首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
运用西藏羊八井观测站2009~2010年近1年的高时空分辨率全天空图像资料分析了测站上空的日间云量特征。年平均总云量统计结果为5.2;冬夏季节云量分布差别明显,夏季平均云量大,冬季小;无云、少云天气多出现在冬季上午,而夏季午后满云情况较多;1~4月及11、12月(冬半年)云量日变化特征明显,上午逐步增加,至17:00(北京时间)左右到达高值,随后逐步下降,形成白天云量渐多夜间云量消散的"循环"过程。运用该地资料还分析了运用时间概率方法估算的点云量与实际云量的差异,小时平均结果显示无云及满云天气条件下二者云量一致性较高,而对中等云量天气二者相差较大。更长时间尺度(天平均)的统计对比表明,随着统计样本增加二者差距缩小。总体来看少云天气情况下点概率云量估算低于实际天空云量,当天空多云时点概率云量则大于实际天空云量。  相似文献   

2.
准确估算云量是了解青藏高原云参数时空特征的基础。通过相关分析、回归分析、趋势分析方法,分析了近21年来青藏高原云分布的动态变化。利用MODIS云量日产品(MOD08_D3)数据和ERA5再分析资料,分析了青藏高原不同阶段云量分布和云参数的时空特征。结果表明,高云区云量中心位于墨脱县(77.3%),林芝(72.5%)地区云量最大,青藏高原日平均云量在过去21年间减少了0.04%。季节分布上,夏季出现水云的概率最高(31.7%),春季出现冰云的概率最高(26.5%)。每年出现的冰云比水云高2%左右。在全球变暖背景下,青藏高原上空水汽含量呈减少趋势,云水含量呈逐渐增加趋势。年平均云水含量比大气总水汽含量高约0.01 cm,云水总含量增加约0.04 cm。本研究为理解云水资源对全球气候变化和青藏高原地区水循环的影响提供了依据。  相似文献   

3.
新书架上     
《(利用气象卫星资料确定北半球云层特点)》1981。本专著综合了五年来利用气象卫星观测北半球云层所得数据资料的处理结果,分析了冬季和夏季的总云量以及各种云的季节分布特点。作者研究了北半球大型天气过程中云量的分布及其特性。主要内容有:(1)云量分布的研究现状,(2)利用卫星资料计算云量多年分布,(3)根据卫星资料确定的北半球高空总云量的特点,(4)北半球高空云的形成特点。  相似文献   

4.
东亚地区云垂直结构的CloudSat卫星观测研究   总被引:16,自引:5,他引:11       下载免费PDF全文
彭杰  张华  沈新勇 《大气科学》2013,37(1):91-100
本文利用卫星CloudSat同时结合了与其同轨道的卫星CALIPSO(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)2007至2009年3年的观测资料,将东亚地区划分为六个研究区域,着重研究了东亚地区云垂直分布的统计特征.结果表明:东亚地区不同高度的云量之和具有明显的季节变化趋势,夏季最大,春秋次之,冬季最小.海洋上空的单层云量最大值出现在冬季,而在陆地上空则出现在夏季.从云出现概率来看,东亚地区单层云出现的概率在春、夏、秋、冬季节依次为52.2%,48.1%,49.2%和51.9%,而多层(2层和2层以上)云出现的概率在春、夏、秋、冬季节分别为24.2%,31.0%,19.7%,15.8%.云出现的总概率和多层云出现的概率,在六个区域都呈现出夏季最大,冬季最小;对4个季节都呈现出东亚南部比东亚北部大,海洋上空比陆地上空大的特点,表明云出现的总概率的季节变化主要由多层云出现的概率的变化决定.东亚地区云系统中最高层云云顶的高度,在夏季最高,为15.9 km,在冬季最低,为8.2 km;在东亚南部和海洋上空较高,平均为15.1 km;在东亚北部较低,平均为12.1 km,且呈现东亚南北部之间差异较大的特点.东亚地区云系统的云层厚度基本位于1 km到3 km之间,且夏季大,冬季小;对同一季节,不同区域的云层厚度差别较小;当多层云系统中的云层数目增加时,云层的平均厚度减少,且较高层的云层平均厚度大于较低层的.云层间距的概率分布基本呈单峰分布,出现峰值范围的云层间距在1到3 km之间,各区域之间没有明显差别,季节变化也不大.本文的研究为在气候模式中精确描述云的垂直结构提供了有用的参数化依据.  相似文献   

5.
使用大气辐射测量实验(Atmospheric Radiation Measurements:ARM)在美国南部大平原站点(Southern Great Plains:SGP)长时间序列(2001 2010年)的地基主动遥感云(Active Remote Sensing of Clouds:ARSCL)和美国国家环境预报中心(National Centers for Environmental Prediction:NCEP)全球预报系统(Global Forecast System:GFS)模式预报资料,对比分析了两者云量在不同时间尺度内(年际、月份和季节)的差异。结果表明,GFS模式预报总云量为83.8%,略高于地基观测结果(78.1%);两者总云量差异在秋季最大(8.8%),春季最小(2.2%)。在低垂直高度分辨率(≥3 km)时,地基探测低云、中云和高云的云量分别为46.1%、43.5%和61.2%;模式预报三类云的云量均要高于地基探测的云量,差异分别为9.6%、17.2%和9.1%。但是,在高垂直分辨率(250 m)时,地基探测云量在大多数高度层上要高于模式预报结果。这应该是两种资料廓线中有云出现的高度层数目存在差异引起的。地基观测和GFS模式预报同时表明,SGP站点上空云量垂直廓线呈现双峰结构,在边界层附近(1 km)和上对流层区域(8-12 km)云量较大,2-3 km高度范围内云量较小。在春夏秋冬四个季节内,两种资料在低层边界层附近的最大云量偏差分别为9.5%、8.8%、7.8%和11.2%。  相似文献   

6.
基于Cloud Sat-CALIPSO(Cloud Sat–Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations)卫星观测资料,分析了全球总云量和8类云的云量、云底高、云顶高、云厚度的水平和垂直分布。分析结果表明,全球平均总云量为66.7%,其中卷云(Ci)和层积云(Sc)云量之和与其他6类云量总和相当,是全球云量最多的两类云。积状云云量呈现从赤道向极地递减的特征,层状云则相反,反映了二者不同的生成环境,同时下垫面地形和天气系统也严重影响云的分布。8类云的高度及厚度特征有显著差异。Ci的云底高度和云顶高度都较高,厚度则较薄;高层云(As)和高积云(Ac)的云底高度和云顶高度都位于大气中层,但As比Ac出现的高度高且厚度大;层云(St)、层积云和积云(Cu)的云底高度和云顶高度都很低,属于薄的低云;雨层云(Ns)和深对流云(DC)云底较低但云顶伸展很高,归属于厚云类。总体而言,海洋上云底高度较陆地低;赤道等大气不稳定地区,云底较高,云厚度较大;高原地区则表现出"高云不高,低云不低,云厚较薄"的特征。  相似文献   

7.
郭伟  刘磊 《气象科技》2016,44(6):860-866
利用地基红外测云仪(WSIRCMS)在2011年11月北京观象台的连续观测数据,从总云量、云底高和天空类型3个方面初步分析其探测能力。结果表明:1该仪器能够不分昼夜同时实现云高、云量(高、中、低和总云量)和天空类型的连续自动探测;2与参考标准云量的差值在±10%以内的样本数占总样本数的72.5%,有霾存在时,对中高云的观测能力较弱,造成云量观测结果差异较大;3与激光云高仪的天顶方向的无云一致率达94.9%;在中低云情况下,云高观测结果一致性较好,高云时存在较大差异,WSIRCMS观测云高偏高;4与人工分类的天空类型一致的样本数占总样本数的82.63%,对波状云、积状云和混合云的识别能力稍低。  相似文献   

8.
西北典型地域条件下云量的对比分析   总被引:9,自引:1,他引:8  
采用NASA地球观测系统(EOS)“云与地球辐射能量系统(CERES)”2002年7月至2004年6月CERES SSF Aqua MODIS Edition 1B云资料,选取我国西北地区不同气候环境条件下的4个典型地域,研究了总云量、低层云和高层云云量的空间分布特征以及季节和年变化特征。结果表明,低层云量的高值区不仅分布在山脉地区,而且也分布在非山脉地区。但高层云的云量高值区只分布在山脉地区;总体来说,云量大小随地域的不同相差相当大,高层云云量年平均值的最大差异发生在祁连山区和塔克拉玛干沙漠之间,两者相差16.4%。而总云量和低层云量年平均值在季风区和塔克拉玛干沙漠地区相差最大,分别可达27.6%和19.5%。季风区和祁连山区云量最大值一般都出现在夏季,天山和塔克拉玛干沙漠地区云量最大值一般都出现在春季,最小值则均出现在秋冬季。总的来说,3个云量参数值在3~9月较高,最低值出现在10~12月。  相似文献   

9.
利用CFSR资料分析近30年全球云量分布及变化   总被引:4,自引:1,他引:3  
向华  张峰  江静  彭杰  张喜亮  张春艳 《气象》2014,40(5):555-561
在利用MODIS卫星的云产品资料对CFSR(Climate Forecast System Reanalysis)再分析资料云产品质量进行检验评估的基础上,采用CFSR资料对1979—2009年全球总云量及低、中、高云量的平均分布及其随纬度的变化进行了分析;用经验模态分解(EMD)方法分析了近30年全球云量的变化趋势,结果表明:(1)全球近30年平均总云量约为59%,全球总云量及低云量、中云量都有明显的纬向分布特征,全球总云量有3个峰值带和3个低值带。(2)低云量的海陆分布差异较明显,陆地上的低云量明显低于海洋上的,除了两个极圈附近,南半球各纬度的低云量都比北半球相应纬度上的都要多;高云量的高值、低值中心均集中在赤道附近到南、北半球30°之间的中低纬度,并且低值中心主要分布在大洋的东部。(3)总云量的总变化趋势为增长,具体表现为随时间呈现先略减少后大幅增加趋势,其突变点大致在1993年,在1993年之后,总云量显著增多。低云量和高云量均呈现增长趋势,中云量则相反,呈减少趋势。低云量增幅最明显,接近2%,中、高云量则增减幅度较小。  相似文献   

10.
宁夏层状云降水指标分析   总被引:2,自引:0,他引:2  
为更好地确定人工增雨作业的最佳(时段)方案,利用2004—2006年4—9月全区25个气象站观测到的层状云、(银川、固原)新一代天气雷达(CINRAD/CD)观测资料,结合天气形势、降水实况进行综合分析。结果表明:宁夏在"东高西低"和"西风气流"天气型下稳定性层状云降水概率为65%;中部干旱带层状云降水最大概率74%~85%;同时得出层状云降水指标,为宁夏人工增雨作业提供科学依据。  相似文献   

11.
Based on the NOAA's Advanced Very High Resolution Radiometer(AVHRR) Pathfinder Atmospheres Extended(PATMOS-x) monthly mean cloud amount data, variations of annual and seasonal mean cloud amount over the Yangtze River Delta(YRD), China were examined for the period 1982–2006 by using a linear regression analysis. Both total and high-level cloud amounts peak in June and reach minimum in December, mid-level clouds have a peak during winter months and reach a minimum in summer, and lowlevel clouds vary weakly throughout the year with a weak maximum from August to October. For the annual mean cloud amount, a slightly decreasing tendency(–0.6% sky cover per decade) of total cloud amount is observed during the studying period, which is mainly due to the reduction of annual mean high-level cloud amount(–2.2% sky cover per decade). Mid-level clouds occur least(approximately 15% sky cover) and remain invariant, while the low-level cloud amount shows a significant increase during spring(1.5% sky cover per decade) and summer(3.0% sky cover per decade). Further analysis has revealed that the increased low-level clouds during the summer season are mainly impacted by the local environment. For example,compared to the low-level cloud amounts over the adjacent rural areas(e.g., cropland, large water body, and mountain areas covered by forest), those over and around urban agglomerations rise more dramatically.  相似文献   

12.
全天空成像仪(total sky imager 440,TSI-440)可以实现白天全天空云量的持续自动监测,时空分辨率较高,得到的云量计算结果更精确.首先介绍了TSI-440的基本原理和资料格式,并基于太湖地区2008年5-10月的TSI-440资料及无锡站地面观测资料,采用统计方法详细地分析了不同天气情况下图像的成像特征及云量的计算误差.结果发现:图像的成像特征与能见度密切相关,红蓝比值随着能见度的减小而增大.另外,仪器在处理阴天图像及复杂天空(多云)图像时,易造成一定的云量计算误差.针对上述问题,本文通过直方图分析,重新选定了红蓝比阈值(晴空点阈值0.62,云点阈值0.66),基于新阈值计算的云量结果较仪器自带的处理结果更为准确,减小了因天气状况不同而产生的云量计算误差.  相似文献   

13.
Clouds are believed to reflect temporal climate changes through variations in their amounts, characteristics, and occurrence. In addition, they reflect both weather and climate in a region. In this work, a methodology to determine the local cloud cover (LCC) is proposed using sky images obtained from a ground-based instrument. Three years of sky images from an urban, tropical site were obtained and analyzed through that methodology. Monthly average LCC varied from 3 to 96 %, while seasonal average values were 68 % for summer, 54 % for spring, 46 % for fall, and 23 % for winter. LCC results show a clear seasonal dependence and a fair agreement (r 2 = 0.72) with satellite data, which typically underestimate the cloud cover in relation to LCC. Our analysis also suggests the possibility of a measurable link between LCC and natural events like the El Niño Southern Oscillation.  相似文献   

14.
基于模糊纹理光谱的全天空红外图像云分类   总被引:6,自引:1,他引:5       下载免费PDF全文
为了对全天空红外测云系统获得的红外图像进行云类自动识别, 提出了基于模糊纹理光谱结合云物理属性的全天空云类识别方法。首先根据不同滤波窗口的模糊纹理光谱图像特征, 确定了滤波窗口大小, 然后通过分析不同天空类型下的FUTS谱 (fuzzy uncertainty texture spectrum) 以及同一种天空类型下的FUTS谱, 考察了FUTS进行云类识别的适用性, 最后利用最小距离分类法和云基本物理属性对全天空红外图像进行了分类测试。在200个测试样本中, 层状云、积云、高积云、卷云和晴空的识别率分别为100%, 100%, 90%, 100%, 100%, 平均识别率达到98%。基于模糊纹理光谱的云分类算法对单一云空具有很好的分类效果, 可进一步应用于全天空红外图像的云分类识别。  相似文献   

15.
Cloud cover information is used alongside weather forecasts in various fields of research; however, ground observation of cloud cover is conducted by human observers, a method that is subjective and has low temporal and spatial resolutions. To address these problems, we have developed an improved algorithm to calculate cloud cover using sky image data obtained with Skyviewer equipment. The algorithm uses a variable threshold for the Red Blue Ratio (RBR), determined from the frequency distribution of the Green Blue Ratio (GBR), to calculate cloud cover more accurately than existing algorithms. To verify the accuracy of the algorithm, we conducted daily, monthly, seasonal, and yearly statistical analyses of human observations of cloud cover, obtained every hour from 0800 to 1700 Local Standard Time (LST) for the entirety of 2012 at the Gangwon Regional Meteorological Administration (GRMA), Korea. A case study compared daily images taken at 1200 LST in each season with pixel images of cloud cover calculated by our improved algorithm. The selected cases yielded a high correlation coefficient of 0.93 with the GRMA data. A monthly case study showed low root mean square errors (RMSEs) and high correlation coefficients (Rs) for December (RMSE = 1.64 tenths and R = 0.92) and August (RMSE = 1.43 tenths and R = 0.91). In addition, seasonal cases yielded a high correlation of 0.9 and 87% consistency within ± 2 tenths for winter and a correlation of 0.83 and 82% consistency for summer, when cases of cloud-free or overcast conditions are frequent. Annual analyses showed that the bias of GRMA and Skyviewer cloud cover data for 2012 was -0.36 tenth, and the RMSE was 2.12 tenths, with the GRMA data showing more cloud cover. Considering that the GRMA and Skyviewer data were gathered at different spatial locations, GRMA and Skyviewer data were well correlated (R = 0.87) and showed a consistency of 80% in their cloud cover data (consistent within ± 2 tenths).  相似文献   

16.
Abstract

Short‐ and long‐wave sky radiances measured with an all‐sky automatic recording radiometer are used to infer the sky cloud‐cover conditions at 10‐min intervals (night) and 20‐min intervals (day). During the day a simple net short‐wave detector provides supplementary data and can be employed as a clear‐sky indicator. This system of cloud detection is controlled by a PET microcomputer and provides a basis for the automatic computer programmed estimation of cloud cover.  相似文献   

17.
利用2008年1月—2013年12月以及2017年1—11月全球天气预报系统(GFS)预报场资料,采用自适应线性最小二乘回归(LS)和自适应递推卡尔曼(Kalman)滤波两种动态时变参数方法,建立了河套周边地区0~168 h预报时效的总云量精细化预报,并与GFS模式直接输出的总云量、线性预报模型逐步回归预报方法得到的总云量以及非线性预报模型BP神经网络和最小二乘支持向量机回归方法(LSSVM)得到的总云量进行了对比,结果如下:(1)相比GFS模式直接输出的总云量,LS、BP神经网络、LSSVM得到的总云量与实况值的平均绝对误差均明显减小。LS方法误差最小,LS方法的年MAE均在20%~25%,且随着预报时效的延长,改进效果越大。LS方法、多元逐步回归方法、BP神经网络、LSSVM四种方法在6—8月的改进效果最大。(2)LS方法预报的总云量与实况云量的相关性最好,即使168 h预报时效的相关系数依然在0.64以上,远高于其他几种模型的预报结果。(3)LS方法能够明显地提高少云和多云天空状况下预报的击中率,且最优(少云击中率平均提高24 %,多云击中率平均提高34 %)。(4)自适应递推Kalman滤波方法存在预报滞后现象,改进效果不明显。   相似文献   

18.
Summary The total cloud cover is deduced from measurements of monthly mean averages of the percent of possible sunshine duration at three locations in Egypt, Cairo, Bahtim and Sedi-Barrani stations during the period 1987–1995. This sunshine-derived total cloud cover (Cs) is compared to conventional ground-based observations of total cloud covers (Cg) made by meteorological observers. A linear relationship between the two estimates is calculated, and the difference between the two estimates as a function of Cs and Cg is fitted with a least-squares linear equation. It is found that on the average the sunshine-derived values of total cloud cover are about 7% lower than the corresponding ground-based estimated of total cloud cover. Both of these parameters are mainly used in solar radiation models and the error sources are mainly depending upon the way to describe sky cover.  相似文献   

19.
基于红外实时阈值的全天空云量观测   总被引:2,自引:1,他引:1       下载免费PDF全文
红外测温传感器在旋转平台控制下定时对全天空进行扫描,拼接全天空红外辐射亮温图像。利用天空中的云点与非云点在红外波段中表现出的不同特性,考虑不同仰角方向天空中云点与非云点的温度差异,结合地面环境参数,实时拟合天顶到水平区间内晴空时刻的温度阈值函数,利用阈值分割方式得出全天空云分布及云量信息。该方法可以有效减少地面环境参数及太阳光照对云图的影响,能够全天实时运行。将利用该方法获取的数据分别与人工观测数据及典型天气条件下可见光测云结果进行对比,结果表明该系统在云量观测方面具有一定的先进性和准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号