首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
利用1985-2018年汛期(5-9月)豫东地区20个国家站小时降水资料和2011-2018年同期豫东地区区域自动站观测数据、NCEP(1°×1°)再分析资料、高空地面观测资料等,统计分析了该区域小时雨强分别≥20mm/h、≥30mm/h和≥50mm/h的短时强降水时空分布特征,结果发现:豫东地区近34年汛期平均年降水量为458.9~577.5 mm/a,短时强降水次数为72.8次/a;2000年是短时强降水多发年份,≥20mm/h的雨强出现158次,是常年平均次数的1.17倍;主汛期的7-8月是不同强度短时强降水多发时期,34年来共计发生≥20mm/h的短时强降水1821次,占同强度短时强降水总次数(2476次)的近74.0%;在短时强降水的日变化中,05时是不同强度短时强降水多发时段,20时为次多发时段。对不同环流背景影响下短时强降水过程的水汽、动力、热力及能量等物理量作统计分析,低槽型短时强降水过程的动力条件优于其他两个类型的,850hPa涡度平均值达3.8×10~(-5)s~(-1),700hPa垂直速度平均值达-0.36 Pa·s~(-1);副高边缘型短时强降水过程不稳定能量条件优势显著,850hPa假相当位温平均值达354.1 K,500-850hPa假相当位温差的平均值达-17.80℃,K指数平均值为38.1℃、CAPE值平均值为2075.0 J·kg~(-1);而台风倒槽型短时强降水过程则在水汽输送方面更具优势,850 hPa比湿平均值为15.5g·kg~(-1),整层可降水量达70.0 mm。  相似文献   

2.
利用2010-2019年浙江省暖季(5-9月)1426个国家站和区域站小时雨量数据和NCEP 1° X 1°逐日4次再分析资料,分析了浙江省暖季短时强降水、极端短时强降水时空分布特征及区域性短时强降水事件,结果表明:①近10年暖季短时强降水频次呈增多趋势,降水强度变化平稳;8月(上旬)降水频次最多,9月(中旬)强度最强...  相似文献   

3.
利用常规地面、高空探测资料、加密自动站逐时雨量资料,分析2012—2016年乌鲁木齐市暖季的短时强降水分布特征及环境条件,得出乌鲁木齐市短时强降水的空间分布、月变化及小时雨强特征;通过分析22场短时强降水天气过程,按照500 hPa影响系统分类,得出了西西伯利亚低槽、中亚低涡和西北气流3类环流形势及概念模型;统计得出临近短时强降水时段,K、SI、LI等不稳定指数的月变化差异较大,6—7月各指数集中度高,指示意义最好;5月、9月短时强降水的水汽特征量值明显小于6—8月,7月水汽量值最高。  相似文献   

4.
应用太原1996-2015年7个国家气象站、2008-2015年63个区域站6-9月逐时降水资料及相关探空、地面观测资料,对太原短时强降水日环流配置进行天气学分型,分析各流型下关键环境参数分布特征。结果表明,太原发生短时强降水的500 hPa环流形势有四种:冷涡型、高空槽型、高空槽加副高型、西北气流型。太原短时强降水常发生在比较温和的对流有效位能(CAPE)环境下,大部分过程CAPE值≤1500 J·kg^-1,冷涡型则≤1000 J·kg^-1。西北气流型850 hPa与500 hPa温差(ΔT850-500)大,静力不稳定度比其他型更强,且500 hPa有明显的干层存在。高空槽加副高型K指数大,且暖云厚度均值达3576 m,明显大于其他型2471~2608 m的均值。冷涡型全部、高空槽型85%的过程出现在弱0~6 km垂直风切变环境下,而高空槽加副高型、西北气流型0~6 km垂直风切变相对较大,35%以上达到中等强度。冷涡型、西北气流型短时强降水太原上空700 hPa水汽常比850 hPa更充沛。太原超过70 mm·h^-1的极端降水出现在西北气流型下,有中等强度的CAPE值、强层结不稳定、弱0~6 km垂直风切变、3550 m以上暖云厚度,中低空水汽充足,这些环境参量的配合对强降水效率有很好的指示意义。  相似文献   

5.
应用昆仑山北坡小时、分钟降水资料以及和田C波段多普勒天气雷达资料,分析近8年该区域短时强降水天气分型,对比分析对流云与混合云2型5类短时强降水的回波强度、顶高、垂直液态含水量等回波特征量值以及持续时间的差异.得出昆仑山北坡短时强降水中,中亚低涡(槽)型环流形势和块状多单体回波最多,昆仑山北坡无超级单体回波.需高度关注3...  相似文献   

6.
利用新疆维吾尔自治区克孜勒苏柯尔克孜自治州(简称"克州")4个站点2006—2013年逐时降水量实况资料、喀什雷达及探空资料,分析了克州地区短时强降水的发生规律及年代际变化特征。结果表明:1)克州地区短时强降水多出现在5—9月,尤以6—7月最多,且多出现于午后及前半夜;2)着眼于500 hPa环流形势演变,对影响克州地区短时强降水天气出现的影响系统进行分型,主要有中亚低涡或低槽东移型、巴尔喀什湖(以下简称巴湖)低涡型、喀布尔低槽(涡)型、锋区南压型4种类型,并归纳分析了上述4种影响系统造成各类短时强降水天气的概念模型;3)利用典型历史个例中探空资料物理参数进行分析,得到一些统计特征,同时利用探空订正来进行潜势预报,并对得出的预报探空及订正指标进行检验;4)探空资料V-3θ图显示强降水具有明显的非均匀结构、存在明显的大肚状,风矢结构为明显的顺滚流;5)利用喀什雷达资料对克州短时强降水得出指标:回波强度在45~60 dBz、回波顶高在5.0~9.0 km、强降水回波最大垂直累积液态含水量在4~40 kg/m~2、强中心所在高度在1~7 km、≥35 dBz的对流回波在本站持续1 h。  相似文献   

7.
《高原气象》2021,40(3):510-524
利用2011-2020年6-8月全国2400个地面自动站观测的逐小时降水资料和常规观测,结合美国NCEP/NCAR 1°×1°的6 h间隔再分析资料,基于站点统计了冷涡背景下东北地区短时强降水的时空分布特征。然后着眼降水落区,基于冷涡位置、形状、发展阶段以及与热带系统的相互作用等将冷涡短时强降水分为西北气流型、纬向型、南涡型、副高型和经向型,并讨论了5类短时强降水的对流参数特征。结果表明:6月,冷涡短时强降水多由中涡造成,7月和8月主要由北涡引起。短时强降水主要发生在午后,17:00(北京时)达到峰值。冷涡短时强降水高频区位于辽宁,次高频区位于吉林中部、黑龙江中西部和东北部。不同类型的短时强降水,其降水落区在冷涡不同发展阶段有所差异。冷涡短时强降水发生在条件不稳定的大气中,西北气流型、纬向型和经向型短时强降水的850 hPa与500 hPa温差一般大于25℃;副高型和南涡型短时强降水的850 hPa与500 hPa温差一般小于24℃,但地面露点和可降水量明显比其他3类大。5类短时强降水的对流有效位能一般不超过1500 J·kg~(-1)。大多数情况下,副高型短时强降水发生在中等强度的垂直风切变环境中,其他4类发生在弱的垂直风切变环境中。  相似文献   

8.
利用常规观测和再分析资料,分析了2014年4月20—21日青海东北部一次暴雪天气过程的环流背景特征和物理量配置,结果表明:500hPa中高纬度呈两槽一脊的形势,贝加尔湖西侧脊向东发展,环流经向度加大,东北—西南向的西西伯利亚(蒙古)低槽在向南加深到青海北部地区,底部有不断分裂的短波槽东移,引导蒙古冷空气不断东移南下,并有-28℃的冷中心与之配合。青藏高原南支槽前西南气流强盛,北部冷空气与西南暖湿气流在青海东北部交汇,形成了较强的风向辐合区,为暴雪天气过程提供了有利的环流条件。垂直速度(ω)中心值达到-3.2×10~(-1)hPa·s~(-1),从低层700hPa到高层200hPa存在深厚且很强的上升运动。700hPa~500hPa之间形成一个中心强度达-1.5×10~(-4)s~(-1)的强辐合中心,高层300hPa~200hPa之间对应出现一个中心强度达2.4×10~(-4)s~(-1)的强辐散中心。低层辐合、高层辐散使得整层大气的垂直上升运动增强,为暴雪过程提供了有利的动力条件。门源地区处于θse等值线密集区,低层高温高湿的不稳定能量与中层向下渗透的冷空气导致中低层位势不稳定的建立,为此次强降水过程提供了热力条件。强盛的高原南支低槽槽前的西南气流,其中心强度达4.5×10~(-2)g·s~(-1)·cm~(-2)·hPa~(-1)的水汽通量高值带,为暴雪区提供充沛的水汽输送。且门源地区处于-3×10~(-7)g·s~(-1)·cm~(-2)·hPa~(-1)的强辐合区中,加上门源地区山谷地形的影响,进一步加强了此次暴雪天气过程的水汽条件和抬升触发条件。  相似文献   

9.
利用2014-2016年高空、地面气象资料和大气环境监测资料,对开封市空气重污染日持续时间和发生月份特征、 500 hPa高空环流和地面气压场形势、污染物浓度与气象要素的相关性和分布特征进行了统计分析。结果表明:开封市重污染日主要发生在11月至次年1月,重污染日的首要污染物为PM_(2.5)和PM_(10),出现频率分别为97%和3%;秋冬季重污染常具有连续性,连续1~2天的重污染累计频率为44%,连续3~6天的累计频率达到56%。发生重污染时500 hPa形势主要分为平直纬向环流型、低槽型和西北气流型,出现频率分别为47%、43%和10%;地面气压场形势主要分为高压前部型、均压场型、低压南部型、倒槽型和东高西低型,其中高压前部型出现频率最高,达63.4%,其次均压场型占18.3%,其他3种类型出现频率都在5%~7%。重污染日逆温层高度主要分布在925-1000 hPa,但当逆温层高度达到850 hPa时,其发生重污染的概率达到40%;重污染日850-925 hPa风速多在10m·s~(-1)以下,1000 hPa风速多在5 m·s~(-1)以下,地面早晚间风速多为1~3 m·s~(-1);地面早晚间相对湿度主要分布在60%~90%。根据统计结果,选取低层风速、逆温、地面风速、地面相对湿度、云量等作为预报因子,应用"配料"法,建立6个空气重污染潜势预报模型。经检验评估,24-72 h模型预测准确率达到85%以上。  相似文献   

10.
该文利用2005-2014年丰都县地面天气、探空数据、NCEP 1°×1°FNL再分析资料等,对丰都地区冰雹、雷暴大风、短时强降水这3类强对流天气特征进行统计分析,得出这3类强对流天气的时空分布特征,并从天气个例出发,利用实况资料对强对流天气的差异进行分析,为强对流天气的预警预报提供参考。得到如下结果:短时强降水通常出现在5-9月,大风通常出现在5—8月,冰雹通常出现南部的七跃山脉和北部的蒋家山和黄草山脉附近~([1]),2005—2014年间共出现了7次,3—8月均有发生。通过计算3种强对流天气环境场参量,归纳出3种物理量参数的差异:大气可降水量、AT500-T850,K指数、抬升指数(LI)、相对湿度、散度场分布等在冰雹、短时强降水和大风天气中有明显的差异,冰雹和短时强降水的AT500-T850相差了近5℃,大风天气的值介于冰雹和短时强降水之间。大气可降水量分布上,短时强降水的大气可降水量(PW)平均值为58 mm,比冰雹值大约多了10 mm,比大风值多了14 mm。短时强降水出现时几乎整层都是处于饱和的状态,冰雹和大风天气几乎只在中低层有较饱和的水汽,而高层的相对湿度平均值在40%~50%左右。对流指数方面,K指数和LI指数都很好的指示了强对流天气的发生,K指数在短时强降水发生时其平均值在39.8℃左右,较冰雹和大风分别高1.6℃和3℃。短时强降水出现环流位置大多位于600 hPa以下,而冰雹则在300 hPa左右,大风在400 hPa左右。  相似文献   

11.
华南前汛期大范围暴雨的合成分析   总被引:3,自引:0,他引:3  
根据广东1959—1982年前汛期13次大范围暴雨过程的普查分析结果,发现这些暴雨过程全部与低空急流密切相关。选取850百帕的大风核中心点为基准,计算了18—30°N,105—120°E间的合成气象场,得到两类大范围暴雨的主要特征,指出了大风核附近的气象要素与广州站5—6月多年平均状态的差别。最后,作了简短的讨论,并给出简要的结论。   相似文献   

12.
杨晓霞  夏凡  张骞  侯淑梅  刘畅 《气象科技》2018,46(3):605-618
利用各种观测资料和NCEP/NCAR 1×1°再分析资料,对2012年7月30日夜间和31日夜间鲁西北连续两天强降雨天气进行诊断和对比分析。结果表明:强降水产生在西风槽前和副热带高压边缘的偏南暖湿气流中,西风槽稳定少动,台风在东南沿海北上,副高加强北抬,为鲁西北连续两天的强降水提供了天气尺度背景。925hPa及以下的低层,来自于渤海的偏东气流和来自于华东沿海的东南气流同时向鲁西北强降水区输送水汽,低层比湿大,CAPE和K指数较高。第1次强降水产生在偏南气流的暖区中,降水强度大,维持时间短。第2次强降水期间,低层有冷空气锲入,把暖湿气流抬升,前期为对流性降水,中后期转为稳定性降水,降水强度小,维持时间较长。850hPa及以下倒槽式切变线和中尺度低涡环流是造成强降水的中尺度影响系统,近地面层来自于渤海的东北气流与来自于东南沿海的东南暖湿气流形成中尺度涡旋,产生气旋式辐合上升,触发对流不稳定能量释放。对流云团在鲁西北形成长形的中尺度对流系统(MCS),稳定少动,有明显的列车效应和后向传播特征。强降水具有较强的日变化,夜间发展增强,白天减弱。  相似文献   

13.
长江中下游地区暖区暴雨特征分析   总被引:8,自引:6,他引:2  
陈玥  谌芸  陈涛  何晗 《气象》2016,42(6):724-731
利用2007到2013年5-9月间常规和非常规资料以及6 h一次的NCEP 1°×1°再分析资料,将长江中下游地区暖区暴雨按天气形势划分为冷锋前暖区暴雨、暖切变暖区暴雨以及副热带高压边缘暖区暴雨三种类型。统计表明暖区暴雨一般发生在距离切变线(锋线)100~300 km的暖区内。主要结论包括:(1)冷锋型降水强度偏弱且分布均匀,集中在5、6月;暖切变型发生次数最多且强度大,主要发生在6、7月长江中下游地区的偏南部;副热带高压边缘型发生次数最少但强度较大,发生在7、8月。暖区暴雨的发生次数及强度在大别山、皖南山区较为集中。(2)暖区暴雨中短时强降水贡献大。(3)冷锋背景下的暖区暴雨一般产生在锋前低压槽中,暴雨落区与高低空急流耦合有紧密联系;暖切变型以低层暖切变线为主要天气背景,地面常有弱静止锋,暖区对流活动与中尺度急流结构、地形强迫等因素存在较高的相关性;副热带高压边缘暖区暴雨与局地的水汽积累和对流不稳定条件的发展有密切关系。据此建立三类暖区暴雨的概念模型。  相似文献   

14.
Water vapor content,instability,and convergence conditions are the key to short-duration heavy rainfall forecasting.It is necessary to understand the large-scale atmospheric environment characteristics of shortduration heavy rainfall by investigating the distribution of physical parameters for different hourly rainfall intensities.The observed hourly rainfall data in China and the NCEP final analysis(FNL)data during 1May and 30 September from 2002 to 2009 are used.NCEP FNL data are 6-hourly,resulting in sample sizes of 1573370,355346,and 11401 for three categories of hourly rainfall(P)of no precipitation(P<0.1 mm h-1),ordinary precipitation(0.1≤P<20 mm h-1),and short-duration heavy rainfall(P≥20.0 mm h-1),respectively,by adopting a temporal matching method.The results show that the total precipitable water(PWAT)is the best parameter indicating the hourly rainfall intensity.A PWAT of 28 mm is necessary for any short-duration heavy rainfall.The possibility of short-duration heavy rainfall occurrence increases with PWAT,and a PWAT of 59 mm is nearly sufficient.The specific humidity is a better indicator than relative humidity.Both 700-and 850-hPa relative humidity greater than 80%could be used to determine whether or not it is going to rain,but could not be used to estimate the rainfall intensity.Temperature and potential pseudo-equivalent temperature are also reasonable indicators of short-duration heavy rainfall.Among the atmospheric instability parameters,the best lifted index(BLI)performs best on the shortduration rainfall discrimination;the next best is the K index(KI).The three rainfall categories are not well recognized by total totals(TT)or the temperature difference between 850 and 500 hPa(DT85).Threequarters of short-duration heavy rainfall occurred with BLI less than-0.9,while no short-duration heavy rainfall occurred when BLI was greater than 2.6.The minimum threshold of KI was 28.1 for short-duration heavy rainfall.The importance of dynamic conditions was well demonstrated by the 925-and 850-hPa divergence.The representativeness of 925-hPa divergence is stronger than that of 850 hPa.Three-quarters of short-duration heavy rainfall occurred under a negative divergence environment.However,both the best convective potential energy(BCAPE)and vertical wind shear were unable to discriminate the hourly rainfall intensities.  相似文献   

15.
Numerical study of 1998 late summer flood in East Asia   总被引:1,自引:0,他引:1  
The Purdue Regional Model (PRM) is applied to study the evolution of regional climate and weather systems during the heavy precipitation over Korea and China between 30 July and 18 August 1998. The results show that heavy rainfall along the Mei-yu and Changma front was due to the combination of: (1) an anomalous 850 hPa subtropical high, (2) a stronger baroclinicity around 40°N over eastern Asia and a low pressure located to the north of the front, and (3) an excessive evaporation from abnormal wet, warm land. The precipitation ended by 18 August when the subtropical high had retreated and the low pressure in Mongolia moved away from Asia continent. The model reproduced in great detail the observed baroclinic waves to the north, subtropical high and low-level jet to the south, and the front with heavy precipitation extending from southern China, and the Korean peninsula to Japan. High correlations are found for mass, momentum, and moisture fields between model simulation and the European Center for Medium Range Weather Forecast (ECMWF) reanalysis for the 20-day means.  相似文献   

16.
The precipitation over eastern China during January–March 2010 exhibited a marked intraseasonal oscillation (ISO) and a dominant period of 10-60 days. There were two active intraseasonal rainfall periods. The physical mechanisms responsible for the onset of the two rainfall events were investigated using ERA-interim data. In the first ISO event, anomalous ascending motion was triggered by vertically integrated (1000–300 hPa) warm temperature advection. In addition to southerly anomalies on the intraseasonal (10–60-day) timescale, synoptic-scale southeasterly winds helped advect warm air from the South China Sea and western Pacific into the rainfall region. In the second ISO event, anomalous convection was triggered by a convectively unstable stratification, which was caused primarily by anomalous moisture advection in the lower troposphere (1000–850 hPa) from the Bay of Bengal and the Indo-China Peninsula. Both the intraseasonal and the synoptic winds contributed to the anomalous moisture advection. Therefore, the winter intraseasonal rainfall events over East Asia in winter could be affected not only by intraseasonal activities but also by higher frequency disturbances.  相似文献   

17.
利用NCEP/NCAR再分析和全国740站逐日降水资料,运用一点滞后相关等方法,对2007年夏季江淮流域强降水期间低频振荡的波动活动特征及其与降水低频变化的联系进行了分析。结果表明,在2007年夏季降水中,降水低频分量起着重要作用。降水的低频振荡主周期为10~30d,降水距平时间序列与10~30d低频分量具有较好的对应关系。低频扰动在对流层上层和低层都呈现波列状分布,且在降水活跃位相时,低频环流在高、低层具有斜压结构。在对流层上层,低频扰动有缓慢的东移倾向,相速度为每天2~3个经度。西风带中存在多次移动性波列向下游的传播,且在120°E以西以每天14经度的群速度向下游频散能量,表明10~30d低频波动具有明显的下游发展特征。在强降水开始5d前,低频波动与能量可起源于高纬的乌拉尔山附近,沿着西北-东南向的路径向下游传播。下游发展的低频波动为江淮流域带来了能量,为强降水的发生提供了条件。这些结果加深了人们对低频波动在江淮流域强降水过程中所起作用的认识,可为寻找江淮流域强降水过程预报线索提供科学依据。  相似文献   

18.
采用FNL1°×1°和CPC0.5°×0.5°再分析资料,通过对比分析夏季哈萨克斯坦不同区域的3次强降水过程的环流特征,揭示了诱发强降水的环流结构。结果表明:哈萨克斯坦各区域出现强降水时,西部和东部的强降水中心位于高空急流带入口区右侧,北部位于出口区左侧,辐散抽吸作用利于上升运动发展;强降水的影响系统主要为500 hPa低涡,强降水中心位于低涡槽线前部西南气流带上,中层温度平流对强降水发生有促进作用,西部和北部强降水中心位于低层冷平流大值区,东部则位于东北冷平流南侧的气旋性辐合区;除哈萨克斯坦东部强降水受地形影响地面系统尺度较小外,西部和北部强降水时地面有明显的冷锋,并存在气旋性的辐合切变,冷暖汇合形成的辐合线是强降水的主要中尺度触发系统;哈萨克斯坦强降水的水汽源地主要为地中海、黑海、波斯湾和北冰洋,经长途输送在强降水区形成强的水汽辐合,辐合值>40×10-6 g?cm-1?s-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号