首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
利用Micaps常规资料,对2014年10月10-13日青海东部地区出现的一次历史同期少见的寒潮背景下雨转暴雪天气过程的环流形势、水汽输送以及雨转雪过程中温度的垂直结构特征等方面进行了分析,结果表明:前期特别是近地面层气温背景与不同相态降水的发生与转换关系密切,青海东部地面气温大于3℃时,降水性质以雨为主;当地面气温介与2~3℃之间,降水性质为雨夹雪;气温小于2℃,降水性质为雪;降水相态变化与700h Pa 0℃线位置存在相关。  相似文献   

2.
伴随对流层中低层气温持续下降的雪转雨过程分析   总被引:2,自引:0,他引:2  
李海军  张雪慧  潘士雄 《气象科技》2015,43(6):1164-1169
利用欧洲中期天气预报中心(ECMWF)0.25°×0.25°分辨率细网格模式产品、探空观测资料和风廓线雷达等资料,对2014年2月18日浙江嘉兴雨雪天气过程中降水相态先由雨转雪、再由雪转雨的变化条件进行了分析,并对ECMWF细网格模式产品进行了预报性能检验,结果表明:模式形势预报准确,但未能预报出雪转雨过程。在对流层中低层气温持续降低的情况下,水汽凝结高度不同是造成两次相态转换的主要原因。上午垂直运动加强,水汽充沛,降水粒子的凝结高度高,足以形成大的雪花,在较低的零度层高度以下降落时不至于融化;下午垂直运动减弱,水汽集中在低层,尽管这一高度层的气温在-3~-2 ℃,但是不足以凝结成固态降水,同时地面气温受海上暖平流影响而回升,因此降水相态由雪转雨。  相似文献   

3.
董伟  杨光武  马梁臣  朱丹 《干旱气象》2019,37(3):363-369
采用2005-2014年长春市地面和高空常规气象观测资料,研究冬半年地面和高空不同高度层气温对降水相态变化的影响。结果表明:地面气温对降水相态变化影响程度最大,以1.7℃作为雨和雨夹雪的相态转换指标、以-0.1℃作为雪和雨夹雪的相态转换指标可以较好地判断降水相态;将地面气温与925 hPa温度相结合来判断降水相态更加准确;地面气温在0℃附近上升或下降的变化速度越快,雨夹雪持续时间越短。  相似文献   

4.
利用2008—2018年逐年11月至翌年3月常规气象观测资料,从天气形势配置、降水相态与特征层气温、0 ℃层高度和层结厚度的关系等进行分析,归纳了黄山地区冬半年雨、冻雨、雨夹雪和雪四类降水相态的判别依据,并利用一次雨雪转换天气过程对判据进行了检验。结果表明,黄山地区固态降水和固液混合型降水主要发生在1—2月。850 hPa高度层及以下各层气温对雨雪转换的判别效果较好,当850、925、1 000 hPa特征层气温和地面气温分别大于等于-3.9、-2.6、0.5、1 ℃时可判定为雨,各层气温继续降低将出现雨夹雪或雪。当0 ℃层高度在1 000 hPa高度层以上时可能出现雨,反之出现雨夹雪或雪。此外,厚度层结也能较好地区分雨和雨夹雪或雪。冻雨(冰粒)的判据与其他降水相态的判据不同之处是在700 hPa高度层附近存在融化层。判据能较好地区分黄山地区不同降水相态,但对冻雨和冰粒的识别能力相对较弱。  相似文献   

5.
利用2011—2020年辽宁地区逐小时地面观测数据和定时高空观测数据,统计分析纯雪、雨雪转换两类降水天气特征。结果表明,辽宁地区2011—2020年雨雪转换日数与纯雪日数比值为1∶5,沿海地区多于内陆,雨雪转换时主要有5种天气类型:空中槽型、北上气旋型、低涡切变型、冷平流型、回流型,其中,空中槽型雨雪转换日数最多,占总日数的42.8%;冷平流型和回流型相对较少,分别占9.4%和7.8%。地面2 m气温、0℃层高度、抬升凝结高度、抬升凝结高度气温与地面2 m气温差、700~850 hPa位势高度差、850~1000 hPa位势高度差等6个气象因子对鉴定辽宁地区降水相态有一定参考意义。利用高分辨的欧洲细网格资料对2021年2月28日雨雪天气过程的降水相态进行诊断分析,结果表明,雨雪相态的转变对对流层低层温度平流非常敏感,0℃层高度、冰雪层厚度、粒子降落行程与降水相态之间关系密切;当0℃层高度降低(由920 hPa到950 hPa),云中冰雪层增厚(由430 hPa增至530 hPa),液态水层变薄(由20 hPa到10 hPa),云中冰雪物下落到地面的行程缩短(由780 m降至410 m),下落环境温度降低(由3.5℃到0.5℃),降水相态由雨转换为雨夹雪或雪。  相似文献   

6.
一次江淮气旋暴雪的积雪特征及气象影响因子分析   总被引:4,自引:4,他引:0       下载免费PDF全文
杨成芳  刘畅 《气象》2019,45(2):191-202
利用自动站、人工加密观测及常规观测资料,通过对2017年2月21—22日一次江淮气旋暴雪过程积雪特征的分析,揭示了近地面气象要素对积雪深度的复杂影响。结果表明:(1)江淮气旋系统特有的空间结构导致山东南、北地区的降雪量和积雪深度不均衡分布。(2)积雪深度具有时效性,在降雪结束时达到峰值,因温度的变化导致峰值不一定维持到次日08时。(3)积雪深度是近地面多气象要素共同作用的结果,降水相态、降雪量、降雪强度、气温、地温和风速均有影响。主要表现为:雨夹雪在转为纯雪之前可产生不超过1 cm的积雪,如果不转雪则不会产生有量积雪;各地降雪含水比差异较大,全省平均为0. 5 cm·mm~(-1),低于全国平均值;在降雪不融化的情况下,降雪量、降雪强度越大则积雪越深,降雪强度大是气温和地温都高于0℃时产生积雪的必要条件;地温和气温越低对积雪形成越有利,积雪开始产生时的地温最高阈值多在0℃左右,地温先突降后缓升是积雪产生前后的共性特征,积雪产生后1~2 h内地温略有上升并逐渐趋于稳定;积雪产生时气温一般低于0℃,气温高于0℃时大部分降雪融化;有利于产生积雪的平均风力多不超过2级,极大风则在3~4级以下。  相似文献   

7.
利用常规观测资料及新疆区域自动站、乌鲁木齐风廓线雷达、多普勒雷达资料,针对2015年2月13日发生在乌鲁木齐地区的一次雨雪天气过程,从大气背景环境、风温垂直结构、冷暖平流及雨、雪相态转换成因等方面进行分析。结果表明:此次寒潮降水天气的大尺度环流背景是中亚地区高空脊向极区发展,脊顶北风引导极地冷空气南下,在西西伯利亚地区发展成大槽。大槽东移进入新疆地区后,槽后冷空气与北上的西南暖湿气流在天山山区汇合造成此次寒潮降水天气。乌鲁木齐机场出现雪转雨再转雪等相态转换,是由于先受冷平流控制,随着地面冷锋前部暖平流临近,低空暖层厚度加大,降雪粒子在降落过程中融化为雨滴,地面降水相态转为雨夹雪和雨,冷锋系统进入后,再次处于冷平流控制下,降水相态再由雨转为雪。风廓线雷达风场资料的分析结果表明,空中冷暖平流的性质和转换与降水相态变化有较好的对应关系;风廓线垂直速度显示,降雪粒子与雨滴粒子相比,垂直速度较小且雨滴粒子主要集中在1000 m以下。利用多普勒雷达产品分析地面冷锋的移动、空中冷暖平流的变化,有助于对降水相态变化的预报。  相似文献   

8.
鄂西北两次强降雪的滴谱特征和积雪深度预估方法   总被引:2,自引:1,他引:1  
李德俊  熊守权  柳草  万霞  袁正腾  王慧娟 《气象》2014,40(5):612-618
利用丹江口站Thies Clima激光雨滴谱仪(TCLPM)和地面人工加密观测资料对2010年12月14—15日和2012年1月20—22日两次强降雪天气滴谱演变特征及预估积雪深度方法进行了分析探讨,结果表明:(1)激光雨滴谱仪能自动识别降水相态,结合地面人工加密观测结果,气温高于0.7℃,降水相态为雨,低于0.7℃为雨夹雪,低于-0.5℃为纯雪,同时发现地面温度低于0.5℃,地面开始有积雪,且这两次过程地面风速比较低有利于地面积雪;(2)激光雨滴谱仪还可以很好地监测强降雪天气滴谱特征演变规律,回波强度(Z)、平均直径(D_m)、降雪粒子水含量(W)、数浓度(N)随降雪强度增强而增大,且两次过程中D_m、Z、N、W均与地面积雪速率(VSD)均有不同程度的正相关性,W与VSD相关性更好,分别达到了0.844和0.926;(3)选取降雪粒子水含量W与地面积雪速率进行一阶拟合,得出地面积雪速率预估方程,通过纯雪阶段地面积雪速率预估值(VSDF)和地面积雪深度预估值(SDF)与利用雨滴谱仪实测资料反演的VSD、SD两者进行比较,发现它们两者非常接近,说明通过这种方法可以较好地预估地面积雪速率和积雪深度,其结果可以再现地面积雪跃增的主要时段。  相似文献   

9.
本文利用MICAP3.2资料、常规观测资料、自动站资料和多普勒天气雷达资料分析2014年5月2日一次寒潮天气背景下降水相态的成因。结果表明:此过程是高空较强冷空气与南部低压系统共同作用产生的由雨转为雨夹雪后转雪的降水相态的变化。从高空形式场分析,0℃层迅速下降,850 h Pa已达-2℃以上及地面气温在0℃左右是产生降雪的指标。  相似文献   

10.
利用1999—2017年石家庄国家基本气象观测站的降水实况资料,统计出暴雪天气过程,在分析其地面和高空影响系统的基础上,着重分析暴雪天气过程中温度场的变化特征。结果表明:暴雪天气过程的地面影响系统为冷高压和低压倒槽共存的形势,但高空系统存在差异;没有相态转变而以固态雪的形式出现的暴雪天气过程中,对流层中没有逆温层,整个对流层温度小于0 ℃,且700 hPa高度以下的中低空温度小于-5 ℃;有相态转变的暴雪天气过程中,925—700 hPa多存在逆温层,其存在有利于降水的维持和发展,850 hPa和925 hPa可视为特性层,850 hPa温度小于-4 ℃,925 hPa温度小于等于-2 ℃,0 ℃层的高度位于950 hPa以下,可作为预报雨或雨夹雪转雪的参考指标;地面气温大于0 ℃且小于1 ℃可视为过渡相态雨夹雪的地面气温临界值。  相似文献   

11.
利用常规气象观测资料、地面自动站资料、欧洲再分析资料(ERA5 025°×025°),对2020年1月5—7日河南省强雨雪过程中雨雪相态多次转换成因进行分析。结果表明:500 hPa高空低槽、中低层切变线、西南(东南)暖湿急流与低层冷空气在强雨雪区交汇为强雨雪提供了动力、水汽条件,亦为雨雪相态转换提供了有利的温度条件。冷空气分别从东路和中路南下影响河南,导致近地层明显降温是雨转雨夹雪或雪的主要原因之一,而冷空气的强度和厚度是决定降水相态的关键因子。中层和近地面暖层厚度对降水相态至关重要。本次过程降水相态为纯雪时,冰雪层和冰水混合层厚度超过2 980 gpm,中层无暖层,近地面0 ℃线低于975 hPa;降水相态为雨夹雪时,有时无冰雪层,冰水混合层厚度超过1 400 gpm,中层有时有暖层,但整层暖层厚度在900~1 330 gpm;雨转雨夹雪发生在地面气温低于21 ℃时,雨夹雪出现在地面气温11~21 ℃时;纯雪发生在地面气温≤11 ℃时。  相似文献   

12.
一次江淮气旋复杂降水相态特征及成因分析   总被引:1,自引:0,他引:1  
刘畅  杨成芳  宋嘉佳 《气象科学》2016,36(3):411-417
本文应用常规探空资料、地面观测资料、欧洲中心细网格(0.25°×0.25°)数值预报初始场资料和NCEP/NCAR 1°×1°再分析资料分析了山东一次江淮气旋降雪过程的复杂相态特征,并初步分析了成因。结论如下:(1)山东省2014年2月16—17日的雨雪天气过程,降水相态多样性和相态转化复杂性是主要特点,表现为同一时刻雨、雪和雨夹雪三种相态共存,郯城站降水相态逆转(由雨夹雪转雨再转雪),鲁东南地区降雪同时鲁西南地区降雨的"东雪西雨"现象。(2)在系统发展不强的江淮气旋降雪过程中,鲁中山区相对高海拔地区夜间强烈的辐射降温和山脉迎风坡的动力抬升作用均会造成边界层温度的降低,后期对流层低层为东北风控制时,除鲁中山区外,其迎风坡东麓或东北麓(潍坊地区)出现固态降水可能性也较大,一般情况下,地面2 m温度为1~2℃,1 000 hPa温度为0℃左右,925 hPa温度为-3℃左右,可出现固液共存降水现象。(3)相态逆转现象的发生与江淮气旋发展阶段和气温日变化两个因素紧密相关。0℃层在925 hPa上下的状态是一种临界状态,可产生雨夹雪或雨,但0℃层高度下降不是由雨转雪的充分条件,还需考察冷平流发展情况。(4)当江淮气旋生成地偏东(位于长江口附近),且发展不强烈时,山东若受其影响产生降水,后期上游如有新系统发展,可能与气旋共同影响山东,造成复杂相态的江淮气旋降雪过程。  相似文献   

13.
丹东冬季降水相态判据研究   总被引:4,自引:0,他引:4  
利用丹东1979-2012年10月至翌年4月逐日降水、天气现象、高空探空资料及NCEP0.5°×0.5°(部分2.5°×2.5°)再分析资料,对丹东地区冬季不同相态降水气候及大气层结特征进行了统计分析, 并对不同相态降水典型个例进行了分析。结果表明:丹东地区虽地处北方,但冬季降水相态多样。在秋冬、冬春过渡和严冬不同时段,大气不同层结不同相态降水气温阈值范围不同,建立了丹东冬季不同大气层结降水相态判据。大气不同层结前期特别是近地面层气温背景与不同相态降水的发生与转换关系密切,可为动态预报降水相态提供了参考。850 hPa及以下中低空温度条件对冬季降水相态形成至关重要,850 hPa的0℃线能较好区分雨和雪区大致范围,925 hPa的0 ℃线能较好区分雨夹雪和雪以及雨夹雪和雨大致范围。  相似文献   

14.
一次降水相态转换过程中温度垂直结构特征分析   总被引:6,自引:0,他引:6  
2012年11月3-5日华北地区出现了该年度的第一次大范围雨雪天气过程,各地区依次都出现了雨转雪的复杂天气,这给预报带来了较大的难度。一直以来,冬季降水相态类型的预报都是国内外气象预报的难题之一,而温度的垂直结构特征是影响最终降水类型的关键因素之一。利用常规地面观测资料、NCEP再分析资料及中尺度数值模式WRF对此次雨雪天气过程中的温度垂直结构演变特征以及相态转变对温度垂直结构的作用等几个方面进行了分析讨论。结果表明:(1)在发生雨转雪过程中,温度递减率会持续减小,并最终会在低层形成一个上下一致的均温层,同时还伴有浅薄逆温层的产生;(2)降水相态类型严重依赖于温度的垂直结构,温度垂直结构的细微改变将决定最终到达地面的降水类型,因此,相关层次的厚度差可以成为判别降水相态类型的重要指标;(3)在降水类型由雨转雪的过程中,由于相关层次的融化作用,伴随着相态的变化温度垂直结构会发生一定程度的改变。  相似文献   

15.
通过对2006—2015年青岛冬半年不同相态降水的统计分析得出,青岛冬半年纯雨日数1月最少,纯雪日数2月最多,12月和1月是雨夹雪及雨雪转换日数占当月降水日数比例最高的两个月。通过个例分析表明,雨雪转换过程多与冷空气入侵相联系。温度场和风场条件能较好地反映出雨雪转换的特征,降温和风向转换在850 hPa以下层更为明显。探空资料分析表明,850 hPa、925 hPa、1 000 hPa和地面气温对不同相态降水都有很好的指示意义,越低层指示性越好。0 ℃层高度对不同相态降水同样具有指示意义,100~500 m高度是雨雪转换的关键高度层;以不同高度层气温为指标确定出青岛冬半年降水相态预报判别指标。  相似文献   

16.
2018年1月下旬,江西省中北部出现严重雨雪冰冻灾害天气,覆冰和积雪持续时间长达7 d,其间多次出现罕见的雨雪相态转换,先后经历了雨、冻雨、雪、冻雨、雪5个复杂过程。文中对此次天气过程的相态转换特征及成因进行了分析。结果表明: 1) 在有利的环流背景下,西风带小槽发展东移并携带冷空气南下,破坏850 hPa高度层附近的暖性逆温层,是冻雨转雪的重要因素,而700 hPa高度层上西南急流的脉动、偏南风增强为雪转冻雨提供了动力和热力条件。2) 冻雨发生时最强风切变出现在925—850 hPa高度层,降雪发生时出现在850—700 hPa高度层。两次冻雨转降雪过程中,上升运动均增强,降雪时低层辐合、高层辐散强度较冻雨时强。3) 近地面气温接近05 ℃时,850 hPa高度层冷暖平流对中低层大气的降温和升温作用至关重要,冷平流的降温作用剧烈,而暖平流的升温作用需要持续输送。暖层消失,冻雨即可转降雪;雪转冻雨时850 hPa和700 hPa高度层温度升至1 ℃,暖层内最高温度达2 ℃,相态的转变落后于暖性逆温层的形成。4) 此次过程中,九江地区发生雨转冻雨以及冻雨转雪过程,地面气温下降明显。雨转冻雨时,气温≤-05 ℃;冻雨转降雪时,气温≤-1 ℃。雪转冻雨时,地面温度略有上升,仍在-1 ℃以下。高山站气温的持续上升,对雪转冻雨天气有指示意义。  相似文献   

17.
利用常规高空资料、地面加密自动站、双偏振多普勒天气雷达、微波辐射计与ERA5再分析数据等多源资料,分析了2021年2月下旬黄河中下游两次暴雪过程的相态演变及形成机理。结果表明:两次过程的大尺度影响系统基本一致,只是影响系统的强度和位置不同导致两次过程存在些许差异。两次过程均存在相态转换,过程Ⅰ中存在相态逆转(由雨转雪再转雨),而过程Ⅱ中只存在雨转雪的转换。在太行山以西的山区,当地面2 m气温低于0.5 ℃时,降水相态以雪为主,在0.5~1 ℃之间时,多为雪或雨夹雪并存;在平原地区,当2 m气温为1~2 ℃时,降水相态为雨或雨夹雪,在0~1 ℃之间时,则为雪与雨夹雪并存,低于0 ℃时,降水相态为雪。在降雨阶段,双偏振雷达产品相关系数(CC)值约在0.98以下,差分反射率(ZDR)在0.6 dB以上,差分传播相移率(KDP)值约在0.2 (°)·km-1以上;在降雪阶段,CC值在0.98~0.99之间,ZDR值在0.2~0.8 dB之间,KDP 值约在0.2 (°)·km-1以下;但在降水相态由雨转雨夹雪时,ZDRCCKDP 值没有明显变化。  相似文献   

18.
利用1999—2014年11月至翌年3月安庆站逐日地面气象观测资料和探空资料,分析了安庆站不同降水相态的时空分布特征和雨雪转换过程中影响系统的配置及转变,选取雨雪转换、降雪和冰粒(包括冻雨)3种天气现象,研究不同降水相态与特性层温度及厚度层结的关系。结果表明:1999—2014年安庆市固态降水集中出现在11月至翌年3月;有降水相态转换的过程中,将850hPa及以下各层温度与地面温度结合对降水相态转变的识别具有更好的效果,当T_(850hPa)≥-4℃、T_(925hPa)≥-4℃、T_(1000hPa)≥-1℃、T_(地面温度)≥1℃时可以判定降水相态为降雨,各层温度继续降低将出现雨转雪,直接降雪在以上指标的基础上需要850hPa的温度降至-6℃及以下;H_(850—700hPa)和H_(1000—850hPa)厚度层结雨雪转换的临界值分别为154dagpm、129dagpm,低于此值则为雪,反之为雨;0℃层高度也可以作为降水相态转换的指标之一,当0℃层高度下降至1000hPa左右时为雨转雪;降水过程中逆温层普遍存在,各种降水类型的区别在于冰粒(冻雨)在850—700hPa之间存在一个0℃以上的暖层,而降雪需要逆温层温度小于0℃。  相似文献   

19.
利用2000—2015年10月至次年4月天津地区逐日常规气象观测资料和ERA-Interim再分析资料(0.125°×0.125°),对天津地区发生的3种降水相态转换(雨转雨夹雪再转雪)的天气过程进行统计,分析降水相态转换过程中温度、湿度和不同等压面厚度特征,得到与降水相态转换关系密切的9种判别因子:850 hPa温度(T 850)、925 hPa温度(T 925)、1000 hPa温度(T 1000)、地面温度(T s)、1000~850 hPa位势厚度(H 1000-850)、850~700 hPa位势厚度(H 850-700)、0℃层高度、-4℃层高度和925 hPa相对湿度,给出每种因子对应不同降水相态的阈值,并通过3次天气个例进一步验证指标的可用性。在此基础上,综合利用9个判别因子和阈值指标建立降水相态判别方程,经检验发现雨和雪回代检验判别准确率达80%以上。  相似文献   

20.
利用常规的地面观测资料、高空探测资料、自动气象站1 h间隔观测资料、NCEP/NCAR再分析资料(1°×1°,6 h)和ERA5再分析资料(0.25°×0.25°,1 h),针对1999—2013年山东省12例江淮气旋降雪过程,总结了降水形态类型及时空分布、相态转换等特征并讨论了降水相态“逆转”现象的物理机制。结果表明:1)江淮气旋降雪过程的降水形态种类多样,可出现雨、雪、雨夹雪、冰雹、冰粒、霰、米雪和雨凇,降水相态转换过程中,除了雨夹雪,冰粒也是一种过渡形态;2)冰雹、冰粒、霰、米雪和雨凇5种特殊降水形态最易出现在2月和3月,“雷打雪”现象亦多发于2月和3月;3)鲁东南和半岛南部地区以降雨为主,鲁西北地区多出现降雪,雷暴集中出现在鲁中的中西部和鲁南地区,尤其是鲁东南地区;4)江淮气旋降雪过程相态转换的基本形式为雨转雪,以有无明显雨雪分界线为依据,可分为“典型雨转雪”和“无明显雨雪转换”两类,二者的影响系统特点显著不同;5)范围较大的相态逆转现象易发区域在地面雨雪分界线附近,位于地面倒槽后部,走向与地面倒槽槽线走向一致。气旋生成前低层暖温度平流增强引起低层增温以及气温日变化导致的中午前后近地层浅薄增温均可引起相态逆转,上述两个因素均与地面倒槽的发展态势关系密切。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号