首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文利用2013年1月1日~2015年6月30日贵阳市9个环境监测站的6种主要大气污染物(SO2、NO2、O3、PM10、CO、PM2.5)监测数据,分析了贵阳市主要大气污染物的年变化、日变化特征及降水对首要污染物浓度变化的影响。发现SO2、NO2、PM10、CO、PM2.5浓度为单谷型年变化,夏季浓度最低,冬季浓度最高;O3浓度为双峰型年变化,4、10月分别有两个极大值、11~2月与7月分别为两个极小值;SO2、NO2、PM10、CO、PM2.5浓度日变化呈双峰型特征;O3浓度日变化为单峰型特征;郊区SO2、NO2、PM10、CO、PM2.5日平均浓度低于市区,而郊区O3日平均浓度高于市区。降水对O3的湿清除效果不好,对其余大气污染物的湿清除效果较好,尤其夜间降水对颗粒污染物(PM2.5、PM10)的清除效果优于白天降水,但会使O3浓度明显上升。  相似文献   

2.
根据杭州市2013—2015年的空气质量日报资料,分析了杭州市空气质量特征及其与气象要素的关系,并从气象因素分析了杭州重污染日发生的原因。结果表明:1)杭州市近3年平均AQI为97,良好率为63%,7月杭州空气质量最好,1月空气质量状况最差,近3年杭州的空气质量状况总体有所改善;2)杭州市首要污染物主要为PM2.5和O3,在6—9月,首要污染物主要为O3,在其他月份,首要污染物主要为PM2.5;3)杭州AQI与气象要素密切相关,且不同的时段所依赖的气象因子也不同;4)杭州重污染日时,地面风速小,且68%的重污染日低空存在逆温,71%的重污染日低层存在下沉运动;5)杭州重污染的典型地面形势主要有冷空气影响型、高压影响型和倒槽型3类。  相似文献   

3.
山东省大气污染时空分布特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
通过分析山东省近6a来大气中污染物的浓度变化,发现影响山东省空气质量的主要污染物是颗粒物(PM2.5和PM10),山东省PM2.5年平均浓度均超过国家规定的轻污染标准10%以上,PM10年平均浓度基本接近轻污染标准值,其余四种污染物(SO2、CO、O3和NO2)浓度均低于轻污染规定标准,因此山东省大气污染治理的重点是减少颗粒物。分析污染物浓度时间变化发现:11—1月山东大气污染最严重,6—9月污染较轻;济南周四污染相对最轻,周六到周一污染较重;每日15—17时是空气质量最好的时段。分析污染物浓度空间分布发现:O3浓度半岛地区较其他地区高;SO2浓度鲁中地区较高;CO浓度鲁西北和鲁中较高;NO2、PM10和PM2.5浓度分布基本一致,除半岛地区外,其他地区均维持较高污染物浓度。  相似文献   

4.
利用2014年1月1日—2016年12月31日荆州城区逐日空气质量数据和同期地面气象要素逐日观测资料,分析了荆州城区空气质量状况、变化特征及其与气象要素的相关性。结果表明,荆州城区优良日数偏少,但2014—2016年荆州城区空气质量略有改善,首要污染物为PM_(2.5);AQI和PM_(10)、PM_(2.5)、SO_2、NO_2、CO的月变化规律一致,呈V型分布,冬季空气污染最严重,夏季空气污染相对较轻,O_3的变化规律则相反,呈反V型分布;除O_3外,AQI和其他污染物浓度与前一日AQI、气压呈正相关关系,与气温、水汽压、湿度、云量、降水、风速呈负相关关系,据此建立了AQI和各污染物浓度的回归预报方程;进一步分析了2014年1月严重污染天气的成因,本地污染物的分布、外地污染物的输入和气象扩散条件是影响空气质量的主要因素。  相似文献   

5.
采用江苏省淮安市地面5个监测站2013年1月1日2015年12月31日PM10、PM2.5、SO2、NO2、CO、O3逐日质量浓度资料及同期气象资料,统计分析了该地区大气污染季节变化特征及其与气象条件的关系;采用MODIS的光学厚度AOD (Aerosol Optical Depth)资料和火点资料分析了2013年12月发生在淮安的一次持续性大气污染事件。研究结果表明,淮安空气质量AQI指数(Air Quality Index)在春冬季较高,夏秋季较低,污染天气发生在春冬季的概率为23.6%,夏秋季的概率为13.3%。淮安地区的首要大气污染物为颗粒物污染,其中PM10、PM2.5占比分别达到25.2%、48.9%,PM10中PM2.5比率年平均为61.0%,臭氧是第2大污染物,占比为25.8%。表征大气柱气溶胶浓度的AOD的季节变化与地面颗粒物浓度截然不同,颗粒物浓度 1月和12月出现极高值,而这两个月AOD月平均值却在一年中达到极低值,AOD最高值出现在7月。另外,AQI与降水、气温、风速、相对湿度呈负相关关系,但相关程度较弱。  相似文献   

6.
为进一步了解京津冀区域空气污染状况与工业排放、气象条件的相互关系,运用统计分析方法,使用环保部2014年空气质量日报数据对京津冀地区13个城市空气质量指数(Air Quality Index,简称AQI)、首要污染物的时空分布特征进行了分析,并与各城市的城市建设、经济发展、工业排放及相应时段主要气象因子的影响进行了对比分析。结果表明:总体上,2014年京津冀地区空气质量呈北优南劣分布,即北部优于中部、中部优于南部。京津冀地区空气质量以良和轻度污染的天数居多,其中位于北部的张家口、承德和秦皇岛3市空气质量最好,优良的天数达到67%~86%;北京、天津的占46%,保定、衡水和邢台的仅占23%。各城市AQI具有相似的季节变化特征,12月AQI值最大,9月份达到最小,10月份起AQI开始回升。各市首要污染物1—3月、7月、9—12月以PM2.5为主,4、5月以PM10和PM2.5为主,6、8月以O3为主。影响京津冀地区的首要污染物来源不同,北京市、河北省分别以机动车尾气排放和燃煤排放为主,天津以工业二氧化硫排放及燃煤影响显著。各地空气质量的首要污染物多为原地生成。秋冬季节空气污染加重与燃煤用量加大、静稳天气增多关系密切;而春夏季节空气污染减轻依赖于风力加大、降水频繁、大气不稳定等气象因素。机动车尾气、工业排放、燃煤排放、人口数量等因素与空气污染关系密切,气象条件(风、雨、不稳定大气层结等)对空气污染扩散起着重要作用。  相似文献   

7.
为了检验CUACE模式指导产品在合肥地区的预报性能,本文利用合肥地区PM_(2.5)、PM_(10)、O_3监测资料对中国气象局下发的2014年3月至2015年2月合肥地区空气质量CUACE模式指导产品的预报效果进行了检验。结果表明:2014年3月至2015年2月合肥地区CUACE模式指导产品AQI和PM2.5浓度的预报值接近实测值,PM_(10)浓度预报值略小于实测值,O_3浓度的预报值明显偏大,但O_3浓度的预报值与实测值相关性最好,AQI、PM_(2.5)浓度和PM_(10)浓度预报值与实测值之间的相关系数均为0.3—0.4。实测空气质量等级为良时,CUACE模式空气质量等级预报的TS评分最高,漏报率和空报率最小;实测首要污染物为PM_(2.5)时,CUACE模式首要污染预报TS评分最高,漏报率和空报率最小。CUACE模式的预报性能并未随预报时效的延长而降低,CUACE模式指导产品总体预报效果较好,可为合肥市空气质量预报提供指导。  相似文献   

8.
利用2014年和2015年春节期间南京市城区与郊区主要污染物(PM10、PM2.5、SO2和NO2)浓度监测资料和气象观测资料,分析了禁燃烟花爆竹对南京市空气质量的影响。结果表明:2015年春节期间禁燃烟花爆竹对南京市空气质量改善显著。2015年春节期间,南京市AQI同比2014年春节期间下降了20%—30%,除夕至正月初三期间空气质量为优良;同时,SO2和NO2质量浓度变化幅度较小且均达到空气质量二级标准;PM10和PM2.5质量浓度变化趋势与2014年春节期间相反,且变化幅度比SO2和NO2质量浓度大,变化幅度分别为13.0—234.5μg·m-3和17.5—320.4μg·m-3。PM10和PM2.5是造成南京市春节期间空气质量污染的主要污染物,其中PM2.5所占比重较大,但2015年春节期间PM10和PM2.5最高小时浓度分别占2014年春节期间的51.0%、40.0%。此外,2015年春节期间南京市城区与郊区PM2.5浓度比2014年春节期间均降低且差异较小。春节期间气象因素对南京市污染物扩散具有较大影响,但禁燃烟花爆竹对PM2.5浓度的降低起决定性作用。  相似文献   

9.
为了分析空气质量状况及其与大气水汽的关系,基于四川盆地西部的成都市近年来污染天气频发的现状,利用2015年成都市环境监测中心提供的环境空气质量指数资料和温江国家基准气候站提供的大气水汽探空资料,首先分析了成都空气质量变化特征,进一步结合成都L波段探空水汽数据,初步研究了成都空气质量与大气水汽的关系。结果表明:2015年成都单日空气质量指数(AQI)最高值为309,达到严重污染级别;AQI年分布特征是冬季最高,夏季最低;首要污染物最多的是PM2.5。春、夏季,大气可降水量(PWV)与臭氧质量浓度在5—8月呈显著负相关;秋、冬季,PWV与PM2.5及PM10质量浓度在1月、10—11月呈显著正相关,其中水汽对PM2.5浓度影响较大的时段出现在1月和10月。  相似文献   

10.
基于2015年6月淮河流域卫星遥感监测火点信息、环境空气质量监测数据和常规气象观测资料,利用ANUSPLIN和ArcGISKriging方法对气象要素和主要大气污染物浓度空间栅格化,分析了秸秆焚烧关键期内AQI和主要污染物浓度的时空变化特征及其与气温、相对湿度、风速等气象要素的相关关系。结果表明:秸秆焚烧关键期内,淮河流域城市AQI、PM10与PM2.5浓度均明显升高,且与卫星监测火点具有一定时空响应关系。在时间变化上,AQI、PM10与PM2.5浓度6月上中旬呈波动上升,6月下旬趋于回落;在空间分布方面,AQI、PM10与PM2.5浓度三者分布形态相似,总体上呈现"南低北高、两高一低"分布特征;期间AQI、PM10与PM2.5浓度与气温呈显著正相关,与相对湿度呈显著负相关,与风速的相关性不显著。  相似文献   

11.
利用2014年3月至2015年2月锦州市逐日AQI、日平均污染物浓度和同期气象要素观测资料,对锦州市空气质量时空分布特征及其与气象条件的关系进行了分析.结果表明:锦州市空气质量等级为良的频率为62%,轻度污染的频率为23%,优的频率仅为6%,主要污染物为PM_(2.5)、PM_(10)、SO_2和O_3.锦州市2月和10月空气质量最差,9月空气质量最好,空气质量达优和良等级的日数占9月总日数的97%;锦州市天安街道空气质量最差,其SO_2浓度为百股街道的5倍.锦州市出现3级以上污染时的主要影响系统为地形槽、蒙古低压和弱气压场,降水对污染物具有清除作用,且对PM10的清除作用最明显;沙尘天气时空气污染明显加剧,逆温层抑制了污染物的扩散,逆温层底层高度越低,空气污染越严重.建立了AQI回归预报方程,拟合结果与实测值的变化基本一致,其中对春季AQI的拟合效果最好.  相似文献   

12.
统计分析2012—2013年宁波空气质量及污染物浓度,得出秋冬季宁波市空气质量最差,AQI均值92,首要污染物主要为PM2.5、SO2、PM10,其中,PM10、PM2.5的浓度超过了国家二级标准。2013年空气质量下降、污染程度明显加重主要表现为秋冬季空气污染加重。应用HYSPILT4模式计算输送轨迹并聚类分析,表明大气污染是可以通过中远距离输送影响到下风向的地区;外来污染源对宁波空气质量影响明显。宁波秋季轨迹比较复杂,共有7条轨迹,主要来自津京冀、黄海南部、浙江西南地区和东海,共占72%;冬季有4条轨迹,主要来自浙北和津京冀,共占81%。由此可见,宁波空气污染受其特定的地理环境和大气环流背景影响,存在远、近不同距离的污染物输送问题,西北方向的输送轨迹对宁波空气质量有明显影响,其AQI、PM2.5、PM10、NO2、SO2平均浓度分别可达104、72.9μg·m-3、122.8μg·m-3、54.1μg·m-3、37.8μg·m-3,远高于其它轨迹。特别是秋季来自京津冀、黄海南部以及冬季来自浙江北部、山西河北的轨迹,造成宁波重度或严重污染的重要原因之一。在重污染天气预报预警中,预报员需要密切关注PM2.5浓度变化。大气污染的防治除政府相关部门继续进行能源结构调整、交通源排放控制外,还需要更大范围区域乃至全国的协作才能从根本上改善城市的空气质量。  相似文献   

13.
利用南昌市环境空气质量监测数据,对比分析了WRF-Chem模式和国家级空气质量预报指导产品对6种污染物浓度的预报效果,并采用时序法、时刻法和标准化法3种训练样本构建方案,利用BP神经网络法对WRF-Chem模式和国家级空气质量预报指导产品6种污染物浓度的预报结果进行订正试验。结果表明:1)WRF-Chem模式预报的6种污染物浓度的预报误差整体比国家级空气质量预报指导产品的预报误差要小,即WRF-Chem模式的预报效果优于国家级空气质量预报指导产品。2)WRF-Chem模式6种污染物浓度预报值与观测值的均方根误差的日变化均呈波动形式,除了O3在10时开始升高到18时达到峰值以外,其余的污染物均是从10时开始下降到16时或18时达到谷值。国家级指导产品6种污染物浓度预报值与观测值的均方根误差日变化则略有不同,除了NO2和O3分别在08时和20时达到谷值以外,其他4种污染物均是在14时达到谷值。3)采用标准化法对CO、SO2、PM10、PM2.5集合订正后的误差比WRF-Chem模式的要小;时刻法、时序法对NO2、SO2、PM2.5集合订正后的误差比WRF-Chem模式的要小,预报效果对单一模式预报结果有一定改进作用。  相似文献   

14.
2014—2015年上海地区冬夏季大气污染特征及其污染源分析   总被引:2,自引:2,他引:0  
刘超  花丛  康志明 《气象》2017,43(7):823-830
利用上海地区冬、夏季空气质量数据和常规地面观测数据,分析了2014—2015年冬、夏两季大气污染特征,并通过聚类分析法和后向轨迹模式对污染物输送路径进行统计分析。结果显示:上海市冬、夏两季空气质量均以优良为主,首要污染物分别以PM2.5和O3;来自夏季的西北输送路径对应PM2.5和O3浓度最高,分别为62.8和130.2 μg·m-3,来自冬季的西北和西南方向的输送路径对应PM2.5浓度较高;进而基于潜在源区贡献和污染源排放强度等要素建立了传输指数。总体而言,江苏中南部、浙江中北部以及安徽中南部等地对上海地区夏季空气质量影响较为显著,而冬季周边区域的传输指数范围有所扩大,主要包括河北南部、河南中东部、山东、安徽、湖北中东部、江苏以及浙江中北部等地。  相似文献   

15.
本文基于CUACE系统,利用2015年4—5月沈阳市大气环境观测数据对沈阳地区春季空气质量的预报效果进行了校验和修正。结果表明:CUACE模式对6种污染物(PM10、PM2.5、NO2、O3、SO2和CO)质量浓度的预报值普遍小于观测值,对PM10浓度的预报存在严重低估。CUACE模式预报的沈阳地区春季日首要污染物多为PM2.5,而观测表明沈阳地区春季PM10和PM2.5为日首要污染物的日数相当。同时,CUACE模式预报的空气污染等级与实际观测的空气污染等级相比存在较高的等级偏差率。利用污染物观测浓度和预报浓度之间的线性拟合公式修正CUACE模式的预报结果,修正后首要污染物的预报结果与实际观测结果基本吻合,同时空气污染等级的预报准确率也明显提高,提高幅度为50.0%—80.0%。  相似文献   

16.
华南区域大气成分数值模式GRACEs预报性能评估   总被引:1,自引:0,他引:1  
利用2016-2019年广东省国控站实况监测数据对华南区域大气成分数值模式系统(GRACEs)预报性能进行了综合评估。除空气质量指数AQI外,重点对PM2.5、O3及NO2进行了分析评估。(1) 模式预报性能存在年际差异,对各要素的预报值总体偏低。(2) 模式预报能较好地反映空气质量的空间分布,PM2.5中心在珠三角西北部,而O3-8 h高值区在珠三角核心区和粤东沿海,但模式对O3-8 h高值区存在显著预报低估现象。(3)模式可较好地模拟出PM2.5月变化的单峰型特征和O3-8 h月变化双峰型特征,但模式对AQI的秋冬季主峰值和春季次峰值的预报存在低估,分别与模式对O3-8 h、PM2.5的低估有关。(4) 模式能较好体现O3的午后峰值和NO2双峰值的日变化规律;模式对O3前体物NO2的预报偏差,有可能是导致随后几小时对O3浓度预报偏差的重要原因。(5) 日平均浓度预报效果检验显示模式可较好预测AQI和3种污染物的变化趋势,但对夏秋季高O3-8 h浓度预报显著偏低;模式对轻度污染及以上等级预报能力偏低,亟需提升模式对污染天气的预报能力。   相似文献   

17.
城市大气污染及其引起的健康效应一直是关注的热点。本研究对2018年春季西北五省省会城市PM2.5、PM10、NO2、SO2、CO和O3浓度数据进行了系统分析,并采用美国环境保护署(United States Envi‐ronmental Protection Agency,USEPA)推荐的健康风险评价模型评估了PM2.5、PM10、SO2和NO2的健康风险。结果表明:PM2.5和PM10为主要超标污染物。除乌鲁木齐市(该市PM10春季平均质量浓度亦超标)外,其余四个城市PM2.5和PM10的春季平均质量浓度均超过国家二级标准。各城市SO2、NO2、O3和CO的污染水平较低。2018年春季各城市空气质量以良好至轻度污染为主。各城市人群PM2.5和PM10的春季健康风险均在USEPA规定的可接受风险范围内。SO2和NO2的健康风险均未超过瑞典、荷兰等国推荐的可接受风险值。SO2和NO2对老人产生的健康风险最小,儿童最大,儿童为较敏感受体。儿童(<6岁)SO2/NO2的春季健康风险约是成人(18~60岁)的1.2/1.3倍,是60岁以上人群的1.7/1.8倍。不同性别及年龄阶段人群SO2和NO2的健康风险存在差异,6~17岁人群和60岁以上老人的健康风险有女性>男性的特点,6岁以下儿童与18~60岁成人的健康风险则表现为男性>女性。  相似文献   

18.
本文主要针对塔里木盆地西侧喀什市的大气污染问题,采用多站点、多种污染物数据,分析2015年大气污染物的时空分布规律,揭示其大气污染物的主要特征。总体来看,喀什市主要以颗粒物污染为主,即PM10、PM2.5污染严重。从季节上来看,喀什PM10 平均浓度为春季最高、秋季次之,冬季最低的特点,而PM2.5则呈现冬季最高,夏季最低的特点。如PM10平均浓度春季最高,为504.2μg/m3,这与喀什春季气候特征有关。从日变化来看,PM10的日变化曲线四季除春季外都为双峰结构,春季为多波动型;PM2.5的日变化曲线秋、冬季为双峰结构,春、夏季为波动型结构。总体来看,两类污染物浓度全天的较大值都出现在午夜1:00与下午13:00左右。从空间分布来看, PM10浓度总体上是城市北部低、东南部高的特点;PM2.5浓度四季呈现城市西北部低、南部高的特点。  相似文献   

19.
利用2019-2020年上海地区6种空气污染物小时浓度和逐日空气质量分指数(IAQI)的监测资料,统计分析了上海地区空气质量变化特征及其气象因素的影响.结果表明,2020年上海地区空气质量优良率达86.9%,空气质量状况优于2019年.上海地区AQI具有冬季最差,秋季最好的季节特征,最主要的污染物已由过去的PM2.5转...  相似文献   

20.
利用2015年汉中市空气质量资料和同期的地面气象观测资料,统计分析了2015年汉中市空气质量与气象条件之间的关系。结果表明:2015年汉中市空气质量状况总体较好,以优良天气为主,达标率78%;空气质量指数和空气污染物SO2、NO2、PM10、PM2.5及CO质量浓度变化趋势基本一致,均表现为夏季最低,冬季最高,O3变化规律正好相反;降水能够有效清除空气污染物,净化空气,对于0~50mm的降水,降水量级越大,对空气污染物的清除作用越明显;汉中主导风向为偏东风和偏南风时,空气质量较差,为偏北风时,空气质量较好;风速对空气质量具有双重影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号