首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
利用青藏铁路沿线常规气象观测站自建站至2002年月平均地面气温和地表温度,通过插补建立了1960-2002年青藏铁路沿线各站各季及年平均温度资料完整的序列。分析表明,青藏铁路沿线温度近40年来的变化是明显的,升温最显著的是冬季、秋季,升温率分别达到0.41℃/10a和0.40℃/10a,春季升温率只有0.23℃/10a。年平均气温和地温的升温率分别为0.33℃/10a和0.37℃/10a,地温的升高比气温要快。升温率与海拔高度呈负相关,其相关系数为-0.807。升温率随海拔高度的升高而减小。盆地升温率比高山大。铁路沿线地温与气温变化间的相关系数达0.767。在相对冷期,气温的波动幅度大于地温;在相对暖期,地温的升高明显比气温快。  相似文献   

2.
对2012年2月—2014年2月间广州室内地温进行了分析,同时还分析了其与室外气温的相互关系,结果表明:室内日平均地温随月份的变化呈正弦曲线变化,并且其变化与室外平均气温的变化有很高的相关性,但室内地温的升降幅小于室外气温的升降幅,春夏季室外气温高于室内地温,而秋冬季节相反;室内地温的日较差通常很小,一般小于1℃;当室内地温日较差在1~2℃时,多是室外处于持续的升温或持续降温状态;当室内地温日较差大于2℃时,多是因受冷空气影响。有冷(暖)空气影响时,室内地温下降(上升)较室外气温有一定程度的滞后,室内地温下降(上升)幅度较小但保持一致下降(上升)趋势,二者日平均温度变化趋势较为一致。  相似文献   

3.
本文采用新疆13个已迁站新旧站1年对比观测资料,分别计算新旧站资料的绝对差值及差值标准差与迁徙距离和海拔高差的相关系数,分析迁站距离和海拔高差对新旧站资料差异的影响结果表明,年平均气温、最低气温、最高气温、相对湿度新旧站绝对差值和标准差与台站迁徙距离和新旧站海拔高差为正相关,新旧站年风向相符率与台站迁徙距离和海拔高差为负相关;其中,迁站距离对最高气温和风向相符率影响最为显著,最高气温的年值绝对差值及年风向相符率与台站迁徙距离相关系数通过了保证率为95%的显著性检验;而台站迁徙前后海拔高差对平均气温、最低气温、相对湿度影响更为显著,即新旧站平均气温、最低气温、相对湿度的年值绝对差值与新旧站海拔高差的相关系数通过了保证率为95%的显著性检验。山区由于地形复杂年平均气温、年最低气温、年相对湿度的绝对差值比多数平原站大一倍以上,且风向相符率都比平原站小一个量级;在极其干旱的东疆吐鲁番地区迁站,由于地表环境差距较大,使年平均气温、最低气温、相对湿度绝对差值和标准差比其它站大,而风向相符率都比其它站小。  相似文献   

4.
三峡库区复杂地形下的气温变化特征   总被引:6,自引:0,他引:6       下载免费PDF全文
根据三峡水库坝区周边气候考察气象站1992-2004年和宜昌站1952-2004年的逐日气温资料,先用差值法将短期考察资料延长,再通过对比、回归等方法,客观分析了气温随时间和地形的变化规律,结果表明:1)三峡坝区具有冬暖、夏热等特点,是湖北的夏热和冬暖中心之一,不同高度气温年或日变化具有相同位相。2)平均气温、最高和最低气温、极端最低气温、气温日较差等指标随高度升高而递减,极端最低气温日数随高度升高而递增。3)水体对库周气温具有白天降温、夜间增温的效应,增温幅度比降温幅度大,增温幅度夏季大于冬季,降温幅度夏季小于冬季。4)三峡坝区20世纪90年代之前年平均气温呈波动变化,之后有显著上升趋势;水库蓄水以后对水域周围地区有降温效应。  相似文献   

5.
杂交晚稻抽穗期的低温危害指标各地不甚一致,总的趋势是高山区较平原地区低2℃左右。通常认为这是山区日较差大,开花时段气温较高的缘故。据我们的试验结果:山区气温随海拔升高而递减,其中以最高气温随海拔升高而递减的幅度最大,最低温度递减的幅度最小,故日较差随着海拔升高而变小。杂交晚稻抽穗期的低温危害指标在高山区比平原地区低,其主要原因是“前历效应”。  相似文献   

6.
东亚中高纬土壤温度资料评估与分析   总被引:1,自引:0,他引:1  
本文以一套俄罗斯土壤温度历史观测资料RHSTD为基础,分析了四套土壤温度产品[ERA-Interim再分析资料、两套陆面模式离线运行产品ERA-Interim/Land(简称ERA-Land)和MERRA-Land、以及一套二十世纪再分析资料NOAA-CIRES 20CR]在东亚中高纬的可靠性,并重点关注春夏季,主要结论如下:观测地温在0~2 m波动较大,随季节在0℃上下摆动,而2 m以下地温稳定少变,并且在60°N以北地区出现永久冻结。四套地温产品较好地反映了这些特征。无论春夏,还是年平均,四套地温产品气候态都呈“南暖北冷”的特征,但ERA-Land的空间分布与观测最接近。就季节循环而言,ERA-Land最能反映该地区土壤的冻融过程和土壤温度的季节演变。四套地温产品年际变率(标准差)与观测的差异随季节和土壤层变化大,情况比较复杂。就年际变化趋势而言,四套地温产品与观测的相关性,夏季好于春季,表层好于深层,并且ERA-Land土壤温度拥有四套地温产品最多的共性,最能反映观测地温的年际变化。  相似文献   

7.
基于2001~2018年中分辨率成像光谱仪(MODIS)探测的白天地面温度(简称MODIS 白天地温)资料,与青藏高原(简称高原)122个气象站点观测的最高气温资料,在年尺度上评估了MODIS 白天地温在高原的适用性,研究了高原五个干湿分区下MODIS 白天地温的海拔依赖型变暖特征,得到以下主要结论:(1)MODIS白天地温能够基本再现观测的最高气温的时空以及海拔依赖型变暖特征;(2)高原整体上,MODIS白天地温存在显著的海拔依赖型变暖特征,平均海拔每增加100 m,其趋势增加0.02°C (10a)?1,且受积雪—反照率反馈主导;(3)干湿分区下,海拔依赖型变暖特征在高原表现为偏湿润地区强于偏干旱地区;季风区强于西风区。海拔依赖型特征强弱:半湿润地区>湿润半湿润地区>半干旱地区>湿润地区>干旱地区。平均海拔每增加100 m,以上区域的地温趋势分别增加0.06,0.03,0.03,0.01,0.01°C (10a)?1。半湿润和湿润半湿润地区年均温在0°C左右,在气候变暖背景下积雪—反照率反馈作用最为强烈,是其海拔依赖型变暖的主导因素;干旱与半干旱地区年均温相对更低,气候变暖程度对积雪影响相对较小,积雪—反照率反馈作用被限制,但仍对上述地区的海拔依赖型变暖起主导作用;而湿润地区的积雪覆盖率的上升可能是由于降雪(固态降水)增加抵消了积雪融化损耗,云辐射、水汽等其他因素主导了其海拔依赖型变暖。  相似文献   

8.
利用覆盖新疆地区87个站点1961~2005年的资料,对新疆地区夏季的多层土壤温度进行了系统分析,并对降水量、日照时数和地面气温3个对地温扰动较大的气象因子进行相关分析。结果表明:(1)新疆地区夏季地温的空间分布特征表现为南疆高于北疆,平原高于山区。浅层土壤大部分地区有较高的地温,最高值达到38℃以上。深层土壤温度分布较低,其中北部的地温只有15℃左右。新疆南部和北疆的准格尔盆地地区有较大的深层-浅层地温较差分布,而天山附近和北疆的山地地区地温较差分布均较小;(2)地面温度45年来经历了20世纪60年代到70年代中期的下降,20世纪70年代中期到80年代初的较快增温,以及20世纪80年代以后的缓慢下降的3个阶段。地面温度(0 cm)在1978年左右有突变现象,其他层次的土壤温度年际变化没有明显的突变特征;(3)40 cm以上新疆地区夏季土壤温度梯度经历了20世纪60年代到70年代中期的下降,20世纪70年代中期到80年代初的较快增长以及20世纪80年代以后的缓慢下降过程,其中20世纪80年代较快增长时期的增长率达到0.0176℃cm–1 a–1。而且MK方法检验表明,1978年以后,新疆地区夏季土壤温度梯度增大趋势显著;(4)多层土壤温度的年际变化与降水量成负相关关系,与日照时数和地面气温主要成正相关关系。3个气象因子与多层地温的相关关系从高到底的排列为:地面气温、降水量、日照时数,而且浅层地温高于深层地温。  相似文献   

9.
利用锡林郭勒草原8个气象站1960—2014年5—9月气温和0~40 cm地温逐旬观测资料,采用线性倾向估计、5 a滑动平均、线性回归等统计方法,分析锡林郭勒草原生长季地—气温度的变化特征及相关关系。结果表明:近55 a来,锡林郭勒草原生长季地—气温度都呈显著上升趋势,"前冷后暖"特点十分明显,且0~20 cm地温的增幅远高于气温,40 cm地温增幅则低于气温。生长季地—气温度月变化呈"低—高—低"抛物线形状,最高值出现在7月。5—8月地温随土层深度增加而下降,而9月地温随深度变化不明显。各层地温与气温呈显著正相关,且随深度增加相关性逐渐减小;地—气温度线性关系模型在各层拟合效果较好,用于预测和估算各层地温,基本可以满足该地区牧业生产实践的需要。  相似文献   

10.
梅里雪山地区是中国地形起伏最大的地区之一,其气候环境复杂多变、空间分异特征显著,对区域气温和降水的系统分析有助于揭示区域内冰川变化的原因和水文循环过程。站点观测的缺乏和再分析资料的低空间分辨率是精细刻画该地区气象条件的主要制约因素。研究中首先基于有限站点观测,采用尺度因子法和月尺度的回归校正对ERA5-Land产品进行校准;然后,考虑气温和降水的海拔效应,采用Anusplin插值的方式对校准后的结果进行统计降尺度。最终获得了梅里雪山地区近30年(1990—2020年)1 km空间分辨率的气温、降水数据,并以此分析了这一地区降水、气温的时空异质性及其在不同海拔梯度上的表现特征。结果表明,区域气温以0.15℃/(10 a)的速率呈显著上升趋势,且各季节升温的幅度及分布范围各异;降水则以-41.19 mm/(10 a)的速率呈显著下降趋势,整个区域呈“变暖变干”的倾向。区域增温具有明显的海拔依赖性,海拔低于4000 m和>5000 m时,增温不随海拔变化而变化,当海拔处于4000~5000 m时,增温幅度随海拔升高而增加。区域降水也具有显著的海拔梯度效应,当海拔<5000 m时,西坡降水随海拔的升高而减少,当超过该海拔后降水随海拔升高而增加;东坡降水始终随海拔升高而增加。梅里雪山气候变化的时空分异特征是大气环流背景和复杂地理环境共同作用的结果。区域持续的变暖及降水的减少可能会进一步加重该区冰川水资源的流失。  相似文献   

11.
春季浅层地温的时空变化是影响农业生产的重要因素之一,本文采用统计方法,分析齐齐哈尔市1985-2014年春季(5月)浅层(0、10和20 cm)地温的时空变化特征。结果表明该地区浅层地温呈小幅上升趋势;各地间地温的差异随深度增加而逐渐增大,但自2010年起这种差异明显减小。空间上,浅层地温的分布大体上具有由西南向东北降低的趋势。2014年与1987年相比,0 cm和20 cm地温分布均呈现高温面积扩展、低温面积减小的趋势。地温与气温和降水相关分析的结果表明:影响浅层地温的主要因素是气温,降水对表层(0 cm)地温也具有较大影响。  相似文献   

12.
青藏高原1977—2006年土壤热状况研究   总被引:1,自引:0,他引:1       下载免费PDF全文
浅层土壤温度的变化可以指示活动层厚度变化。利用青藏高原及毗邻地区74个站1977—2006年近30年的土壤温度资料,研究了青藏高原及毗邻地区土壤热状况。结果表明,自1977年的近30年来,5 cm土壤负积温绝对值有减小的趋势,在高原的不同区域减小的幅度不同,对整个研究区域而言,负积温绝对值每10年降低了35℃;近30年来研究区内土壤的最大冻结深度呈现减薄的趋势;冻结期间(冷季)高原腹地负积温变化幅度要比边缘地区大,而在一个完整的冻融循环过程中,高原腹地相对于边缘地区稳定;近30年来高原地区冻融强度(FTI)呈现增大的趋势,这在某种程度上表明高原多年冻土区冻土的稳定性发生了变化;纬度及海拔对FTI值的影响较大,当海拔低于4000 m时,33°N南北两区域FTI值随海拔升高的减小率不同,南部减小的量是北部的2.5倍,海拔高于4000 m时,FTI值受纬度影响相对减弱。  相似文献   

13.
采用西南地区巫溪大官山同一坡面10个不同海拔高度梯度观测站2019~2020年逐小时温湿观测资料,分析了气温、气温直减率、日较差和相对湿度的梯度变化特征。结果表明:观测期间,气温随海拔升高而降低,海拔2000 m以上区域秋、冬季常出现逆温或同温现象;年平均气温递减率为0.57℃/100 m,最大值出现在3月和9月,分别为0.63℃/100 m和0.62℃/100 m,2月最低为0.49℃/100 m;日较差总体随海拔升高而减小,但在海拔1065~1222 m,出现了日较差随海拔升高而快速下降的突变区;年、春季在海拔1222~2180 m,秋季在海拔1222~2550 m,出现了日较差相对稳定层,其它季节不太明显。在海拔1670 m以下区域,年相对湿度为78.5%,夏季最大(85.3%),秋季次之(82%),冬季再次(74.3%),春季最低(72.3%);随着海拔升高云雾出现频率增大,年和各季相对湿度均随之增大;海拔1670~1930 m为突变区间,相对湿度迅速增加,在海拔1930~2550 m,年、春、夏、秋季处于云中的时间较多,相对湿度变化不大;冬季由于云层低,海拔较高的区域常处于云的上方,相对湿度随海拔升高反而有所减小。   相似文献   

14.
活动层作为多年冻土与大气系统之间能量和水分交换通道,其内部的水热状况是控制水循环和地表能量平衡的主要因素,并直接影响着寒区生态环境、水文过程以及多年冻土的稳定性。利用一维水热耦合模型CoupModel,对青藏高原风火山试验点活动层土壤剖面温湿度进行了模拟。模拟效率参数表明模拟结果很好地反映了研究区多年冻土活动层水热状况。基于已验证的模型,设置多种不同气候变化情形,来分析活动层内部水热状况对全球气候变化的响应。研究结果表明:(1)土壤温度与气温呈正相关关系,气温每升高1℃活动层平均增温约0.78℃,但随着土壤深度增加,增温幅度逐渐减小;(2)升温导致活动层土壤冻结和融化过程发生变化,且对融化过程的影响明显大于冻结过程;(3)活动层各深度土壤含水量随气温升高而增大,且增大幅度随土壤深度增加而不断增大;(4)在完全融化期,降水量增加降低了浅层土壤温度,升高了深层土壤温度,而完全冻结期土壤温度均随降水量增加而升高;(5)降水量增加导致活动层含水量增加,其中完全融化期土壤含水量变化最明显。因此,气候暖湿化将对青藏高原多年冻土区活动层土壤温湿度及冻融循环过程产生较大影响,可能不利于冻土发育。  相似文献   

15.
色季拉山气温和降水垂直梯度变化规律的研究能更好的了解色季拉山动植物分布随高度变化的生理生态特点,也为未来此区域流域水文模拟提供可靠的数据支持。根据色季拉山11个气象站2013-2018年逐日的平均气温和降水量(4-10月)数据,分析了色季拉山及其西坡和东坡的气温和降水量与海拔的关系。结果表明:(1)色季拉山、西坡和东坡2013-2018年各年气温递减率年际变化幅度小,平均气温递减率分别为0.60,0.71和0.55℃·(100m)-1;(2)季节上,色季拉山气温递减率表现为冬春季高值,夏秋低值的特点,并且在色季拉山受印度季风影响强烈的6-9月季风期是相对的一个低值,这与青藏高原其他受印度季风区域的研究的结果一致;(3)坡向的对比发现,相同时段的气温递减率均表现为西坡的气温递减率均高于东坡的,这可能与西坡降水量比东坡少有关;(4)西坡2013-2018年平均年降水总量与海拔的相关性不显著,而东坡两者相关性显著,降水梯度为10.5 mm·(100m)-1;(5)除西坡非季风期降水量随海拔升高而增加外,西坡季风期、东坡季风期和东坡非季风期的降水量随海拔变化复杂,在色季拉山的中海拔区域均存在相对的少雨区,西坡在3035~3698 m,东坡在3326~3390 m,而在色季拉山的高海拔区域,降水量随海拔升高降水量增加。  相似文献   

16.
为了更好地了解沙漠腹地浅层地温特征以及对气候的响应关系,利用塔中气象站1996—2015年日平均气温、浅层地温(0~20cm)以及总云量、低云量、日照时数、风速、沙尘日数等资料,分析沙漠腹地地温分布特征以及与气象因子的响应关系。结果表明:浅层地温在春、夏季热量向下传导,秋、冬季则表现为相反趋势,气温和地温(0~20cm)的月平均值分别为11.8、16.4、16.0、16.1、16.1℃和16.3℃;在0~10cm地温之间,变化幅度呈现7月份波动最大,在10~20cm地温之间,12月波动最大,9月份,地温随着深度的增加波动一直是最小的;夏季,地温不是影响气温的主要影响因子,在其他季节,气温与0cm地温相关性最明显;(4)冬季,风速是影响气温和地温的主要气象因子。  相似文献   

17.
贵州省冬季地表(0cm)温度预报探讨   总被引:1,自引:0,他引:1  
利用EC细网格地温预报资料,进行预报准确率检验,检验结果表明,EC细网格地温预报准确率较差。并利用1971—2014年贵州0 cm地温资料和气温资料,对贵州冬季地温与气温的关系进行分析,应用统计回归方法建立以气温为基础的地温模型,从而实现通过气温估算地温,并对地气模型进行了检验;结果表明,平均地温预测模型和最低地温预测模型准确率分别达到92%和80%,绝对误差均小于2℃,最高地温预测模型准确率仅有42%,今后需要考虑在不同天气(晴、多云、阴、雨、雪等)条件,分别建立最高地温预测模型。  相似文献   

18.
利用1961—2005年西南地区(四川、贵州、云南、重庆)115个站点的地表气温观测资料以及国际耦合模式比较第五阶段(CMIP5)的历史模拟试验数据,从气温增暖强度、年代际变化和突变三个角度,评估了40个全球气候系统模式对西南地区地表气温的模拟能力。结果表明:大部分模式能模拟出近45年来西南地区不同分区年平均气温的显著升高趋势,但仅6个模式能较好的模拟出地表气温增温幅度的海拔依赖性特征。海拔较低的四川盆地、重庆丘陵地区年平均气温在20世纪60年代至80年代后期呈降温趋势,80年代末开始升温,70年代中期到90年代中期是一个相对较冷的时期,10个模式能模拟出这种降温趋势,其中3个模式模拟降温趋势、年代际偏冷时间与观测结果最为接近,模拟效果较好。所有模式均不能模拟出气温的突变特征。总体来说,对西南地区气温变化模拟相对较好的模式有ACCESS1.0、CESM 1-WACCM、CM CC-CM S、GFDL-CM 2.1、GISS-E2-R-CC、M RI-ESM 1、Nor ESM 1-M E,其中,模拟效果最好的模式为ACCESS1.0。  相似文献   

19.
北京地区夏季降水与气温的对应关系   总被引:1,自引:0,他引:1  
郑祚芳 《气象》2016,42(5):607-613
随着全球气候的持续变暖,各种高影响天气气候事件的发生频率和强度均有明显增强。由于大气热力条件与降水的变化有着密切的联系,开展降水与气温对应关系的研究具有重要的科学意义。本文应用北京地区20个气象站1978—2012年夏季逐日降水及气温资料,分析了不同量级降水与气温的对应关系及城、郊区间的差异。结果表明:(1)北京地区降水量随气温的升高有一个先升后降的过程。中雨及以上量级的降水,当气温达到临界值后雨量保持平稳,随气温变化不明显。而当气温进一步上升到一定程度后,降水量开始随气温升高而迅速减弱。越是强度大的降水,其在达到峰值前随气温的增速越接近Clausius-Clapeyron变率。(2)降水频率、强度随气温变化的临界值各不相同。当气温超过临界值后,降水频率及强度均开始减弱。(3)城、郊区间不同量级的降水随气温具有相似的变化趋势,但到达临界值前城区降水随气温的增速比郊区更大,表明城区降水对气温的敏感性比郊区更强。鉴于城市化对区域气候的主要影响是导致热岛效应的增强,这将有助于我们从另一个角度探讨城市化效应对降水的影响机制。  相似文献   

20.
青海湖流域气候变化及其对湖水位的影响   总被引:1,自引:0,他引:1  
选取青海湖流域1958~2009年刚察和天峻气象站的气象资料及青海湖水位资料,分析了流域的气温、降水、干旱指数和地温的变化特征及对青海湖水位的影响。研究得出:①20世纪80年代中期是青海湖流域气候由暖干向暖湿变化的转折时期,2000年后暖湿的气候特征更加明显;②气温和地温均呈现显著上升趋势,气温的变化率为0.27~0.31℃/10a,5~320cm地温的增加趋势比气温显著,变化率为0.49~0.64℃/10a(P0.01);③和气温相比,地温与水位的线性关系更明显,相关系数为-0.66~-0.8(P0.01),随着土层深度的增加,线性关系增强;④当年的干旱情况影响次年水位的变化,降水和气温的变化对次年水位的影响大于对当年水位的影响;⑤当年的水位变化量与前一年冬季气温的变化量呈显著的负相关(P0.01),与前一年秋季降水的变化量呈显著正相关(P0.01)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号