25(3):265-271
本文利用2003年6~7月逐日NCEP/NCAR再分析资料分别计算了淮河流域梅雨期的水汽输送和该区域的水汽收支,分析了大尺度水汽输送和梅雨期降水之间的关系。结果表明:2003年梅雨期间(6月20日~7月23日)淮河流域水汽输送的来源主要有2个,一是孟加拉湾的西南气流经中南半岛北部进入华南再向淮河流域输送,二是来自西太平洋副热带高压南侧的偏东气流在南海转向形成的偏南气流进入华南再向北输送,以上两条输送带以定常方式向淮河流域输送水汽。通过计算梅雨期的整层涡动水汽输送,发现经向水汽输送非常稳定,纬向水汽输送具有较大幅度变化。研究还表明:2003年梅雨期间淮河流域的水汽收支主要来自经向水汽输送,特别是南部边界的水汽流入,而纬向水汽输送多表现为水汽的流出。梅雨期间淮河流域经向水汽收支的突然增强和维持稳定往往对应一次强降水过程的开始。梅雨期间淮河流域净水汽收入主要来源于经向从地面到600hPa高度的深厚水汽输送,另外在纬向近地面层还有一支弱的净水汽流入,而中低层为明显的纬向净水汽流出。在经向水汽净输入相当情况下,纬向水汽净输出的减弱有利于增强强降水过程的强度。淮河流域2003年夏季经向水汽收支的爆发性增长和突然减弱和该区域的入、出梅日期对应,它的演变反映了东亚夏季风由南向北推进的进程。  相似文献   

8.
利用湖南省区域自动站和常规观测站降水资料、NCEP/NCAR和JRA-55再分析资料及湖南省气象台大气河预报业务产品,分析了2017年6月22日至7月2日湖南一次特大致洪暴雨过程的雨洪和水汽输送异常特征,以及大气河水汽输送对强降雨的影响,在此基础上定量分析了强降雨区各边界的水汽收支状况及各水汽轨迹的贡献。结果表明:此次强降水过程分为三个阶段,第一、第三阶段降雨的范围、强度均明显大于第二阶段。欧亚中高纬稳定的"1槽1脊"环流形势、低纬较稳定的西太副高及其外围强劲的水汽输送是此次暴雨发生的环流背景。水汽通量、水汽通量散度、比湿等物理量的水平及垂直分布对降水的阶段性特征和位置、强度变化有很好的指示作用。三个强降雨时段,来自孟加拉湾、南海和西太副高西南侧的水汽输送表现出不同的强度和位置,造成到达湖南境内的偏南水汽输送空间异常程度不同。大气河的强弱及其水汽输送通道、辐合区位置以及强降雨区各边界水汽净收入对强降水发生、发展起关键作用。水汽后向轨迹分析表明,低层偏南的水汽输送是此次极端强降雨较长时间维持的重要因素,而来自北方的干冷空气侵入利于大气斜压性增强和对流不稳定维持,是第二阶段降水强度弱于第一、第三阶段的另一原因。  相似文献   

9.
2004年7月广西汛期暴雨过程水汽特征   总被引:3,自引:1,他引:2  
运用NCEP/NCAR每日4次全球再分析1°×1°网格资料,分析了2004年7月广西汛期暴雨过程中的水汽和风场变化情况.结果表明,在暴雨过程中暴雨发生发展与广西区域水汽的变化有很好的对应关系,水汽含量的增强一般出现在暴雨发生之前.广西区域暴雨发生和间歇与夏季风的加强及中断关系密切.广西区域暴雨期与非暴雨期水汽收支情况及其输送路径的差异明显.暴雨期,广西区域的水汽源主要为孟加拉湾、南海、西太平洋;非暴雨期,水汽的主要来源是南海.暴雨期的水汽收入远远大于非暴雨期.  相似文献   

10.
2003年淮河流域持续性大暴雨的水汽输送分析   总被引:13,自引:4,他引:13       下载免费PDF全文
康志明 《气象》2004,30(2):20-24
利用NCEP资料对 2 0 0 3年淮河流域 6、7月间持续性强暴雨的水汽输送特征进行分析。结果表明 :持续性强暴雨发生在我国南方西南水汽输送异常偏强的背景下。水汽从南海北部经副热带高压西南侧向北及从孟加拉湾越过中南半岛到长江中下游两条通道向淮河流域输送。从整个梅汛期和暴雨个例的计算结果来看 ,暴雨区的各个层次上水汽收支有不同的特点 ,主要水汽辐合发生在 850hPa及其以下层。来自孟加拉湾和南海的水汽向暴雨区输送在不同层次上的比重有很大差异 ,在暴雨区水汽的主要辐合层上 ,南海是最重要的水汽源地  相似文献   

11.
1995年6月梅雨期暴雨的水汽图像分析   总被引:7,自引:1,他引:6       下载免费PDF全文
文章利用GMS-5水汽图像及常规资料,分析1995年6月中旬至7月初梅雨期暴雨的水汽图像特征,指出水汽羽与强降水的关系,并概括出梅雨期暴雨的水汽图像概念模型。  相似文献   

12.
长江流域一次暴雨过程中的不稳定条件分析   总被引:12,自引:3,他引:12  
周玉淑  邓国  黄仪虹 《气象学报》2003,61(3):323-333
文中分析了 1998年 7月 2 0~ 2 3日发生于长江流域的持续性降水和暴雨过程 ,在分析大尺度降水和中小尺度暴雨相对应的环流场和天气实况的基础上 ,主要分析相应大气层结的对流不稳定和条件性对称不稳定条件 ,并对切变线上涡层不稳定做了重点介绍和分析 ,计算了条件性对称不稳定判据和涡层不稳定判据。结果表明 :降水期间大气低层有对流不稳定和对称不稳定能量的积聚 ,在这两类不稳定条件都基本满足的情况下 ,涡层不稳定的维持对此次降水过程中暴雨的发生提供了有利的不稳定环境场 ,具体的计算分析还表明环境场的配置制约着切变线上低涡扰动的发展 ,是造成降水的重要原因之一。  相似文献   

13.
Day-to-day precipitation data of Junes during the 43 years of 1958-2000 from stations to the south of Yangtze River are used to divide regions and run statistical analysis of sustained torrential rainfall processes. A preliminary analysis is then made based on it and the results show that June is the month in which torrential rains in the southern half of China take place frequently and sustained torrential rains occur at the same time in South China and the area to the south of Yangtze River. In addition, the analysis gives the basic features of sustained torrential rains of June in China and their interannual variability patterns, with the suggestion that the amount of these events increases significantly after the 1990s. Lastly, the sustained torrential rains occurring in Junes of 1994, 1998 and 2005 in the southern half of China are taken as examples in the research on the basic patterns and formation mechanisms of the evolution of double rain-bands during the rain season in South China and the area to the south of Yangtze River. The analysis shows that the large scale environment field in which sustained torrential rains occur is related to the stable sustaining of the South Asia High and upper level jet streams.  相似文献   

14.
Synoptic Features of the Second Meiyu Period in 1998 over China   总被引:10,自引:0,他引:10  
1. IntroductionThe Meiyu, translated as plum rain, is a majorannual rainfall event over the Yangtze River Basin inChina and southern Japan in June and July. Theheavy rainfall is mainly caused by a quasi-stationaryfront, known as the Meiyu front, extended from east-ern China to southern Japan (Tao, 1958; Matsumotoet al., 1971; Akiyama, 1990; Gao et al, 1990). Studiesof Zhang and Zhang (1990) and Chen et al. (1998)pointed that the Meiyu front is one of the most signif-icant circulation s…  相似文献   

15.
针对2016年6月30日—7月6日梅雨期湖北省的持续性降水过程,根据降水融合资料识别出三段暴雨过程,基于高分辨率NCEP再分析资料分别从环流形势、水汽输送及上升运动等方面进行对比分析。结果表明,同一连续性梅雨期降水的三段暴雨过程,其环流形势明显不同,水汽输送与来源也不相同;温湿热力条件与上升运动强弱的动力条件共同影响降水强度,锋面的位置则与暴雨落区有密切的关系。第一段暴雨为典型的梅雨期暴雨环流,水汽主要来源于南海和孟加拉湾,热力不稳定与上升运动均较强,导致降水强度最强;第二段暴雨中,横槽将南海的水汽输送至湖北地区,较弱的热力不稳定度和上升运动导致降水强度偏弱;第三段暴雨发生在横槽减弱、西太平洋副热带高压北抬的过程中,湿度条件较差导致其降水强度较弱。  相似文献   

16.
文中分析了南亚季风水汽输送关键区“大三角扇型”区域特征 ,即该区域以高原地区为顶端 ,南海季风与印度季风涉及的低纬活动源区为“底边”构成了类似“大三角扇型”的南亚季风水循环相关影响域 ,此“大三角扇型”水汽输送特征分布描述了副热带高压环流以及中纬度扰动等亚洲季风系统成员的总体动力影响效应 ;反映了该区域南半球跨赤道气流 ,赤道西太平洋季风槽及季风活动等水份循环特征。表现了东亚海陆热力强迫、青藏高原非绝热效应、海洋“暖池”及异常孟加拉湾对流活动等诸因素的综合影响。研究表明 ,大三角区域热源强信号源 (高原地 气与孟加拉湾、菲律宾、南海等海 气过程 )区域的水份循环时空演变、遥相关特征及其对亚洲季风爆发的综合影响等均是认识中国及东亚旱、涝异常成因的重要科学问题  相似文献   

17.
两次高原涡与西南涡作用下的暴雨过程对比分析   总被引:3,自引:0,他引:3       下载免费PDF全文
利用FY-2D卫星TBB资料、NCEP1°×1°再分析资料和地面自动站观测资料,对2008年7月20~22日和2012年7月20~22日两次由高原涡和西南涡相互作用,造成四川暴雨过程进行对比分析,结果表明:(1)强降雨落区与引导高原涡移动的高空槽有密切关系,高空槽的移动和变化大致决定了强降雨的落区。(2)造成两次暴雨过程的对流云团生成和发展虽然有一定的差异,但最终会发展合并形成一个MCC;并且强降雨位于对流云团TBB最大梯度区,一般靠近亮云核,并在亮云核的西北部。(3)两次暴雨过程期间,均有低层辐合高层辐散,对应着强的涡度和强的上升运动,并且散度、涡度和垂直速度都是增大的。(4)两次暴雨过程期间水汽来源存在着差异,但水汽是逐渐增强的,并且水汽辐合中心与强降雨落区相对应。  相似文献   

18.
2020年6月贵州出现4次具有明显夜雨特征的连续性暴雨天气过程,以短时强降水为主,强度大,局地性较强。该文利用NCEP/NCAR再分析资料,详细分析高空形势、东亚西风急流、低空水汽条件和动力条件以及海温特征,并采用西伯利亚高压强度指数分析冷空气强度,结合贵州区域自动站降水观测资料,分析暴雨成因,结果表明:2020年6月欧亚大陆上空呈现正-负-正的波型分布,有利于高纬地区高空槽引导冷空气南下;副热带高压位置较常年同期偏北偏西且稳定维持,有利于水汽输送到贵州;东亚西风急流强度较强,其西段位置较常年同期略偏南,贵州位于急流轴右侧且处于水汽辐合区、垂直速度负值区,动力条件和水汽条件的有效配合,有利于贵州暴雨天气发生;贵州暴雨对西伯利亚高压强度指数具有较好的响应,但暴雨发生时间比西伯利亚高压强度指数滞后1 d;赤道西太平洋地区海温表现为偏暖,赤道东太平洋地区海温表现为偏冷,且印度洋呈现出西正东负的偶极子型海温异常,此类海温配置,有利于激发印度洋和西太平洋的反气旋环流,为水汽输送到贵州上空创造了有利条件。  相似文献   

19.
The surface rainfall processes associated with the torrential rainfall event over Hubei,China,during July 2007 were investigated using a two-dimensional cloud-resolving model.The model integrated the large-scale vertical velocity and zonal wind data from National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) for 5 days.The time and model domain mean surface rain rate was used to identify the onset,mature,and decay periods of rainfall.During the onset period,the descending motion data imposed in the lower troposphere led to a large contribution of stratiform rainfall to the model domain mean surface rainfall.The local atmospheric drying and transport of rain from convective regions mainly contributes to the stratiform rainfall.During the mature periods,the ascending motion data integrated into the model was so strong that water vapor convergence was the dominant process for both convective and stratiform rainfall.Both convective and stratiform rainfalls made important contributions to the model domain mean surface rainfall.During the decay period,descending motion data input into the model prevailed,making stratiform rainfall dominant.Stratiform rainfall was mainly caused by the water vapor convergence over raining stratiform regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号