首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 596 毫秒
1.
数值预报误差订正技术中相似-动力方法的发展   总被引:3,自引:0,他引:3       下载免费PDF全文
Due to the increasing requirement for high-level weather and climate forecasting accuracy, it is necessary to exploit a strategy for model error correction while developing numerical modeling and data assimilation techniques. This study classifies the correction strategies according to the types of forecast errors, and reviews recent studies on these correction strategies. Among others, the analogue-dynamical method has been developed in China, which combines statistical methods with the dynamical model, corrects model errors based on analogue information, and effectively utilizes historical data in dynamical forecasts. In this study, the fundamental principles and technical solutions of the analogue-dynamical method and associated development history for forecasts on different timescales are introduced. It is shown that this method can effectively improve medium- and extended-range forecasts, monthly-average circulation forecast, and short-term climate prediction. As an innovative technique independently developed in China, the analogue- dynamical method plays an important role in both weather forecast and climate prediction, and has potential applications in wider fields.  相似文献   

2.
Recent Advances in Predictability Studies in China (1999-2002)   总被引:10,自引:2,他引:8  
Since the last International Union of Geodesy and Geophysics (IUGG) General Assembly (1999), the predictability studies in China have made further progress during the period of 1999-2002. Firstly, three predictability sub-problems in numerical weather and climate prediction are classified, which are concerned with the maximum predictability time, the maximum prediction error, and the maximum allowable initial error, and then they are reduced into three nonlinear optimization problems. Secondly, the concepts of the nonlinear singular vector (NSV) and conditional nonlinear optimal perturbation (CNOP) are proposed,which have been utilized to study the predictability of numerical weather and climate prediction. The results suggest that the nonlinear characteristics of the motions of atmosphere and oceans can be revealedby NSV and CNOP. Thirdly, attention has also been paid to the relations between the predictability and spatial-temporal scale, and between the model predictability and the machine precision, of which the investigations disclose the importance of the spatial-temporal scale and machine precision in the study of predictability. Also the cell-to-cell mapping is adopted to analyze globally the predictability of climate,which could provide a new subject to the research workers. Furthermore, the predictability of the summer rainfall in China is investigated by using the method of correlation coefficients. The results demonstrate that the predictability of summer rainfall is different in different areas of China. Analysis of variance, which is one of the statistical methods applicable to the study of predictability, is also used to study the potential predictability of monthly mean temperature in China, of which the conclusion is that the monthly mean temperature over China is potentially predictable at a statistical significance level of 0.10. In addition,in the analysis of the predictability of the T106 objective analysis/forecasting field, the variance and the correlation coefficient are calculated to explore the distribution characteristics of the mean-square errors.Finally, the predictability of short-term climate prediction is investigated by using statistical methods or numerical simulation methods. It is demonstrated that the predictability of short-term climate in China depends not only on the region of China being investigated, but also on the time scale and the atmospheric internal dynamical process.  相似文献   

3.
Mesoscale ensemble is an encouraging technology for improving the accuracy of heavy rainfall predictions. Occurrences of heavy rainfall are closely related to convective instability and topography. In mid-latitudes, perturbed initial fields for medium-range weather forecasts are often configured to focus on the baroclinic instability rather than the convective instability. Thus, alternative approaches to generate initial perturba- tions need to be developed to accommodate the uncertainty of the convective instability. In this paper, an initial condition perturbation approach to mesoscale heavy rainfall ensemble prediction, named as Different Physics Mode Method (DPMM), is presented in detail. Based on the PSU/NCAR mesoscale model MM5, an ensemble prediction experiment on a typical heavy rainfall event in South China is carried out by using the DPMM, and the structure of the initial condition perturbation is analyzed. Further, the DPMM ensem- ble prediction is compared with a multi-physics ensemble prediction, and the results show that the initial perturbation fields from the DPMM have a reasonable mesoscale circulation structure and could reflect the prediction uncertainty in the sensitive regions of convective instability. An evaluation of the DPMM ini- tial condition perturbation indicates that the DPMM method produces better ensemble members than the multi-physics perturbation method, and can significantly improve the precipitation forecast than the control non-ensemble run.  相似文献   

4.
Effect of Stochastic MJO Forcing on ENSO Predictability   总被引:2,自引:0,他引:2  
Within the frame of the Zebiak-Cane model,the impact of the uncertainties of the Madden-Julian Oscillation(MJO) on ENSO predictability was studied using a parameterized stochastic representation of intraseasonal forcing.The results show that the uncertainties of MJO have little effect on the maximum prediction error for ENSO events caused by conditional nonlinear optimal perturbation(CNOP);compared to CNOP-type initial error,the model error caused by the uncertainties of MJO led to a smaller prediction uncertainty of ENSO,and its influence over the ENSO predictability was not significant.This result suggests that the initial error might be the main error source that produces uncertainty in ENSO prediction,which could provide a theoretical foundation for the data assimilation of the ENSO forecast.  相似文献   

5.
Ensemble Forecast: A New Approach to Uncertainty and Predictability   总被引:8,自引:0,他引:8  
Ensemble techniques have been used to generate daily numerical weather forecasts since the 1990s in numerical centers around the world due to the increase in computation ability. One of the main purposes of numerical ensemble forecasts is to try to assimilate the initial uncertainty (initial error) and the forecast uncertainty (forecast error) by applying either the initial perturbation method or the multi-model/multiphysics method. In fact, the mean of an ensemble forecast offers a better forecast than a deterministic (or control) forecast after a short lead time (3-5 days) for global modelling applications. There is about a 1-2-day improvement in the forecast skill when using an ensemble mean instead of a single forecast for longer lead-time. The skillful forecast (65% and above of an anomaly correlation) could be extended to 8 days (or longer) by present-day ensemble forecast systems. Furthermore, ensemble forecasts can deliver a probabilistic forecast to the users, which is based on the probability density function (PDF) instead of a single-value forecast from a traditional deterministic system. It has long been recognized that the ensemble forecast not only improves our weather forecast predictability but also offers a remarkable forecast for the future uncertainty, such as the relative measure of predictability (RMOP) and probabilistic quantitative precipitation forecast (PQPF). Not surprisingly, the success of the ensemble forecast and its wide application greatly increase the confidence of model developers and research communities.  相似文献   

6.
The Dynamical-Statistical-Analog Ensemble Forecast model for landfalling tropical cyclones (TCs) precipitation (DSAEF_LTP) utilises an operational numerical weather prediction (NWP) model for the forecast track, while the precipitation forecast is obtained by finding analog cyclones, and making a precipitation forecast from an ensemble of the analogs. This study addresses TCs that occurred from 2004 to 2019 in Southeast China with 47 TCs as training samples and 18 TCs for independent forecast experiments. Experiments use four model versions. The control experiment DSAEF_LTP_1 includes three factors including TC track, landfall season, and TC intensity to determine analogs. Versions DSAEF_LTP_2, DSAEF_LTP_3, and DSAEF_LTP_4 respectively integrate improved similarity region, improved ensemble method, and improvements in both parameters. Results show that the DSAEF_LTP model with new values of similarity region and ensemble method (DSAEF_LTP_4) performs best in the simulation experiment, while the DSAEF_LTP model with new values only of ensemble method (DSAEF_LTP_3) performs best in the forecast experiment. The reason for the difference between simulation (training sample) and forecast (independent sample) may be that the proportion of TC with typical tracks (southeast to northwest movement or landfall over Southeast China) has changed significantly between samples. Forecast performance is compared with that of three global dynamical models (ECMWF, GRAPES, and GFS) and a regional dynamical model (SMS-WARMS). The DSAEF_LTP model performs better than the dynamical models and tends to produce more false alarms in accumulated forecast precipitation above 250 mm and 100 mm. Compared with TCs without heavy precipitation or typical tracks, TCs with these characteristics are better forecasted by the DSAEF_LTP model.  相似文献   

7.
Recent progress in the study of nonlinear atmospheric dynamics and related predictability of weather and climate in China (2007-2011) are briefly introduced in this article. Major achievements in the study of nonlinear atmospheric dynamics have been classified into two types:(1) progress based on the analysis of solutions of simplified control equations, such as the dynamics of NAO, the optimal precursors for blocking onset, and the behavior of nonlinear waves, and (2) progress based on data analyses, such as the nonlinear analyses of fluctuations and recording-breaking temperature events, the long-range correlation of extreme events, and new methods of detecting abrupt dynamical change. Major achievements in the study of predictability include the following:(1) the application of nonlinear local Lyapunov exponents (NLLE) to weather and climate predictability; (2) the application of condition nonlinear optimal perturbation (CNOP) to the studies of El Nin o-Southern Oscillation (ENSO) predictions, ensemble forecasting, targeted observation, and sensitivity analysis of the ecosystem; and (3) new strategies proposed for predictability studies. The results of these studies have provided greater understanding of the dynamics and nonlinear mechanisms of atmospheric motion, and they represent new ideas for developing numerical models and improving the forecast skill of weather and climate events.  相似文献   

8.
A single-model,short-range,ensemble forecasting system (Institute of Atmospheric Physics,Regional Ensemble Forecast System,IAP REFS) with 15-km grid spacing,configured with multiple initial conditions,multiple lateral boundary conditions,and multiple physics parameterizations with 11 ensemble members,was developed using the Weather and Research Forecasting Model Advanced Research modeling system for prediction of stratiform precipitation events in northern China.This is the first part of a broader research project to develop a novel cloud-seeding operational system in a probabilistic framework.The ensemble perturbations were extracted from selected members of the National Center for Environmental Prediction Global Ensemble Forecasting System (NCEP GEFS) forecasts,and an inflation factor of two was applied to compensate for the lack of spread in the GEFS forecasts over the research region.Experiments on an actual stratiform precipitation case that occurred on 5-7 June 2009 in northern China were conducted to validate the ensemble system.The IAP REFS system had reasonably good performance in predicting the observed stratiform precipitation system.The perturbation inflation enlarged the ensemble spread and alleviated the underdispersion caused by parent forecasts.Centering the extracted perturbations on higher-resolution NCEP Global Forecast System forecasts resulted in less ensemble mean root-mean-square error and better accuracy in probabilistic quantitative precipitation forecasts (PQPF).However,the perturbation inflation and recentering had less effect on near-surface-level variables compared to the mid-level variables,and its influence on PQPF resolution was limited as well.  相似文献   

9.
In this study,the Institute of Atmospheric Physics,Chinese Academy of Sciences-regional ensemble forecast system(IAP-REFS) described in Part I was further validated through a 65-day experiment using the summer season of 2010.The verification results show that IAP-REFS is skillful for quantitative precipitation forecasts(QPF) and probabilistic QPF,but it has a systematic bias in forecasting near-surface variables.Applying a 7-day running mean bias correction to the forecasts of near-surface variables remarkably improved the reliability of the forecasts.In this study,the perturbation extraction and inflation method(proposed with the single case study in Part I) was further applied to the full season with different inflation factors.This method increased the ensemble spread and improved the accuracy of forecasts of precipitation and near-surface variables.The seasonal mean profiles of the IAP-REFS ensemble indicate good spread among ensemble members and some model biases at certain vertical levels.  相似文献   

10.
This article summarizes the progress made in predictability studies of weather and climate in recent years in China, with a main focus on advances in methods to study error growth dynamics and reduce uncertainties in the forecasting of weather and climate. Specifically, it covers(a) advances in methods to study weather and climate predictability dynamics, especially those in nonlinear optimal perturbation methods associated with initial errors and model errors and their applications to ensemble ...  相似文献   

11.
A new method to quantify the predictability limit of ensemble forecasting is presented using the Kullback–Leibler(KL)divergence(also called the relative entropy), which provides a measure of the difference between the probability distributions of ensemble forecasts and local reference(true) states. The KL divergence is applicable to a non-normal distribution of ensemble forecasts, which is a substantial improvement over the previous method using the ensemble spread. An example from the three-variable Lorenz model illustrates the effectiveness of the KL divergence, which can effectively quantify the predictability limit of ensemble forecasting. On this basis, the KL divergence is used to investigate the dependence of the predictability limit of ensemble forecasting on the initial states and the magnitude of initial errors. The local predictability limit of ensemble forecasting varies considerably with the initial states, as well as with the magnitude of initial errors. Further research is needed to examine the real-world applications of the KL divergence in measuring the predictability of ensemble weather forecasts.  相似文献   

12.
This paper summarizes recent progress at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences in studies on targeted observations, data assimilation, and ensemble prediction, which are three effective strategies to reduce the prediction uncertainties and improve the forecast skill of weather and climate events. Considering the limitations of traditional targeted observation approaches, LASG researchers have developed a conditional nonlinear optimal perturbation-based targeted observation strategy to optimize the design of the observing network. This strategy has been employed to identify sensitive areas for targeted observations of the El Ni?o–Southern Oscillation, Indian Ocean dipole, and tropical cyclones, and has been demonstrated to be effective in improving the forecast skill of these events. To assimilate the targeted observations into the initial state of a numerical model, a dimension-reducedprojection-based four-dimensional variational data assimilation(DRP-4DVar) approach has been proposed and is used operationally to supply accurate initial conditions in numerical forecasts. The performance of DRP-4DVar is good, and its computational cost is much lower than the standard 4DVar approach. Besides, ensemble prediction,which is a practical approach to generate probabilistic forecasts of the future state of a particular system, can be used to reduce the prediction uncertainties of single forecasts by taking the ensemble mean of forecast members. In this field, LASG researchers have proposed an ensemble forecast method that uses nonlinear local Lyapunov vectors(NLLVs) to yield ensemble initial perturbations. Its application in simple models has shown that NLLVs are more useful than bred vectors and singular vectors in improving the skill of the ensemble forecast. Therefore, NLLVs represent a candidate for possible development as an ensemble method in operational forecasts. Despite the considerable efforts made towards developing these methods to reduce prediction uncertainties, much challenging but highly important work remains in terms of improving the methods to further increase the skill in forecasting such weather and climate events.  相似文献   

13.
It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill than deterministic(or single) forecasts. However, few studies have focused on quantifying the relationship between their forecast errors, especially in individual prediction cases. Clarification of the characteristics of deterministic and ensemble mean forecasts from the perspective of attractors of dynamical systems has also rarely been involved. In this paper, two attractor statistics—namely, the global and local attractor radii(GAR and LAR, respectively)—are applied to reveal the relationship between deterministic and ensemble mean forecast errors. The practical forecast experiments are implemented in a perfect model scenario with the Lorenz96 model as the numerical results for verification. The sample mean errors of deterministic and ensemble mean forecasts can be expressed by GAR and LAR, respectively, and their ratio is found to approach2~(1/2) with lead time. Meanwhile, the LAR can provide the expected ratio of the ensemble mean and deterministic forecast errors in individual cases.  相似文献   

14.
A nested-model system is constructed by embedding the regional climate model RegCM3 into a general circulation model for monthly-scale regional climate forecast over East China. The systematic errors are formulated for the region on the basis of 10-yr (1991-2000) results of the nested-model system, and of the datasets of the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) and the temperature analysis of the National Meteorological Center (NMC), U.S.A., which are then used for correcting the original forecast by the system for the period 2001-2005. After the assessment of the original and corrected forecasts for monthly precipitation and surface air temperature, it is found that the corrected forecast is apparently better than the original, suggesting that the approach can be applied for improving monthly-scale regional climate dynamical forecast.  相似文献   

15.
The 21-yr ensemble predictions of model precipitation and circulation in the East Asian and western North Pacific (Asia-Pacific) summer monsoon region (0°-50°N, 100° 150°E) were evaluated in nine different AGCM, used in the Asia-Pacific Economic Cooperation Climate Center (APCC) multi-model ensemble seasonal prediction system. The analysis indicates that the precipitation anomaly patterns of model ensemble predictions are substantially different from the observed counterparts in this region, but the summer monsoon circulations are reasonably predicted. For example, all models can well produce the interannual variability of the western North Pacific monsoon index (WNPMI) defined by 850 hPa winds, but they failed to predict the relationship between WNPMI and precipitation anomalies. The interannual variability of the 500 hPa geopotential height (GPH) can be well predicted by the models in contrast to precipitation anomalies. On the basis of such model performances and the relationship between the interannual variations of 500 hPa GPH and precipitation anomalies, we developed a statistical scheme used to downscale the summer monsoon precipitation anomaly on the basis of EOF and singular value decomposition (SVD). In this scheme, the three leading EOF modes of 500 hPa GPH anomaly fields predicted by the models are firstly corrected by the linear regression between the principal components in each model and observation, respectively. Then, the corrected model GPH is chosen as the predictor to downscale the precipitation anomaly field, which is assembled by the forecasted expansion coefficients of model 500 hPa GPH and the three leading SVD modes of observed precipitation anomaly corresponding to the prediction of model 500 hPa GPH during a 19-year training period. The cross-validated forecasts suggest that this downscaling scheme may have a potential to improve the forecast skill of the precipitation anomaly in the South China Sea, western North Pacific and the East Asia Pacific regions, wh  相似文献   

16.
In this study, a method of analogue-based correction of errors(ACE) was introduced to improve El Ni?o-Southern Oscillation(ENSO) prediction produced by climate models. The ACE method is based on the hypothesis that the flow-dependent model prediction errors are to some degree similar under analogous historical climate states, and so the historical errors can be used to effectively reduce such flow-dependent errors. With this method, the unknown errors in current ENSO predictions can be empirically estimated by using the known prediction errors which are diagnosed by the same model based on historical analogue states. The authors first propose the basic idea for applying the ACE method to ENSO prediction and then establish an analogue-dynamical ENSO prediction system based on an operational climate prediction model. The authors present some experimental results which clearly show the possibility of correcting the flow-dependent errors in ENSO prediction, and thus the potential of applying the ACE method to operational ENSO prediction based on climate models.  相似文献   

17.
Based on the atmospheric analogy principle, the inverse problem that the information of historical analogue data is utilized to estimate model errors is put forward and a method of analogue correction of errors (ACE) of model is developed in this paper. The ACE can combine effectively statistical and dynamical methods, and need not change the current numerical prediction models. The new method not only adequately utilizes dynamical achievements but also can reasonably absorb the information of a great many analogues in historical data in order to reduce model errors and improve forecast skill. Furthermore, the ACE may identify specific historical data for the solution of the inverse problem in terms of the particularity of current forecast. The qualitative analyses show that the ACE is theoretically equivalent to the principle of the previous analogue-dynamical model, but need not rebuild the complicated analogue-deviation model, so has better feasibility and operational foreground. Moreover, under the ideal situations, when numerical models or historical analogues are perfect, the forecast of the ACE would transform into the forecast of dynamical or statistical method, respectively.  相似文献   

18.
This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble (TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean (BREM) and superensemble (SUP), are compared with the ensemble mean (EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible.  相似文献   

19.
Quantitative precipitation forecasts(QPFs) provided by three operational global ensemble prediction systems(EPSs) from the THORPEX(The Observing System Research and Predictability Experiment) Interactive Grand Global Ensemble(TIGGE) archive were evaluated over the Qu River basin, China during the plum rain and typhoon seasons of 2009–13. Two post-processing methods, the ensemble model output statistics based on censored shifted gamma distribution(CSGD-EMOS) and quantile mapping(QM), were used to reduce bias and to improve the QPFs.The results were evaluated by using three incremental precipitation thresholds and multiple verification metrics. It is demonstrated that QPFs from NCEP and ECMWF presented similarly skillful forecasts, although the ECMWF QPFs performed more satisfactorily in the typhoon season and the NCEP QPFs were better in the plum rain season. Most of the verification metrics showed evident seasonal discriminations, with more satisfactory behavior in the plum rain season. Lighter precipitation tended to be overestimated, but heavier precipitation was always underestimated. The post-processed QPFs showed a significant improvement from the raw forecasts and the effects of post-processing varied with the lead time, precipitation threshold, and EPS. Precipitation was better corrected at longer lead times and higher thresholds. CSGD-EMOS was more effective for probabilistic metrics and the root-mean-square error. QM had a greater effect on removing bias according to bias and categorical metrics, but was unable to warrant reliabilities. In general, raw forecasts can provide acceptable QPFs eight days in advance. After post-processing, the useful forecasts can be significantly extended beyond 10 days, showing promising prospects for flood forecasting.  相似文献   

20.
Using the Met Office Global and Regional Ensemble Prediction System (MOGREPS) implemented at the Korea Meteorological Administration (KMA), the effect of doubling the ensemble size on the performance of ensemble prediction in the warm season was evaluated. Because a finite ensemble size causes sampling error in the full forecast probability distribution function (PDF), ensemble size is closely related to the efficiency of the ensemble prediction system. Prediction capability according to doubling the ensemble size was evaluated by increasing the number of ensembles from 24 to 48 in MOGREPS implemented at the KMA. The initial analysis perturbations generated by the Ensemble Transform Kalman Filter (ETKF) were integrated for 10 days from 22 May to 23 June 2009. Several statistical verification scores were used to measure the accuracy, reliability, and resolution of ensemble probabilistic forecasts for 24 and 48 ensemble member forecasts. Even though the results were not significant, the accuracy of ensemble prediction improved slightly as ensemble size increased, especially for longer forecast times in the Northern Hemisphere. While increasing the number of ensemble members resulted in a slight improvement in resolution as forecast time increased, inconsistent results were obtained for the scores assessing the reliability of ensemble prediction. The overall performance of ensemble prediction in terms of accuracy, resolution, and reliability increased slightly with ensemble size, especially for longer forecast times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号