首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
李刚  刘畅  曹癑瑶  孟宪贵 《气象》2020,46(8):1074-1088
利用海上浮标站、自动站、多普勒天气雷达、L波段雷达探空、NCEP/NCAR再分析逐6 h和降水等观测资料,结合EVAP雷达风场反演获得的水平风场资料,对2018年1月9—11日一次渤海海效应暴雪过程的产生机制进行了分析。结果表明:此次海效应暴雪过程是一次极端降雪事件,具有强降雪持续时间长、降雪量大、暴雪分布近γ中尺度等特征。暴雪发生前后受两次强冷空气影响,渤海和山东半岛地区持续降温,850 hPa温度降至-18~-16℃,是产生强海效应降雪的有利条件;此次冷空气明显强于12月渤海海效应暴雪,1月产生海效应暴雪的850 hPa温度中位数较12月低约5℃。受强冷空气影响时,海气温差明显增大,海洋向低层大气输送的最大感热通量可达226.8 W·m~(-2),低层大气高湿饱和,导致大气层结不稳定,不稳定局限于850 hPa以下,为浅层对流。雷达反射率因子图上具有明显的"列车效应"。造成窄带回波的原因在于出现了低层切变线,即在山东半岛北部沿海的小范围区域内出现了东北风及西西南风,形成了西北风与东北风、西西南风与东北风的切变线,触发暴雪产生。而东北风达到的高度不超过1.2 km,多在0.6 km以下。通过此次极端暴雪过程的综合观测资料分析,揭示了较少出现的1月海效应暴雪的特征,其形成的环流形势、热力不稳定、动力条件等与常见的12月海效应暴雪基本类似,主要差异在于冷空气强度较12月偏强,这可成为1月海效应暴雪的首要预报着眼点;海上浮标站、雷达风场反演技术是定量揭示海效应暴雪中尺度特征的良好资料和方法。  相似文献   

2.
为了更全面地伊犁河谷极端暴雪发生发展的机制,利用常规探空和地面观测资料、FY-2H长波辐射资料(Outgoing Long-wave Radiation,OLR)和NCEP/NCAR1°×1°再分析资料,采用天气动力学分析方法对2022年11月22日-24日出现在伊犁河谷极端暴雪过程的成因和动力结构演变特征进行分析,结果表明:(1)此次降雪为强锋区降雪,锋区内不断有短波东移,是暴雪发生的大尺度环流背景;300hPa极锋急流、500hPa强锋区、700hPa强偏西急流的流场配置起至关重要作用。(2)低层冷空气入侵,迫使暖湿空气抬升、气温下降,形成了下冷上暖的强逆温层结,而导致降水相态转变。降雪持续时间长,导致强降雪发生。(3)低层偏西急流把水汽输送到暴雪区,并在暴雪区上方产生强的水汽辐合中心,为本次暴雪提供了有利的水汽条件。散度场对大暴雪的发生有较好的先兆意义,双辐合-辐散结构的散度场特征可以作为预报降雪加大的指标。(4)暴雪过程发生时大气处于对流稳定状态,但存在对称不稳定能量的释放。(5)OLR特征分析表明OLR3h平均值与3h降雪量存在明显的负相关关系。  相似文献   

3.
本文将利用常规探测资料、NCEP再分析资料和多普勒雷达资料,对2018年12月29~30日铜仁市暴雪过程的环流形势特征与成因进行分析,结果表明:此次暴雪过程发生在高空南支槽、多波动槽东移、700hPa西南暖湿急流输送及850hPa东北回流冷垫的环流背景下,表现出持续时间长、范围广、强度大、积雪深的特征;强降雪阶段对流层低层有来自孟湾的源源不断的水汽输送,湿层厚度增强,且有较强的水汽辐合;700hPa较强的垂直上升运动及对流层中低层较强的垂直风切变利于暴雪天气的发生;强降雪时刻暴雪区800hPa以上位于高层冷平流、低层暖平流的叠加区域,为不稳定大气;此次降雪具有对流性和持续性特征,雷达反射率回波云团具有列车效应。  相似文献   

4.
利用常规观测资料、NCEP再分析资料、GPS/MET水汽资料和天气雷达资料,对江西省2016年1月22日和31日两次暴雪过程的动力条件、水汽条件和温度垂直结构等进行了对比分析。结果表明: 1) 500 hPa短波槽、700 hPa和850 hPa的切变线和西南急流是强降雪直接影响系统。整层大气高湿近于饱和,中低层有逆温。暴雪产生在700—500 hPa槽前西南气流的前部,850 hPa东北风与东南风辐合的区域,近地面层都是东北风。2) 两次暴雪过程水汽输送条件、冷空气的强度以及南下的方式都有差异。前次暴雪过程中低层先有冷空气影响,而后中高层暖湿气流北上,中低层能量低,以稳定性降雪为主,持续时间长;后次暴雪过程中,先是中低层暖湿气流北上,而后强冷空气从低层楔入,中低层对流不稳定,对流发展,降雪强度大,持续时间短。3) 两次暴雪期间GPS/MET可降水量均在20 mm以上,降雪开始前和暴雪出现前GPS/MET可降水量都出现连续增长的峰值,对降雪预报有一定的指示性。另外,雷达速度图上零速度线的形态变化对降雪持续时间有很好的指示意义。  相似文献   

5.
山东省两次暴雪天气的对比分析   总被引:7,自引:1,他引:6  
应用常规天气图资料、探空资料、加密自动站观测资料、地基GPS/MET遥感大气水汽观测资料、卫星云图、多普勒雷达观测资料和NCEP/NCAR 1。×1。再分析资料,采用诊断分析和对比分析方法,对山东省2009年11月11 12日和2010年2月28日两次暴雪天气的水汽、热力、动力条件和中尺度特征进行对比分析。结果表明,(1)两次暴雪都是受高空槽影响产生的,700hPa附近有较强的偏南气流向暴雪区输送暖湿空气,整层大气高湿近于饱和,中低层有逆温,整层温度≤0 C;暴雪产生在700~500 hPa槽前西南气流前部、850 hPa东北风与东南风辐合的区域,近地面层都为东北风。(2)不同点是,前次暴雪过程中低层先有冷空气影响,然后中高层暖湿气流北上,中低层能量低,以稳定性降雪为主,持续时间长;后次暴雪过程中,先是中低层暖湿气流北上,而后强冷空气从低层锲入,低层形成低涡,地面形成气旋,中低层对流不稳定,对流发展,降雪强度大,持续时间短。(3)暴雪期间GPS/MET水汽监测的可降水量在20 mm左右,对降雪量有一定的指示性。加密自动站观测中温度0C线是雨、雪的分界线,有助于判别降水的形态。  相似文献   

6.
诊断分析技术在山西强降雪预报中的应用   总被引:1,自引:0,他引:1  
利用常规探测资料和诊断分析方法,对2009年11月9 12日山西大范围持续强降雪天气过程进行了综合分析。结果表明:(1)500 hPa阻塞形势和低空低涡切变线稳定维持,700 hPa西南急流、850 hPa偏东急流、850 hPa和925 hPa强偏东北气流等三支强气流稳定维持,地面回流形势与河套倒槽共同强烈发展并稳定维持,是造成此次大范围持续强降雪的重要原因。(2)强降雪出现前,低层中纬度持续有暖湿空气向山西地区输送,暖湿中心强度持续增强;从其水平结构变化看,可将此次过程分为锢囚降雪、回流降雪、暖倒槽降雪和持续降温四个阶段,各个阶段降雪特点不同。(3)强降雪区上空垂直热力结构为上冷、中暖、下冷,低层冷平流强度为普通暴雪的3倍;对流层中低层持续存在对流性不稳定,不稳定区内存在空气辐散,且持续有暖湿平流输入,导致对流性不稳定及其降水不断增强。(4)此次强降雪天气过程中,山西上空大气可降水量累计达到35~88 mm;随着低层和近地层风场的加强和辐合,大气可降水量不断增加,强降雪也呈现持续增加的趋势。(5)强降雪前及整个强降雪期间,强降雪区上空300 hPa以下为水汽散度通量正值区,其强度在500~600 hPa达到最强,且强度为普通暴雪的6倍,而高层和低层均存在弱的辐散。  相似文献   

7.
一次带有雷电现象的冬季雪暴中尺度探测分析   总被引:2,自引:0,他引:2  
苏德斌  焦热光  吕达仁 《气象》2012,38(2):204-209
对2009年11月9日北京市一次伴随雷电的局地暴雪过程的中小尺度特征进行了分析。采用了风廓线雷达资料、微波辐射计资料、自动气象站资料、多普勒天气雷达资料和卫星资料,对此次降雪的精细时空结构进行了分析,通过天气尺度及中小尺度分析,探讨了冬季对流产生的原因。结果表明:此次过程为华北回流天气过程,西南暖湿空气在低层冷空气之上产生高架对流和雷电天气,对流的触发机制是中空扰动。  相似文献   

8.
山东省南部一次极端特大暴雪过程诊断分析   总被引:1,自引:0,他引:1  
为了更全面地认识鲁南地区历史极端暴雪发生发展的机制,利用常规探空和地面观测资料、FY-2E长波辐射资料(Outgoing Long-w ave Radiation,OLR)和NCEP/NCAR 1°×1°再分析资料,采用天气动力学分析方法,对2015年11月23-24日出现在山东省南部极端特大暴雪过程的成因和动力结构演变特征进行分析。结果表明:(1)此次降雪发生在回流形势下,对流层中层强西南低空急流、切变线及低层强东北风共同作用,造成异常强暴雪天气。(2)低层西南急流把水汽输送到鲁南地区,并在暴雪区上方产生强的水汽辐合中心,为本次特大暴雪提供了有利的水汽条件。(3)高低空急流耦合,高空槽前正涡度平流使得低层减压,产生上升运动,有利于暴雪发生发展。(4)西南低空急流与偏北风在鲁南上空辐合,是强降雪主要集中在该地区的重要原因。(5)强冷空气降温使得雨快速转雪,降雪持续时间长,导致强降雪发生。(6)OLR特征分析表明,OLR 3 h平均低值中心与3 h最大降雪中心存在明显的负相关关系。研究鲁南地区极端暴雪特征有助于提高该地区灾害性天气的预报能力,对防灾减灾有着重要意义。  相似文献   

9.
“2009.11”山西大暴雪天气过程诊断分析   总被引:2,自引:0,他引:2  
利用山西省109个测站的降雪资料、FY-2C卫星云图和华北雷达拼图,分析了2009年11月9~13日山西大暴雪天气过程的环流背景、中低空系统配置、物理量场中相对湿度、散度及垂直速度沿112.5°E的空间垂直剖面。结果表明,此次暴雪天气以500hPa南支槽与西风槽的相继影响为背景,有利的中低层(700hPa切变与急流、850hPa东风急流)系统配置为持续降雪提供了有利条件。在强降雪时段,物理量场的空间垂直剖面呈现出相对湿度在200hPa以下形成≥80%深厚的湿空气柱,整个对流层为高层辐散、低层辐合的不稳定结构,山西处于上升运动区,最大负值中心(-36×10-3 hPa.s-1)位于400~500hPa,这种配置构成了强降雪产生的有利条件。FY-2C云图的云团发展与华北雷达拼图的组合反射率因子的演变类似,强降雪主要由3次大范围的中低云系和强回波东移影响所致。  相似文献   

10.
基于构成要素的一次切变线暴雪天气分析   总被引:1,自引:0,他引:1  
2013年1月20-21日山东出现了一次暴雪过程,此次过程具有冷空气弱、东西雨雪共存及存在两个强降水中心等特点,济南至淄博(鲁中的北部地区)的次暴雪中心为预报难点。为了探讨此类暴雪过程降水落区、强度和相态变化的物理机制,根据常规观测、NCEP/NCAR再分析逐6 h及多普勒天气雷达资料,采用基于构成要素的预报方法(Ingredients-based Methodology,IM),从动力抬升、水汽、降雪效率和相态等四个方面进行了分析。结果表明:(1)高层两个短波槽、低层切变线、地面华北锢囚锋和倒槽等天气系统相继共同作用造成了此次暴雪过程,其中500 hPa短波槽对降雪的阶段性表现最明显。(2)四个有利构成要素相叠加导致鲁中地区产生暴雪:中低层有西南和东南两支气流输送了充足的水汽;低层经向切变线和暖切变线造成了强上升运动;云中温度在-15~-14℃之间达到最佳降雪效率;低层温度低。(3)低层经向切变线对次降水中心的暴雪形成有重要作用,暴雪发生在经向切变线的右侧东南风减小的区域。(4)最强降雪发生在对流层中高层西南风和低层东南风强盛的时段。(5)对流层低层冷暖平流导致边界层内温度垂直变化出现差异,从而产生不同降水相态,其中1000 hPa至近地面的温度最为关键,尤其2 m气温在1℃左右时,更需综合分析925 hPa以下各层的温度;同时复杂下垫面对降水相态的影响也不容忽视。  相似文献   

11.
利用自动站、Micaps、雷达风廓线等资料和6h间隔的NCEP1°×1°再分析资料,对浙江2011年1月20日强降雪过程中降雪带南压的成因进行了诊断分析。结果表明:高空槽、中低县切变配合近地面的冷空气渗透影响是强降雪发生的有利天气尺度背景;强降雪发生在低空西南急流左侧水汽通量散度的辐合区内,且低空西南急流的南压领先于降...  相似文献   

12.
2009年4月15日大连出现了春季最晚的降雪天气。利用常规资料、自动气象站和雷达等多种资料及中尺度模式MM5对这次强对流雨雪天气过程进行了分析和模拟,结果表明,200hPa急流、500hPa贝加尔湖冷槽南压形成的冷涡、中低层南支槽前水汽输送以及地面冷锋是产生大连春季强对流雨雪天气的环流背景;中层干冷空气叠加在低层暖湿层...  相似文献   

13.
北京延庆山区降雪云物理特征的垂直观测和数值模拟研究   总被引:1,自引:0,他引:1  
基于风廓线雷达、云雷达、粒子谱仪、微波辐射计和自动站等垂直观测设备,结合中尺度数值模式WRF对2017年3月23~24日北京延庆海坨山地区的一次降雪过程进行了观测和数值模拟研究。研究结果表明:垂直探测仪器结合中尺度数值模式可以获得降雪的宏观结构和微物理信息,有助于对降雪的深入研究。此次降雪过程由中高层西南及偏南暖湿气流与低层东南偏冷空气交汇造成动力和水汽辐合抬升形成,4~5 km高度处的风切变有利于降雪的增强。上升气流有助于水汽的输送、冰雪转化以及雪晶凝华、聚合,冰晶数浓度中心对应着上升运动顶部。然而此次降雪云系低层过冷云水含量不足,降雪回波<20 dBZ,回波顶高<7 km,雪花垂直下落速度<2 m s-1,地面降水量大值与低层强回波区对应。降雪粒子谱分布范围较窄,以直径1 mm左右的小粒子为主,相态主要为干雪,基本不存在混合相态。  相似文献   

14.
一次华北暴雨过程中边界层东风活动及作用   总被引:7,自引:0,他引:7       下载免费PDF全文
利用常规气象观测资料、NCEP 1°×1°逐6 h分析资料、微波辐射计资料及FY-2E气象卫星及雷达探测资料,针对2013年6月4日发生在北京及周边地区的一次暴雨过程中边界层东风活动及作用进行了天气学诊断分析,结果表明:对流性暴雨过程伴随有源自东北平原的边界层东风活动,东风活动具有尺度小、降温明显和湿度大等特点。暴雨过程是边界层东风和中低空暖式切变线、偏南风急流和500 hPa短波槽共同作用的结果;东风湿冷空气的锋面抬升和地形抬升作用共同加强了中低层暖湿气流的辐合上升运动,同时东风冷垫和地形抬升作用触发了雷暴的再次发生,相应雷暴具有高架对流特点。东风气流起到了边界层水汽输送作用,中低层偏南暖湿气流为暴雨的产生提供了充足的水汽和不稳定层结条件。  相似文献   

15.
基于欧洲中心ERA5再分析资料、NCEP再分析资料、卫星和雷达资料以及MICAPS气象资料,运用天气学方法对2020年4月13日四川省攀枝花市发生的冷平流强迫类雷暴天气过程进行综合分析。结果表明:本次雷暴过程混合了冰雹、短时强降水、雷暴大风等多种天气,其主要影响系统为200 hPa高空急流、500 hPa高原槽、700 hPa切变线和西南急流以及地面辐合线。200~500 hPa西北干冷空气顺高原槽南下对本次过程起主导作用,弱的700 hPa西南急流为本地输送了水汽和不稳定能量,中低层切变线和地面辐合线促进了暖湿气流的辐合抬升。此外,“上冷下暖”的气层结构、中低层较强的垂直风切变、气流的低层辐合与高层辐散、适宜的0℃和-20℃层高度、较强的CAPE和K指数、较大的700~500 hPa温度垂直递减率等因素也是本次雷暴天气过程发生发展的关键。   相似文献   

16.
计算并分析了景德镇市出现雨夹雪、一般降雪、大雪(分别简称为Ⅰ类、Ⅱ类、Ⅲ类降雪)形势场、本站要素、层结资料,概括了3类降雪的天气学概念模型。分析结果表明:(1)3类降雪天气过程中,高空500 hPa有强盛的西南偏西气流,且随着降雪强度的增大,西南风速逐渐增大。地面则有较强冷空气堆积,位于贝加尔湖西部的冷高压中心气压在1 050 hPa以上,景德镇处于冷高压底部。925 hPa 30°N附近冷空气势力强,气温低。Ⅰ类降雪的主要影响系统是在江西省北部上空交汇的冷、暖平流,Ⅱ类、Ⅲ类则是850 hPa的切变线,出现Ⅲ类降雪时切变线位于景德镇附近,而出现Ⅱ类降雪时切变线则稍偏南,位于赣中。(2)地面气温变化是降水相态改变的关键,气温越低,越易出现降雪。从大雪至雪后雨,气温逐渐上升。(3)中低层的气温,Ⅱ类降雪较Ⅰ类低;近地面层气温,Ⅲ类降雪与Ⅱ类降雪接近;700 hPa和850 hPa层气温,Ⅲ类降雪比Ⅱ类降雪偏高。(4)Ⅰ类降雪常伴有逆温,但在向Ⅱ类降雪的转换过程中,逆温逐渐减弱,到Ⅲ类降雪时,逆温消失。(5)3类降雪均存在明显的风垂直切变,低层风弱,高层风强,且随着降雪强度的增大,表现愈加明显。  相似文献   

17.
利用冬奥会气象观测站网资料、ERA5的0.25°×0.25°高分辨率再分析资料、常规探空资料以及激光雷达和风廓线雷达资料,从环流形势、温湿度和微物理特征以及雷达特征等方面对2020年11月17-19日冬奥会张家口赛区一次明显的雨转雪天气过程进行分析。结果表明:低层前期的暖湿西南气流,为降水提供好的水汽和能量条件,后期强的干冷平流为相态转换提供有利条件。赛区出现雨转雪时,700 hPa温度低于-2℃,同时850 hPa温度低于2℃。零度层高度的快速下降是相态转换的重要温度判据,0℃线降到距地面400 m左右赛区降水相态已经转变为纯雪,低层风向的转向对赛场的雨雪相态转换有一定的指示意义。随着高空云冰和雪水含量逐渐增加,其出现最大值后,雨雪相态开始转换。降雪时激光雷达最大探测高度比降雨时有明显的降低,风廓线雷达低层风场的变化和雨雪相态关系密切,风廓线雷达探测的垂直速度变化也能反映雨雪相态的转换。  相似文献   

18.
利用常规观测资料、NCEP再分析资料、多普勒雷达资料等对2015年2月25日辽宁东南部一次强降雪过程进行分析。结果表明:此次强降雪过程发生在低空切变线东侧暖湿区对应高空急流出口区左侧的辐散区内,有强的水汽辐合中心;地面偏南气流受山前地形抬升作用在强降水区形成风向辐合和850 hPa以下急流中心,是造成强降雪的主要原因之一;暴雪过程开始前6 h出现温度平流随高度减小的配置,假相当位温空间分布上锋区的形成,有利于不稳定层结的建立;8~12 h前正涡度平流、中低层风向辐合带、近地面冷空气层的建立以及次级环流的形成加强了上升运动,对强降雪预报具有很好的指示作用;在降水相态是雨或雨夫雪时,雷达回波最大强度达到40~45 dBZ,而强降雪时回波强度为20~25 dBZ;当大连本站850 hPa温度以及1 000 hPa与850 hPa两层等压面之间的厚度处于雨雪转换临界值时,大连南部为雨或雨夹雪,北部为雪,此时出现强降雪,回波高度基本在6 km以下,最强回波25~35 dBZ维持在1 km以下,近地层为弱偏北风,与其上的西南风在边界层形成切变层,将暖湿气流抬升,为强降水提供动力条件。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号