首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
根据杭州1994—2017年24时次观测的大气能见度及同期地面气象要素(风速、气温、降水量和相对湿度等)、2013—2017年PM_(2.5)监测数据,探讨杭州市大气能见度的特征以及相对湿度、PM_(2.5)对能见度的影响。统计分析表明,杭州大气能见度的年、季、日变化特征明显,在经历2003—2014年低能见度天气多发后,2016—2017年能见度明显转好,特别是2017年均能见度达到11.6 km,为1994年以来最高值;一年之中,冬季能见度较低,夏季能见度较高;一日之中,早晨07:00能见度最差,午后15:00最好。能见度的转好与PM_(2.5)关系密切,当PM_(2.5)质量浓度在50μg·m^(-3)以下,每降低5μg·m^(-3)可以使能见度显著增加。  相似文献   

2.
利用邢台市生态环境局的大气污染物监测数据和同期气象观测资料,对邢台市2018年6月10—24日的一次臭氧污染过程进行了分析。结果表明:(1)污染过程中邢台市4个监测点臭氧质量浓度变化趋势基本一致,邢师高专臭氧质量浓度最高,市环保局最低;臭氧质量浓度日变化呈单峰型,05:00—06:00最低,15:00最高,邢师高专臭氧质量浓度昼夜差最大,市环保局昼夜差最小。(2)晴天、阴天、雨天臭氧质量浓度变化趋势大致相同,日变化也呈单峰型,晴天臭氧质量浓度日变化剧烈,雨天则变化平缓。(3)臭氧质量浓度与平均气温、最高气温、最低气温、太阳辐射、平均风速均呈显著的正相关关系,其中与最高气温相关系数最高;臭氧质量浓度与NO_2、PM_(10)、CO、PM_(2.5)污染物之间呈显著负相关关系。(4)经过较强太阳辐射照射后,当最高气温在29℃及以上,相对湿度在30%~60%之间,风向为偏南风时,臭氧质量浓度在12:00—19:00时段易超标。  相似文献   

3.
石家庄地区日光温室冬季小气候特征及其与大气候的关系   总被引:25,自引:0,他引:25  
魏瑞江  王春乙  范增禄 《气象》2010,36(1):97-103
根据2006—2007年、2008—2009年冬季日光温室内小气候和附近气象站观测资料,利用相关和逐步回归分析,对不同天气状况下石家庄地区日光温室冬季小气候特征及其与外界的关系进行了研究。结果表明,晴天和少云-多云天气下日光温室内的气温、空气相对湿度、接受到的最大太阳辐射有明显的日变化;连续寡照时,室内全天气温低,空气湿度大,不利于蔬菜正常生长发育。影响日光温室内小气候的主要因子有外界的日照时数、平均气温、最低气温、最高气温、空气湿度、云量以及温室内前一天的最高气温等。建立了日光温室内外气象要素的相关模型,经拟合检验和应用检验,不同天气状况下日光温室内日最低气温、最高气温、空气最小相对湿度、接受到的最大太阳辐射的平均绝对误差分别在1.1℃、2.5℃、5.8%、58.3W·m~(-2)以内,平均相对误差大部分在10%以内,具有较高的精度。  相似文献   

4.
合肥市PM_(2.5)对城市辐射和气温的影响   总被引:2,自引:0,他引:2  
本文利用2013年2月—2014年3月安徽省合肥市地面总辐射(即向下短波辐射)、气温、地面温度、相对湿度等气象资料和PM_(2.5)浓度资料,分析了合肥地区PM_(2.5)和地面总辐射、地温和气温的关系,研究发现:(1)PM_(2.5)浓度是影响总辐射的重要人为因子,在中午无云条件下,地面总辐射与PM_(2.5)的浓度呈现较强的负相关关系,相关系数为-0.62。归一化地面总辐射和PM_(2.5)的相关系数为-0.76,在早晨和傍晚的相关系数较小。平均而言,白天无云时PM_(2.5)浓度每增加1μg·m-3,地面总辐射下降0.92 W·m-2。(2)在白天无云时,气温、地面温度和PM_(2.5)浓度有明显负相关关系,PM_(2.5)浓度对地面温度的影响远大于对气温的影响,在夏季的影响高于其它季节。气温、地温和PM_(2.5)浓度的线性拟合直线的平均斜率分别为-0.022和-0.12,相当于PM_(2.5)浓度增加10μg·m-3,地温和气温分别平均下降0.22℃和1.2℃。(3)在天气尺度上,PM_(2.5)浓度对总辐射、气温和地面温度有非常明显的影响,在2013年9月清洁个例和2013年12月的污染个例中,PM_(2.5)浓度每增加1μg·m-3,将引起总辐射下降1.8 W·m-2和0.5 W·m-2,地温下降0.11℃和0.02℃,气温下降0.03℃和0.01℃,因此在天气预报过程中也需要考虑空气污染状况。  相似文献   

5.
O_3和PM_(2.5)是影响长三角地区空气质量的主要污染物。利用2016年33个城市大气环境监测站6项污染物的小时浓度及4个省会城市的气象数据进行统计分析,研究了该地区O_3和PM_(2.5)浓度的时空分布特征及其影响因素。结果表明:长三角地区O_3年平均浓度为50~73μg·m~(-3),平均为61μg·m~(-3);除芜湖和宣城外,其余31城市均存在不同程度的超标状况,超标率为0.34%~18.86%,平均为5.68%。O_3在5月和9月达到浓度高值;四季O_3日变化均呈单峰型,峰值出现在15∶00,夏季O_3峰值浓度最高值为157μg·m~(-3)。O_3浓度沿海城市整体高于内陆城市;夏季宿迁—淮安—滁州片区O_3污染较重。O_3与NO_2、CO显著负相关,且与NO_2相关性较强;O_3与气温、日照时数显著正相关,与相对湿度、降水呈负相关。PM_(2.5)年平均浓度在25~62μg·m~(-3)范围内,平均为49μg·m~(-3);各城市均出现PM_(2.5)超标,滁州PM_(2.5)超标率最大,为23.91%。PM_(2.5)在3月和12、1月达到浓度峰值;其日变化呈双峰型,09∶00—10∶00和22∶00—23∶00达到峰值。冬季徐州PM_(2.5)浓度最高,为102μg·m~(-3)。PM_(2.5)与NO_2、CO、SO_2、PM_(10)显著正相关,与气温、风速、降水负相关。  相似文献   

6.
根据2008—2015年上海崇明东滩大气成分观测站(以下简称东滩站)大气颗粒物(PM)观测数据,分析其浓度水平、变化趋势、影响气团和潜在源区。结果表明,2008—2015年东滩站PM质量浓度的长期变化趋势不显著,但细粒子(PM_(2.5))比例不断升高。PM_(2.5)/PM_(10)从0.84上升至0.92,表明二次气溶胶占比趋于增加。对8年大样本数据进行后向轨迹聚类,发现东滩站主要受大陆型、海洋型、大陆/海洋混合型气团影响,三者所占比率分别为32.0%、38.8%、29.3%。海洋型气团中PM_(2.5)本底质量浓度为11~15μg·m^(-3),而大陆型气团中PM_(2.5)本底质量浓度的季节差异显著,在29~56μg·m^(-3)波动,对东滩站具有明显的输入效应。东滩站PM_(2.5)的潜在源区随季节变化,秋季和冬季主要受华北、黄淮、苏皖影响,春季收缩至苏皖和浙江北部,夏季则转换至长三角南部的浙江及浙闵沿海。总体而言,上海及周边的苏锡常、杭嘉湖对东滩PM_(2.5)浓度贡献最显著,来自渤海、黄海近海污染回流的贡献也不可忽视。  相似文献   

7.
利用1980—2013年石家庄地区12个气象台站能见度资料,结合相对湿度和PM_(2.5)、PM_(10)浓度数据,分析了石家庄地区能见度的时空分布特征,通过研究能见度与相对湿度和PM_(2.5)、PM_(10)浓度的关系,建立大气能见度的多元非线性预报模型。结果表明:(1)1980年以来石家庄地区年平均能见度以-1.0 km·(10 a)~(-1)的速率呈下降趋势,夏季下降趋势最明显,春季下降趋势最小;(2)1998年前后石家庄地区能见度变化较大,1999—2013年平均能见度较1980—1998年下降了15.3%,且空间变化也较明显,1998年之前分别在中北部和中南部存在2个高值中心,在市区和赵县存在2个低值中心,1998年之后则呈由东向西逐渐递减的分布形势;(3)能见度与相对湿度存在显著的指数函数关系,而与PM_(2.5)和PM_(10)浓度均呈幂函数关系。据此建立的能见度与相对湿度和PM_(2.5)、PM_(10)浓度的多元非线性拟合模型能较好地反映能见度的变化规律,并对能见度具有一定的预报能力。  相似文献   

8.
利用1965-2017年韶关地区8个站点的日平均气温观测资料,在线性趋势法、M-K突变检验法的基础上,进一步结合STL时间序列分解算法系统地分析了该地区年平均气温、年平均最高气温、年平均最低气温的时间变化特征.结果表明:(1)近50年来韶关地区气候增暖显著,年平均气温、年平均最低气温与年平均最高气温的气候倾向率分别为0.014、0.042和0.006 5℃/年.(2)年平均气温、年平均最低气温和年平均最高气温的变化周期均约为8年,三者变化的波动性于1980-2010年期间最为显著,但年平均最高气温于1974年之前也存在较大的波动性.(3)韶关地区年平均气温的突变点为1997年,年平均最低气温为1987年,而年平均最高气温则没有出现突变.(4)年平均气温气候变化因素可能与年平均最低气温有关,年平均最低气温、最高气温的变化速率呈显著的非对称性,年平均最低气温的升温速率明显高于年平均最高气温.  相似文献   

9.
应用根河市1958—2016年的气温资料,统计分析了根河市近59a的气温变化特征,结果表明:根河市的年平均气温、年平均最高气温、年平均最低气温均呈现逐年缓慢上升的趋势,年平均气温在-7.0~-2.0℃之间变化,从建站到1987年低于30a平均值(-3.5℃),从1988年开始绝大部分年份高于常年平均值,在1987年有气温突变。年极端最低气温在-49.6~-38.0℃之间变化,年极端最高气温在28.4~38.5℃之间变化;四季平均气温均呈上升趋势,升温速率冬季最大,达0.742℃/10a。  相似文献   

10.
利用2014年本溪市大气颗粒物质量浓度监测资料和风速、气温、相对湿度、气压等常规地面气象要素观测资料,分析了本溪地区大气颗粒物质量浓度的月、季变化特征及其与气象要素的相关性。结果表明:2014年7月和10月本溪市大气颗粒物质量浓度较高,5月和9月大气颗粒物质量浓度较低,6月和11月大气颗粒物质量浓度比值较高。夏季PM10质量浓度较低,平均浓度为115.1μg·m~(-3);冬季PM_(2.5)和PM_(1.0)质量浓度较高,平均浓度分别为99.5μg·m~(-3)和86.1μg·m~(-3)。春季和冬季平均风速与大气颗粒物质量浓度的相关性最好,夏季和冬季相对湿度与大气颗粒物质量浓度的相关性最好。当ρ(PM_(2.5))≥200.0μg·m~(-3)时,ρ(PM_(2.5))与平均气温呈显著的正相关关系,相关系数为0.5288,ρ(PM_(2.5))与相对湿度的相关系数也高达0.6981,高温、高湿和小风等气象条件是本溪地区大气颗粒物高质量浓度事件发生的有利气象条件。  相似文献   

11.
近年来中国东北地区污染事件频发,为揭示该地区重污染天气分布特征,利用2014—2017年中国东北地区40个城市空气质量数据及对应的高低空天气形势资料,统计分析得到中国东北地区大气污染状况的变化特征以及区域重污染事件的天气学特征。结果表明:2015—2017年中国东北地区PM2.5和PM10年平均质量浓度呈下降趋势,其中PM2.5年平均质量浓度下降的更快,PM2.5最大值出现在辽宁和吉林中部地区约为90—100 μg·m-3,SO2年平均质量浓度较高值分布在辽宁西部地区约为50 μg·m-3,而NO2最大值出现在沈阳—长春—哈尔滨一带,约为45 μg·m-3,CO质量浓度最大值分布在东北沿海地区约为1.6 mg·m-3,相反中国东北地区O3年平均质量浓度呈上升趋势,最大值出现在沿海的大连及营口等地,约为100 μg·m-3。污染物浓度变化具有鲜明的季节变化特征,不同地区PM2.5和PM10与AQI最大值均出现在冬季,SO2冬季质量浓度最大值出现在沈阳(180 μg·m-3),NO2与CO冬季最大值出现在哈尔滨(80 μg·m-3,1.8 mg·m-3)。相反,O3最大值出现在夏季沈阳地区约为140—150 μg·m-3。重度污染级别(200 μg·m-3≤PM2.5 < 300 μg·m-3)和严重污染级别(PM2.5>300 μg·m-3)的空气质量表现出以哈尔滨为中心,向周围迅速减少,辽宁中部又略有增加的特征;中度污染(150 μg·m-3≤PM2.5 < 200 μg·m-3)的天数沈阳>哈尔滨>长春,轻度污染(100 μg·m-3≤PM2.5 < 150 μg·m-3)的天数是沈阳>长春>哈尔滨。引发中国东北地区重污染的天气形势大致可分为高压型,低压型和北高南低型3种,出现比例分别为62%、27%和11%;高压型850 hPa高压脊东移经过中国东北地区,地面处于高压南部或弱高压中心,有时在黑龙江北部或辽宁西南部连续有弱小的低压生成并快速东移过境;低压型850 hPa低压系统发展并东移经过中国东北地区,地面处于低压后弱高压中;北高南低型850 hPa和地面中国东北地区受北面高压和南面低压的共同影响。  相似文献   

12.
利用第三代空气质量预报模式LOTOS-EUROS(Long Term Ozone Simulation-European Operational Smog)对2018年中国长三角地区细颗粒物(PM2.5)浓度的时空分布进行数值模拟,通过对比模拟结果与地面观测值,验证模式对PM2.5长期特征模拟的合理性并探讨长三角地区PM2.5的时空分布特征。结果表明:LOTOS-EUROS模式可以较好地再现中国长三角地区PM2.5浓度的时空分布特征,监测站点观测值和模拟值的整体相关系数达到0.64,可以用于长三角地区细颗粒物的模拟。长三角地区PM2.5浓度呈冬高夏低,西北高东南低的特征。冬季PM2.5浓度高值出现在长三角地区的西北部,安徽省等地区的浓度水平最大值可达到160 μg·m-3;春季和秋季PM2.5浓度的高值集中在30°N以北、120°E以西地区,浓度为40-80 μg·m-3;而夏季PM2.5浓度水平大幅度降低,大部分地区维持在20-40 μg·m-3,低值中心出现在长三角地区东南部沿海城市,低于10 μg·m-3,最低值可达5 μg·m-3。  相似文献   

13.
利用2015年黄石市5个监测站点可吸入颗粒物(PM10)和细颗粒物(PM2.5)的在线监测数据和风向、风速、气温、气压等常规地面气象要素观测资料,分析了黄石市大气PM10和PM2.5的质量浓度水平分布特征及其与气象参数的关系。结果表明:2015年黄石市5个监测站点大气PM10和PM2.5年均浓度范围分别为95.8—108.6μg·m^-3和64.3—68.9μg·m^-3,均超过国家二级标准;季均质量浓度呈现显著的冬季高夏季低的变化规律,冬季PM10和PM2.5的质量浓度分别为(143.9±62.2)μg·m^-3和(95.5±44.5)μg·m^-3,夏季PM10和PM2.5的质量浓度分别为(75.2±24.0)μg·m^-3和(50.7±17.3)μg·m^-3。5个监测站中,下陆区、西塞山区和铁山区的PM10和PM2.5颗粒物污染较为严重;各站点大气PM10和PM2.5质量浓度显著相关。大气颗粒物浓度与气象因素的分析显示,黄石市大气颗粒物浓度与气温呈显著的负相关关系,与气压呈正相关关系,与风速和相对湿度的相关性不显著,受风向影响变化较大。  相似文献   

14.
利用多源观测资料综合分析了2015年11月沈阳地区一次PM2.5 重污染天气的气象条件、垂直风场演变、大气边界层特征以及污染物的来源。结果表明:本次重污染过程中,沈阳市区PM2.5浓度长达81h超过250μg · m^-3 ,其中峰值浓度达到1287μg · m^-3 ,重污染期间PM2.5 /PM10 的比例最高为90%。受地面倒槽和黄淮气旋影响,近地面层持续存在的逆温层、高相对湿度和弱偏北风为颗粒物吸湿增长和长时间聚集提供有利的天气条件。风廓线雷达风场资料显示在重污染期间,近地面层存在弱风速区、凌乱风场和弱下沉气流。利用风廓线雷达资料计算了边界层通风量(Ventilation Index,VI)和局地环流指数(Recirculation,R),边界层通风量VI和PM2.5 存在明显的负相关,非污染日VI是重污染日的2倍,局地环流指数R在重污染天气前大于0.9,而在污染期间部分空间R小于0.8。通过后向轨迹模式和火点监测资料分析发现,沈阳上空300m高度气团来自于生物质燃烧区域,而且沈阳地区NO2和CO浓度的变化与PM2.5一致,说明本次重污染过程也可能和生物质燃烧有关。  相似文献   

15.
利用2018年12月至2019年2月滨州、德州和聊城PM2.5、PM10、NO2、SO2、CO和O3逐日质量浓度及其对应的气象资料,分析了鲁西北大气污染特征和影响因子。结果表明:2018年冬季鲁西北大气污染比较严重,聊城、德州和滨州轻度及以上污染天数分别占61%、60%和54%,重度以上染污天数分别占24%、11%和9%;首要污染物均为PM2.5、PM10和NO2,其中PM2.5占60%以上。PM2.5、PM10、SO2、NO2和CO日变化呈双峰双谷型,谷值分别出现在04-07时和15-17时,且下午比清晨更低,峰值出现在上午和下午交通高峰期后2-3 h,且峰值上午大于下午;O3呈单峰型分布,09时出现极小值,18-19时出现极大值。PM2.5是鲁西北主要的首要污染物,与PM10、CO、NO2均为显著正相关,并通过0.01水平显著性检验,与NO2的相关性在低相对湿度(< 60%)时大于高相对湿度(≥ 60%),与CO的相关性在高相对湿度时大于低相对湿度;污染时段(PM2.5>75 μg·m-3)的平均相对湿度和平均温度明显大于清洁时段(PM2.5 ≤ 75 μg·m-3),清洁时段风速和气压比污染时段明显偏大。  相似文献   

16.
利用2015年1月至2017年12月中国环境监测总站全国城市空气质量实时发布平台中公布的克拉玛依5个监测点数据和同时期克拉玛依国家基本气象站的观测数据,分别研究了克拉玛依市4个行政区的PM2.5浓度的时空变化特征以及气象条件对克拉玛依PM2.5浓度变化的影响。结果表明:从月份上看,克拉玛依每年的1月、2月、12月PM2.5浓度最高,3月、11月PM2.5浓度较高,其中,独山子每年2月的PM2.5浓度均最高,2016年2月独山子PM2.5平均浓度最高,达到134 μg·m-3,超过国家一级标准值的2.8倍,属于中度污染,从季节上看,克拉玛依四季PM2.5浓度变化呈现波峰波谷变化趋势,表现为冬季最高,春季次之,夏季、秋季各区变化不一的特点,采暖期的PM2.5浓度高于非采暖期的PM2.5浓度;克拉玛依PM2.5浓度在空间上的总体分布为:独山子区>白碱滩区>克拉玛依区>乌尔禾区;从风向、风速、气温、气压和相对湿度等气象要素与PM2.5浓度的相关性来看,气压、相对湿度与PM2.5浓度呈显著正相关,气温、风速、风向与PM2.5浓度呈负相关,其中气温、风向与PM2.5浓度呈显著负相关。  相似文献   

17.
利用2014年3月至2017年2月成都市8个环境监测站的PM 2.5、PM 10、SO 2、NO 2、CO、O 3共6种污染物质量浓度资料以及T639全球中期数值预报模式产品,采用两种机器学习算法—递归特征消除法(Recursive feature elimination,RFE)和随机森林方法,构建了成都市冬季5种(O 3除外,因为其冬季污染较轻)污染物浓度的预报模型,并对模型的预报效果进行了评价。结果表明:基于RFE模型的5种污染物预报值与实测值的均方根误差值分别为47.58μg·m^-3、72.10μg·m^-3、8.87μ·m-3、0.59 mg·m^-3、19.84μg·m^-3;基于随机森林模型的5种污染物预报值与实测值均方根误差值分别为23.94μg·m^-3、20.98μg·m^-3、2.40μg·m^-3、0.16 mg·m^-3、8.09μg·m^-3,随机森林模型对各污染物浓度的预报效果均优于RFE模型,说明该预报方法性能良好,可为成都市冬季空气质量业务化预报提供技术支持和防控依据。  相似文献   

18.
利用泰安市2018—2019年降水、风和PM2.5逐小时观测数据,分析了降水和风对PM2.5浓度的影响,并对PM2.5进行了源解析。结果表明:降水对PM2.5有一定清除作用,降雨日PM2.5平均质量浓度较非降雨日平均降低约7.2%,秋冬季节最为显著。降水对PM2.5的清除率与降水强度、降水前PM2.5初始浓度及降水时间均有关。当降水强度大于4 mm·h-1时,清除率多在40%以上;当降水强度小于2 mm·h-1、初始浓度低于75 μg·m-3或降水强度小于1 mm·h-1、初始浓度在75—100 μg·m-3范围,且降水持续时间在5 h以内时容易出现PM2.5浓度反弹现象。不同风向风速对泰安地区霾粒子清除也有明显差异,西南偏西风和东北偏东风更容易造成泰安地区霾污染,重污染期间风速超过5 m·s-1偏南风和风速超过3 m·s-1偏北风均对污染物具有有效清除作用。而区域风场相关矢结果表明重污染期间PM2.5污染物主要从广西—湖南—江西一带、安徽南部及浙江北部在西南气流引导下传输至泰安地区,本地源贡献则较少。  相似文献   

19.
利用地面大气颗粒物质量浓度观测资料、探空和NECP再分析资料以及地面激光雷达探测资料,对2021年3月13—15日沈阳地区污染事件过程展开分析,探讨大气污染物质量浓度、大气环流背景与气溶胶垂直分布等特征。结果表明: 3月13日PM2.5质量浓度最高值出现在06:00—07:00,约为220.0—230.0 μg·m-3,15日12:00开始显著降低,而PM10质量浓度在15:00出现显著增加,为258.3 μg·m-3。SO2和NO2浓度较高值均出现在3月13日10:00时左右,分别为40.1 μg·m-3和101.3 μg·m-3。CO质量浓度最高值出现在13日16:00—17:00,约为8.8 mg·m-3。沈阳地区臭氧的最高值均出现在午后,13日和14日午后(12:00—16:00)臭氧最大值为102.4—113.7 μg·m-3。蒙古气旋东移过程中逐渐发展加强,其后部西北风将沙尘向东南方向输送。沈阳地区沙尘发展旺盛时存在不稳定层结,同时伴有显著的上升运动,有利于沙尘粒子的垂直混合和向下游输送。3月15日02:00(北京时间15日10:00)气溶胶消光最大值出现在0.7 km处,消光系数约为6.0 km-1。近地面激光雷达退偏比显著增加至0.4—0.5,近地面以非球形粒子(粗颗粒物)为主的沙尘或浮尘。  相似文献   

20.
利用华中区域代表性站点金沙国家大气本底站2007—2018年的PM2.5、PM10颗粒物质量浓度数据,2019年3月—2019年6月反应性气体数据,对华中区域空气质量进行整体评价,并分析了颗粒物浓度的变化特征及其影响因素。结果表明,反应性气体CO、SO2、NO、NO2质量浓度其日平均最大值、平均值均达到一级标准,O3日平均值超标率为10.6%,PM2.5超标率为18%,PM10超标率为17%。从颗粒物质量浓度多年变化来看,2007—2013年金沙站大气颗粒物质量浓度属于上升趋势,2013年至今质量浓度呈现下降趋势,风向风速也在一定程度上影响颗粒物的来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号