首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
热带气旋强度资料的差异性分析   总被引:16,自引:4,他引:16  
余晖  胡春梅  蒋乐贻 《气象学报》2006,64(3):357-363
通过对比西北太平洋3个主要预报中心(中国气象局(CMA)、日本东京台风中心(RSMC Tokyo)和美国联合台风警报中心(JTWC))的16 a数据,分析了不同来源的热带气旋(TC)强度资料的差异性。结果表明:CMA与RSMCTokyo和JTWC的TC强度均值分别相差0.6和1.7 m/s,均通过1%信度的统计检验,即存在显著差异;3个中心对同一TC确定的强度最大差异超过30 m/s;CMA资料的台风数多于RSMC Tokyo和JTWC,年台风频数的均方差也最大,但是3个中心资料的各级TC频数差异均无统计显著性。对比有、无飞机探测时段的资料发现,对TC进行飞机探测可在一定程度上减小各中心在确定TC强度方面的分歧。为了初步了解上述资料问题对TC强度预报的可能影响,采用一个气候持续性预报方法,取不同来源的TC强度资料进行了4 a(2000—2003年)的预报。发现据JTWC资料所得TC强度预报有最大的均方根误差,RSMCTokyo的最小,CMA居中;据CMA和RSMC Tokyo(CMA和JTWC)资料,对相同TC相同时次24 h预报的平均绝对偏差达2.5(4.0)m/s,最大可相差16(21)m/s。可见,西北太平洋TC强度的基本资料问题增加了预报的难度。  相似文献   

2.
As shown in comparisons of the characteristics of inter-annual and inter-decadal variability and periodical changes in the number of tropical cyclones forming over the western North Pacific by three major forecast centers, i.e. China Meteorological Administration (CMA), Regional Specialized Meteorological Center of Tokyo (JMA) and Joint Typhoon Warning Center (JTWC) of Guam, there are the following important points. (1) Climatology of tropical cyclone (TC) or typhoon (TC on the intensity of TS or stronger) shows some difference in tropical cyclone frequency among the centers, which is more notable with TC than with typhoon. Both of them are more at the database of CMA than at those of the other two centers. (2) The difference is too significant to ignore in the inter-annual variability of tropical cyclone frequency between CMA and JTWC, which mainly results from the obvious difference in the inter-annual variability of the number of generated tropical depression (TD) between the two databases. The difference is small in the inter-annual variability of TS formations among all the three databases, and consistence is good between JMA and CMA or JTWC. (3) Though differences are not significant in the periodical variation of TC formations between CMA and JTWC, they are markedly apart in the inter-decadal variability, which is mainly shown by an anti-phase during the 1990s. (4) Non-homogeneity may exist around the late stage of the 1960s in the data of tropical cyclone frequency.  相似文献   

3.
西北太平洋热带气旋生成数在不同资料集上的差异性比较   总被引:2,自引:2,他引:0  
比较分析中国气象局(CMA)、美国台风联合警报中心(JTWC)和日本RSMC Tokyo台风中心(JMA)台风资料频次的年际、年代际变化和周期变化特征,结果表明,不同资料中心的热带气旋(TC)、台风(TS强度及以上的TC)生成数的气候值存在一定的差异,热带气旋生成数的差异较为明显,台风生成数的差异相对要小,CMA资料中热带气旋、台风生成数相对偏多;CMA与JTWC间热带气旋生成数年际间变化差异显著而难以忽略,其差异主要来自TD生成数的明显不同;三个中心关于台风生成数的一致性比较好,其中JMA台风资料与另外两个中心资料间的一致更好;CMA与JTWC西北太平洋热带气旋生成数的周期变化间无明显差异,但年代际间变化有明显差异,主要表现为1990年代的反位相;台风生成数资料可能在1960年代后期存在非均一性。  相似文献   

4.
Analyzed in this paper are the 20-yr(1991-2010)tropical cyclone(TC)intensity from three forecast centers in the Western North Pacific,i.e.China Meteorological Administration(CMA),Japan Meteorological Agency(JMA),and Joint Typhoon Warning Center(JTWC)of the United States.Results show that there is more or less discrepancy in the intensity change of a TC among different datasets.The maximum discrepancy reaches 22 hPa/6h(42 hPa/6h,33 hPa/6h)between CMA and JMA(CMA and JTWC,JMA and JTWC).Special attention is paid to the records for abrupt intensity change,which is currently a difficult issue for forecasters globally.It is found that an abrupt intensity change process recorded by one dataset can have,in some extreme cases,intensity change in another dataset varying from 0 to≥10 hPa/6h with the same sign or the opposite sign.In a total of 2511 cases experiencing rapid intensity change,only 14%have consensus among all the three datasets and 25%have agreement between two of the three datasets.In spite of such a significant uncertainty,the three datasets agree on the general statistical characteristics of abrupt intensity change,including regional and seasonal distribution,the relationship with initial intensity and TC moving speed,and persistence features.Notable disagreement is on very strong systems(SuperTY)and TCs moving very fast.  相似文献   

5.
The differences in the climatology of extratropical transition(ET) of western North Pacific tropical cyclones(TCs) were investigated in this study using the TCs best-track datasets of China Meteorological Administration(CMA),Japan Meteorological Agency(JMA) and the Joint Typhoon Warning Center(JTWC). The results show that the ET identification, ET completion time, and post-ET duration reported in the JTWC dataset are greatly different from those in CMA and JMA datasets during 2004-2010. However, the key differences between the CMA and JMA datasets from 1951 to 2010 are the ET identification and the post-ET duration, because of inconsistent objective ET criteria used in the centers. Further analysis indicates that annual ET percentage of CMA was lower than that of JMA, and exhibited an interannual decreasing trend, while that of JMA was an unchanged trend. The western North Pacific ET events occurred mainly during the period June to November. The latitude of ET occurrence shifted northward from February to August,followed by a southward shift. Most of ET events were observed between 35°N and 45°N. From a regional perspective,TCs tended to undergo ET in Japan and the ocean east to it. It is found that TCs which experienced the ET process at higher latitudes were generally more intense at the ET completion time. TCs completing the ET overland or offshore were weaker than those finishing the ET over the ocean. Most of the TCs weakened 24 h before the completion of ET.In contrast, 21%(27%) of the TCs showed an intensification process based on the CMA(JMA) dataset during the post-ET period. The results presented in this study indicate that consistent ET determination criteria are needed to reduce the uncertainty involved in ET identification among the centers.  相似文献   

6.
A new Tropical Cyclone (TC) initialization method with the structure adjustable bogus vortex was applied to the forecasts of track, central pressure, and wind intensity for the 417 TCs observed in the Western North Pacific during the 3-year period of 2005–2007. In the simulations the Final Analyses (FNL) with 1° × 1° resolution of National Center for Environmental Prediction (NCEP) were incorporated as initial conditions. The present method was shown to produce improved forecasts over those without the TC initialization and those made by Regional Specialized Meteorological Center Tokyo. The average track (central pressure, wind intensity) errors were as small as 78.0 km (11.4 hPa, 4.9 m s?1) and 139.9 km (12.4 hPa, 5.5 m s?1) for 24-h and 48-h forecasts, respectively. It was found that the forecast errors are almost independent on the size and intensity of the observed TCs because the size and intensity of the bogus vortex can be adjusted to fit the best track data. The results of this study indicate that a bogus method is useful in predicting simultaneously the track, central pressure, and intensity with accuracy using a dynamical forecast model.  相似文献   

7.
吕心艳  许映龙  董林  高拴柱 《气象》2021,(3):359-372
利用1949—2018年中国气象局台风最佳路径、2018年中央气象台的台风路径强度实时预报、ECMWF数值预报以及NCEP逐日高分辨率海温RTG_SST(0.083°×0.083°)等资料,对2018年西北太平洋台风活动的主要特征和预报难点进行了分析。结果表明:2018年台风生成频数偏多,生成源地偏东,南海台风活跃;生成时间集中,盛夏台风异常偏多,台风群发性强,双台风或多台风共存活动频次偏多;台风生命史长,累积气旋能量偏高,超强台风偏多,但整体强度偏弱,较弱台风异常偏多;台风登陆频数和频次偏多,登陆地段偏北,且登陆台风强度明显偏弱。中央气象台24~120 h台风路径预报误差分别为72、124、179、262和388 km,各时效误差较2017年均有减少,特别是长时效路径预报误差明显减少;24~120 h台风强度预报误差分别为3.7、5.1、5.5、6.6和7.1 m·s-1。由于双台风或多台风之间的相互作用、“鞍型场”等造成路径预报难度大以及多台风之间复杂水汽输送、近海台风强度变化不确定性大等原因,造成强度预报难度大。若采用更多观测资料、进行更深入的台风机理研究以及研发更有效的台风客观预报技术将是突破这些难点的有效途径。  相似文献   

8.
Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin were examined. By allowing all of the observed TCs in the JTWC dataset to move along the observed TC tracks in a TC intensity model, the annual category 4 and 5 TC frequency was simulated. The results agreed well with observations when the TC intensity prior to 1973 was adjusted based on time-dependent biases due to changes in measurement and reporting practices. The simulated and adjusted time series showed significant decadal (12-18 years) variability, while the interdecadal (18-32 years) variability was found to be statistically insignificant. Numerical simulations indicated that changes in TC tracks are the most important factor for the decadal variability in the category 4 and 5 TC frequency in the western North Pacific basin, while a combined effect of changes in SST and vertical wind shear also contributes to the decadal variability. Further analysis suggested that the active phase of category 4 and 5 TCs is closely associated with an eastward shift in the TC formation locations, which allows more TCs to follow a longer journey, favoring the development of category 4 and 5 TCs. The active phase corresponds with the SST warming over the tropical central and eastern Pacific and the eastward extension of the monsoon trough, thus leading to the eastward shift in TC formation locations.  相似文献   

9.
登陆台湾岛热带气旋强度和结构变化的统计分析   总被引:2,自引:0,他引:2  
利用1949—2008年共60年的《台风年鉴》、《热带气旋年鉴》资料及CMA-STI热带气旋最佳路径数据集,2001—2008年美国联合台风警报中心(JTWC)热带气旋尺度相关资料及日本气象厅(JMA)的TBB资料,统计分析西北太平洋(包括南海)热带气旋(TC)在登陆台湾过程中强度和结构变化的基本特征,主要结论有:(1)TC登陆台湾时强度为台风及以上级别的样本数占总样本数约60%,主要出现在6—9月,东部登陆TC的强度一般比在西部登陆的强;(2)大部分TC在岛上维持6 h左右,登陆时最大风速≤5级和强度为超强台风的TC穿越台湾岛时移动比较缓慢;(3)126个登陆台湾的TC样本过岛后近中心海平面气压平均增加5.61 hPa,近中心最大风速平均减小3.58 m/s,在台湾东部地区登陆TC的衰减率比在西部登陆的大3倍左右;(4)TC在登陆台湾前6 h至离岛后6 h期间其8级和10级风圈半径均明显减小,TC形状略呈长轴为NE-SW向的椭圆状,而其最大风速的半径却逐渐增大;(5)TBB分析结果显示,TC登陆台湾前,其外围对流主要出现在南侧和西侧,结构不对称,登陆以后,TC北部及东部的对流显著发展,外围结构区域对称;但中心附近的强对流则从登陆前6 h开始逐渐减弱消失。表明TC穿越台湾过程中内核结构松散、强度减弱。  相似文献   

10.
Using tropical cyclone (TC) best track and intensity of the western North Pacific data from the Joint TyphoonWarning Center (JTWC) of the United States and the NCEP/NCAR reanalysis data for the period of 1992-2002, the effects of vertical wind shear on TC intensity are examined. The samples were limited to the westward or northwestward moving TCs between 5°N and 20°N in order to minimize thermodynamic effects. It is found that the effect of vertical wind shear between 200 and 500 hPa on TC intensity change is larger than that of the shear between 500 and 850 hPa, while similar to that of the shear between 200 and 850 hPa. Vertical wind shear may have a threshold value, which tends to decrease as TC intensifies. As the intensifying rate of TC weakens, the average shear increases. The large shear has the obvious trend of inhibiting TC development. The average shear of TC which can develop into typhoon (tropical depression or tropical storm) is below 7 m s-1 (above 8 m s-1).  相似文献   

11.
Accurate prediction of tropical cyclone (TC) intensity remains a challenge due to the complex physical processes involved in TC intensity changes. A seven-day TC intensity prediction scheme based on the logistic growth equation (LGE) for the western North Pacific (WNP) has been developed using the observed and reanalysis data. In the LGE, TC intensity change is determined by a growth term and a decay term. These two terms are comprised of four free parameters which include a time-dependent growth rate, a maximum potential intensity (MPI), and two constants. Using 33 years of training samples, optimal predictors are selected first, and then the two constants are determined based on the least square method, forcing the regressed growth rate from the optimal predictors to be as close to the observed as possible. The estimation of the growth rate is further refined based on a step-wise regression (SWR) method and a machine learning (ML) method for the period 1982?2014. Using the LGE-based scheme, a total of 80 TCs during 2015?17 are used to make independent forecasts. Results show that the root mean square errors of the LGE-based scheme are much smaller than those of the official intensity forecasts from the China Meteorological Administration (CMA), especially for TCs in the coastal regions of East Asia. Moreover, the scheme based on ML demonstrates better forecast skill than that based on SWR. The new prediction scheme offers strong potential for both improving the forecasts for rapid intensification and weakening of TCs as well as for extending the 5-day forecasts currently issued by the CMA to 7-day forecasts.  相似文献   

12.
A Western North Pacific Tropical Cyclone Intensity Prediction Scheme   总被引:2,自引:0,他引:2  
A western North Pacific tropical cyclone (TC) intensity prediction scheme (WIPS) is developed based on TC samples from 1996 to 2002 using the stepwise regression technique, with the western North Pacific divided into three sub-regions: the region near the coast of East China (ECR), the South China Sea region (SCR), and the far oceanic region (FOR). Only the TCs with maximum sustained surface wind speed greater than 17.2 m s-1 are used in the scheme. Potential predictors include the climatology and persistence factors, synoptic environmental conditions, potential intensity of a TC and proximity of a TC to land. Variances explained by the selected predictors suggest that the potential intensity of a TC and the proximity of a TC to land are significant in almost all the forecast equations. Other important predictors include vertical wind shear in ECR, 500-hPa geopotential height anomaly at the TC center, zonal component of TC translation speed in SCR, intensity change of TC 12 or 24 h prior to initial time, and the longitude of TC center in FOR. Independent tests are carried out for TCs in 4 yr (2004-2007), with mean absolute errors of the maximum surface wind being 3.0, 5.0, 6.5, 7.3, 7.6, and 7.9 m s-1 for 12- to 72-h predictions at 12-h intervals, respectively. Positive skills are obtained at all leading time levels as compared to the climatology and persistence prediction scheme, and the large skill scores (near or over 20%) after 36 h imply that WIPS performs especially better at longer leading times. Furthermore, it is found that the amendment in TC track prediction and real-time model analysis can significantly improve the performance of WIPS in the SCR and ECR. Future improvements will focus on applying the scheme for weakening TCs and those near the coastal regions.  相似文献   

13.
This is a study to compare three selected tropical cyclone datasets separately compiled by CMA Shanghai Typhoon Institute (CMA_SHI), the Joint Typhoon Warning Center (JTWC), and the Japan Meteorological Agency (JMA). The annual frequencies, observation times and destructive power index as the characteristic quantities are investigated of the tropical cyclones over the western North Pacific. The comparative study has resulted in the following findings: 1) Statistical gaps between the datasets compared are narrowing down as the intensity of tropical cyclones increases. 2) In the context of interdecadal distribution, there is for the 1950s a relatively large gap between the datasets, as compared with a narrowed gap for the period from the mid 1970s to the 1980s, and a recurring widened gap for the mid and late 1990s. Additionally, an approach is proposed in the paper to correct the wind speed data in the TC Yearbook.  相似文献   

14.
The best track data of tropical cyclones (TCs) provided by Regional Specialized Meteorological Center (RSMC) Tokyo for the South China Sea (SCS) from 1977 to 2007 are employed to study the spatiotemporal variations (for a period of 12 hours) and the rapid (slow) intensification (RI/SI) of TCs with different intensity. The main results are as follows. (1) Over this period, the tropical storms (TSs) and severe tropical storms (STSs) mostly intensify or are steady while the typhoons (TYs) mostly weaken. The stronger a TC is initially, the more observation of its intensification and the less its variability will be; the more observation of its weakening is, the larger its variability will be. (2) The TC intensifies the fastest at 0000 UTC while weakening the fastest at 1200 UTC. (3) In the intensifying state, TSs, STSs, and TYs are mainly active in the northeastern, central-eastern, and central SCS respectively. The weakening cases mainly distribute over waters east off Hainan Island and Vietnam and west off the Philippines. Some cases of TSs and STSs weaken over the central SCS. (4) The RI cases form farther south in contrast to the SI cases. The RI cases are observed in regions where there are weaker vertical shear and easterly components at 200 hPa. The RI cases also have stronger mid-and lower-level warm-core structure and smaller radii of 15.4 m/s winds. The SI cases have slightly higher SST.  相似文献   

15.
Based on tropical cyclone track dataset in the western North Pacific from China Meteorological Administration(CMA),variations in frequency and intensity of tropical cyclones(TCs)in the western North Pacific,affecting-China TCs(ACTCs)and landfall TCs(LTCs)achieving a typhoon intensity during 1957-2004 were studied.Frequencies of strong tropical cyclones showed significant decreasing trends from 1957 to 2004 and the linear trend was much greater when the intensity was stronger.There was no linear trend in the portion of strong tropical cyclones achieving a typhoon(TY)intensity,while those reaching a strong typhoon(STY)and a super typhoon(SuperTY)intensity showed decreasing trends during 1957-2004.The maximum intensities of TCs,ACTCs and LTCs all decreased during the period of 1957-2004.The mean intensities of TCs and ACTCs displayed decreasing trends and the mean intensity of LTCs achieving a TY intensity also showed a decreasing trend.  相似文献   

16.
应用1999—2003年中国中央气象台 (CMO)、日本气象厅 (JMA) 以及美国联合台风警报中心 (JTWC) 发布的西北太平洋热带气旋综合预报资料, 从总误差、逐年误差趋势、不同海区误差、不同路径趋势误差、不同强度趋势误差等5个方面对各预报中心的路径及强度预报结果进行分析, 结果表明:5年总的平均误差以JTWC的路径预报误差最小, 而JMA的强度预报较准确; 在不同海域, 各预报中心的路径预报能力各有优势, 但在热带气旋的强度预报方面, JMA的方法在各海区都较稳定; 对不同路径趋势热带气旋的预报方面, 除了南海转向热带气旋的路径预报比JMA和CMO稍差一些之外, JTWC的路径预报在大多数情况下都是好于或相当于JMA和CMO; 在不同强度变化趋势热带气旋的预报方面, JTWC在大多数情况下都优于其他中心。上述结果帮助业务和科技人员全面了解各预报中心的预报能力优劣, 也为今后改进我国的热带气旋预报提供有益的参考。  相似文献   

17.
本文利用美国联合台风预警中心(JTWC)、中国气象局上海台风研究所(CMA)及日本气象厅东京台风中心(JMA)3 套热带气旋(TC)数据集,分别选取TC 达到生命史极值强度时、达到台风等级时以及达到热带风暴等级时所在的位置作为研究指标,分析了1980—2013 年5—11 月西北太平洋TC 达到不同强度时所在位置的长期变化趋势。研究得出如下结论:西北太平洋TC 在达到生命史极值强度时所处的位置表现为显著向北移动的趋势,3 个不同数据集向北移动趋势值分别为90、93、113 km/10a。同时TC 在达到台风和热带风暴级别时还存在相对明显的向北和向西移动趋势。本文进一步从环境场出发,分析了垂直风切变、海表温度以及潜在生成指数等影响因子的变化特征,为TC达不同强度时所处位置的长期变化趋势给出可能的物理解释。  相似文献   

18.
登陆热带气旋路径和强度预报的效益评估初步研究   总被引:1,自引:3,他引:1  
近年来有关热带气旋(TC)灾情的评估指标和方法的研究取得明显进展,但较少涉及TC预报对减少灾害损失的贡献(即效益)分析。基于中央气象台的TC实时路径和强度预报,针对登陆中国大陆的TC,初步分析了TC的路径和强度预报误差与其造成的直接经济损失之间的可能关系,并在此基础上建立了包含TC路径和强度预报误差的TC直接经济损失的预估模型。TC登陆前后24 h的路径和强度预报误差与TC所致直接经济损失均呈正相关关系;对于单个登陆TC而言,若24 h TC路径预报误差每减小1 km可减少因灾直接经济损失约0.97亿元,若强度预报每减小1 m/s可减少因灾直接经济损失约3.8亿元(以2014年为基准年)。可见,提高TC路径和强度预报精度对于减灾的效益巨大,且当前尤以提高强度预报能力的效益为佳。   相似文献   

19.
西北太平洋热带气旋强度变化的若干特征   总被引:2,自引:0,他引:2  
使用NOAA海表温度资料、ECMWF再分析资料和JTWC台风最佳路径数据,对1984—2013年30年西北太平洋热带区域(100 °E~180 °,0~60 °N)内热带气旋(TC)的强度变化特征及其与环境风垂直切变(VWS)、海表温度(SST)、最大风速半径(RMW)的关系作了统计分析,尤其关注TC强度突变。结果表明:(1)在研究区域内,TC样本中35.2%强度稳定,52.8%强度变化缓慢,仅12.0%强度突变,约92.7%的迅速加强TC样本发生在其台风及以上强度等级;(2)2000年以来,TC强度稳定样本减少,强度迅速变化样本增多。5月和9—10月是TC强度突变的高频期;(3)超过12 m/s的环境VWS下TC迅速加强较少,且只有台风及以上强度TC才能在大于12 m/s的VWS下迅速加强;(4)TC加强和迅速加强主要在28.5~30.0 ℃的SST洋面上发生,在较低SST下仍迅速加强的TC强度等级较高;(5)TC样本的RMW多小于100 km,其中强度突变TC RMW峰值区在20~40 km;(6)加强TC的RMW的24 h变化一般减小,减弱TC的RMW则增大;其中强度突变TC尤其明显,超强台风发生迅速加强时,RMW减小的比率达84.6%,但仍有15.4%比率的RMW增大。   相似文献   

20.
The cyclone phase space (CPS) method has been utilized to evaluate the extratropical transition (ET) of tropical cyclones (TCs) in many recent publications. However, these studies mainly focused over the North Atlantic basin. In this paper, the CPS characteristics of all the cyclones over the western North Pacific are investigated and discussed, with three parameters calculated from the best-track data of the Regional Specialized Meteorological Center in Tokyo and the Japanese 25-yr reanalysis data. It is concluded that most TCs over the western North Pacific possess the non-frontal and warm-core structure, while a larger number of cyclones that have undergone ET hold the frontal and cold-core structure. The spatial pattern of the CPS parameters indicates that the areas of tropical and extratropical cyclone activities could be demarcated by 30°N. The composite and individual series of three parameters of the CPS indicate that the transformation of −V TU from positive to negative leads to the start of ET, and could be considered as a potential predictor in operationally forecasting an ET event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号