首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
利用已有的二维雷暴云起、放电模式模拟了一次雷暴天气,并通过敏感性试验研究了冰核浓度变化对雷暴云动力、微物理及电过程的影响。结果表明:随着大气冰核浓度的增加,雷暴云发展提前,上升气流速度和下沉气流速度均呈现降低的趋势。大气冰核浓度提升有利于异质核化过程增强,冰晶在高温区大量生成,而同质核化过程被抑制,因此冰晶整体含量降低,引起低温区中霰粒含量降低和高温区中霰粒尺度降低。在非感应起电过程中,正极性非感应起电率逐渐减小,负极性非感应起电率逐渐增大。由于液态水含量随大气冰核浓度的增加逐渐降低,高温度冰晶携带电荷的极性由负转变为正的时间有所提前。在感应起电过程中,由于霰粒尺度减小及云滴的快速消耗,感应起电率极值逐渐降低。冰晶优先在高温区生成而带负电,不同大气冰核浓度下的雷暴云空间电荷结构在雷暴云发展初期均呈现负的偶极性电荷结构。在雷暴云旺盛期,随着冰核浓度增加,空间电荷结构由三极性转变为复杂四极性。在雷暴云消散阶段不同个例均呈现偶极性电荷结构,且随着冰核浓度的增加电荷密度值逐渐减小。  相似文献   

2.
非感应起电是指云中冰相粒子间通过相互碰撞而发生的电荷转移现象,尤其以冰晶与霰粒子的碰撞过程为主,被证实是云中电荷产生的主要方式之一。沙尘作为大气冰核的重要组成成分,为了研究沙尘冰核对云中非感应起电过程的影响,本文将两种不同的非感应起电参数化方案(Takahashi方案,以下简称TAK方案;Saunders and Peck 1998方案,以下简称SP98方案)耦合至一维半云和气溶胶分档云模式中。该模式能够显性地追踪每个水成物粒子中云凝结核和冰核的质量大小,模拟每个冰核的核化过程,以及每个冰粒子的碰撞过程,从而确定霰粒子的数浓度和每个冰相粒子的电荷密度。对不同初始沙尘浓度的非感应起电过程进行了敏感性试验,模式模拟结果表明:随着沙尘粒子数浓度的增多,云中冰晶粒子与霰粒子的数浓度都分别增加,初始起电现象发生的时间提前,空间电荷密度大小增加;SP98方案和TAK方案都能模拟出1981年7月19日的一次积云观测个例的偶极型垂直分布,但SP98方案更接近实况。  相似文献   

3.
程斌  冯桂力  杨仲江  余蜀豫 《气象》2012,38(6):669-678
为了研究冰晶繁生在雷暴云发展过程中对非感应起电过程的影响,利用三维雷暴云模式在理想层结环境下,对雷暴云内各种水成物粒子、电荷以及电场分布情况进行数值模拟。模拟结果表明:在雷暴云发展和成熟阶段,有繁生过程参与的雷暴云中下部存在一个冰晶聚集区域,从而使得云内冰晶的数量较无繁生过程增大约1 5%~18%,且聚集的区域范围更大;同时,繁生过程的加入也使得霰粒子数量也比无繁生过程时增大约20%;霰冰非感应电荷转移的正区一般位于霰粒子浓度高值区附近,而负区位于冰晶和霰粒子浓度高值区相重合的区域;冰晶繁生过程通过影响雷暴云中冰晶和霰粒子浓度和分布位置,使得雷暴云非感应起电的强度和位置发生改变,导致云内起电过程提前约5~6 min。  相似文献   

4.
为了深入认识不同条件或不同区域中冰相粒子相对增长状况对雷暴云内非感应起电过程的影响,将基于S91非感应起电参数化方案引入到三维强风暴动力-电耦合数值模式中,模拟分析了一次典型雷暴过程的霰粒和冰晶的生成和消耗过程以及随高度的分布特征;同时分析了雷暴云成熟时期不同时刻霰粒子和冰晶的比含水量等的增长变化状况,将不同时刻霰粒子-冰晶之间非感应起电的电荷转移极性和量级,与霰粒子和冰晶的相对增长状况作对比分析。结果表明,霰粒和冰晶由于所处环境的不同温度和液水含量条件而通过不同的微物理过程增长或消耗;细微的温度或液水含量条件的差异都会影响两类粒子的相对增长快慢;而两类冰相粒子中相对增长更快的粒子荷正电,增长更慢的粒子荷负电,相对增长的快慢决定了两种冰相粒子在非感应起电过程中所带电荷极性和量级。  相似文献   

5.
在三维强风暴动力—电耦合数值模式中引入非感应起电参数化方案、感应起电参数化方案以及放电参数化方案,对湖北宜昌2014年6月19日一次闪电过程中雷暴云电荷结构和放电特征进行了模拟分析。模拟结果表明,当云内粒子增多、增大,大部分霰粒子逐渐降落到中低层,上部正电荷区减小,底部正电荷堆范围开始扩大,中部负电荷区和底部正电荷区成为主要的起电区域,这种底部正电荷区较厚的三极性电荷结构不利于地闪的产生。在粒子带电分析中,霰与冰晶粒子携带的电荷量均大于云滴,说明霰与冰晶之间非感应碰撞是云中主要的起电过程。虽然云滴的电荷量较小,但霰与云滴之间感应碰撞的作用不可忽视。结合电荷结构的分布,发现底部正电荷堆的垂直分布高度与霰粒子、云滴的电荷浓度的分布有关,且霰与云滴电荷浓度的累积区与底部正电荷堆相一致。  相似文献   

6.
为了进一步印证以往观测反推得到的广东地区雷暴云多偶极性电荷结构的结论,利用加入了起放电参数化方案的WRF模式,模拟了广东在2017年5月8日发生的一次飑线过程,并对这次飑线过程中一个雷暴单体成熟期的电荷结构演变特征进行分析,通过分析动力、云水含量、各水成物粒子混合比及携带电荷情况,讨论了电荷结构的形成及演变机制。结果表明,成熟阶段的单体,电荷结构从三极性逐渐演变为偶极性。这是因为在成熟初期,霰粒子在有效液态水含量适中且温度较高的地方与冰晶/雪花粒子发生了非感应碰撞,因此底部霰粒子携带正电,雷暴云底部形成次正电荷区,电荷结构为三极性。而在成熟后期,由于丰富的云水含量,使冰粒子的凇附过程增强,霰不断增加,冰晶和雪花不断被消耗,温度较暖区域与霰共存的冰晶和雪花急剧减少,使得该区域大小冰粒子的非感应碰撞起电急剧减少,此处霰粒子不能再通过非感应碰撞获得正电荷,底部次正电荷区随之消失,雷暴云的电荷结构转变为偶极性。此结果和以往观测反推得到的结论不同,这表明,对南方雷暴电荷结构还需继续深入认识。   相似文献   

7.
为了探讨对流强度大小对雷暴云内微物理发展和起电过程的影响,基于已有的二维积云起、放电模式,改变其扰动温度进行敏感性试验。试验结果表明:对流强度对雷暴云内微物理过程、起电率及后续电荷结构的产生均有一定程度的影响:1)对流强度较小时,冰晶粒子极大值在高温区(高于-13.8℃)出现,对流强度较大时,上升风明显增强,将更多的水汽带入高空,气溶胶活化过程明显增强,使得云滴粒子明显增多,冰晶粒子较早产生,冰晶粒子极大值在低温区(低于-13.8℃)出现,发展过程更为剧烈;同时,较高的对流强度也使得降雨量增多,霰粒子数目也在对流发展旺盛时期显著增多。2)非感应起电率主要和冰晶-霰的碰并分离过程有关,对流强度较大时,非感应起电率较大,电荷结构持续时间较长,过程明显,感应起电率也较强。3)对流强度较大时,电荷结构更为复杂,雷暴云发展初期基本呈现为三极性,发展旺盛时期底部正电荷区域嵌入一个较小的负电荷区,呈现四极性电荷结构,雷暴云发展末期基本呈现偶极性电荷结构;对流强度较小时,发展初期、旺盛时期均呈现三极性电荷结构,发展末期呈现偶极性电荷结构。  相似文献   

8.
引入一种新型冰晶异质核化方案, 基于二维雷暴云模式, 探讨雷暴云电过程对三种异质核化的响应。结果表明: 浸润核化是冰晶生成的最重要异质核化过程, 较高数浓度的冰晶消耗雷暴云内液态水含量, 抑制淞附过程, 导致霰粒子比含水量低, 表现为较强的负极性非感应起电率; 接触核化生成的冰晶量最少, 仅对雷暴云中下层3~5 km处的冰晶有贡献, 同时霰粒子数浓度较低, 导致该方案下的起电过程最弱; 沉积核化主要影响云砧处的冰晶, 有利于提高霰收集云滴的效率, 表现为极高的霰比含水量, 促进低温区非感应起电过程的发生。总体上来看, 三个方案下的电荷结构均由较复杂的多极性发展为偶极性。其中浸润方案中主正电荷区的抬升最明显, 而接触方案过低的冰晶分布高度与沉积方案过高的冰晶分布高度, 都直接导致了次正电荷区更快消散。   相似文献   

9.
利用三维雷暴云动力-电耦合数值模式,通过对青藏高原地区2003年8月13日一次雷暴过程进行模拟,分析了高原雷暴的电荷结构特征并从微物理角度讨论了其主要形成原因。结果表明,高原雷暴以三极性结构为主,在消散阶段电荷结构转变为偶极性,结构整体电荷密度较小,主正电荷区与主负电荷区深厚,下部次正电荷区范围较大,持续时间较长。其中三极性结构主要是由于云内冰相粒子通过非感应起电机制作用形成;后期偶极性构是由霰粒子下落固态降水的增强导致。云内暖云区厚度较小,混合相区域内有效液态水含量较高,对流层顶较低,导致冰晶、雪所在的高度更低,与霰、雹这样的大粒子重合的区域更大,形成了下部范围较大持续时间较长的正电荷区。  相似文献   

10.
平凉一次雷暴云内的降水粒子分布及其电学特征的探讨   总被引:2,自引:0,他引:2  
张廷龙  杨静  楚荣忠  赵果  张彤 《高原气象》2012,31(4):1091-1099
利用X波段多普勒双偏振雷达在甘肃平凉地区获取的一次雷暴过程资料,采用模糊逻辑判断法详细分析了该过程云内降水粒子的时空演变特征,同时结合该地区雷暴的电学特征,探讨了雷暴云电荷结构与云内降水粒子之间的关系。结果表明,在雷暴发展的不同阶段,各种降水粒子的数量存在较大的差异,霰粒子和干雪的演变特征与雷暴的发展、成熟到减弱过程对应比较一致。结合地面电场和雷达推断,冰相粒子特别是霰粒子和冰晶粒子与雷暴云的起电存在密切的关系。从各种粒子的垂直分布特征来看,中国内陆高原雷暴云下部正电荷区的强弱最有可能由霰粒子的多少来决定;同时利用霰粒-冰晶起电机制可以较好地解释雷暴云内三极性电荷结构的形成。  相似文献   

11.
为了认识以暖云强降水为主导的对流单体中的电荷结构特征及其形成原因, 利用加入了起放电参数化方案的WRF模式, 模拟了2017年5月7日广州局地突发的以暖云降水为主导的特大暴雨过程, 分析讨论了此次过程中一个单体成熟发展阶段的电荷结构的特征及其成因。结果表明, 此次以暖云降水为主导的特大暴雨过程中的单体对流强度较弱, 云顶高度低于同地区典型对流过程, 强回波区由大雨滴形成, 范围较小, 顶较低, 对流运动向0℃层以上输送的过冷水较少, 不利于冰相粒子形成, 导致大小冰相粒子含量均较少, 其中含量最多的冰相粒子为雪花, 其次依次为霰、冰晶、冰雹。云内起电较弱, 以非感应起电为主。非感应起电主要以对流区中-15℃层以下正的起电率为主, 感应起电率以对流区中的负极性为主。对流区中空间净电荷呈三极性结构, 其中中部负电荷区和底部正电荷区中心电荷密度及电荷区范围相当, 上部正电荷区相对较弱, 范围较小。对流区外围仅有弱的中部负电荷区和底部正电荷区。中部负电荷区由带负电荷的冰晶和雪花共同主导, 上部正电荷区由带正电荷的雪花主导, 底部正电荷区主要是由带正电荷的霰粒子及带正电荷的雨滴主导。强起电区和放电区重合, 主要集中在回波中心上部35~50 dBZ的对流区。   相似文献   

12.
雷暴云首次放电前两种非感应起电参数化方案的比较   总被引:13,自引:2,他引:11  
在三维强风暴动力-电耦合数值模式中分别引入两种基于不同实验室结果的非感应起电参数化方案S91和SP98, 对比分析了一次雷暴单体首次放电前, 利用两种方案模拟得到的非感应电荷转移区域、极性、量级和电荷结构的演变特征, 及其与有效液态水、温度、粒子分布和对流之间的关系。结果表明, S91中, 起电区域逐渐由高温、高有效液水区向低温、低有效液水区转移。电荷转移量快速增加, 且由以正极性为主过渡为以负极性为主。电荷结构由偶极性转变到三极性。SP98中, 淞附增长率的大值区范围较大, 霰以携带正电荷占绝对优势, 易形成反极性的电荷结构, 但有进一步转变为三极性的趋势。两种方案的共同点表现为: 电荷层较高, 位于对流区上部及雷暴移动方向前侧出流区; 正电荷转移多发生在高有效液态水(或淞附增长率)和高温区, 负电荷转移都发生在低有效液态水(或淞附增长率)和低温区; 转移电荷的正中心均位于霰的累积区中心, 负中心易出现在冰晶和霰共存区的中心。  相似文献   

13.
强风暴个例电荷结构及云闪放电差异的数值模拟   总被引:1,自引:0,他引:1  
利用耦合电过程的冰粒子分档模式对长春地区两个降雹型和非降雹型强风暴个例的闪电特征进行了模拟和对比分析。结果表明,在雷暴云的初始发展期,由于上升气流较弱,两者电荷分布相似,均表现为弱的正偶极结构。随着云体不断发展,两者电荷分布开始表现出差异:降雹型个例中的上升气流较强,风切变较大,过冷水能被携带到较高的高度,冰相粒子也能被带到较高处或在较高处继续增长,使得不同区域均存在冰相粒子含量中心。因此,冰相粒子的发生范围不同、环境参数不同及荷电符号不同的非感应起电过程,形成多个电荷中心,电荷结构易出现多层分布。在不同的发展时期电荷结构均呈现出不同的形态,放电既可能在上升气流区触发,也可能在气流辐散区触发。相对而言,非降雹型个例中的上升气流较弱,风切变较小,冰相粒子的分布较规则,非感应起电过程较均匀,从而导致电荷分布始终较均匀。不同发展时期的电荷结构都相对有规则,满足放电条件的位置具有一定的相似性。  相似文献   

14.
将云滴冻结方案植入已有的二维雷暴云起、放电模式,结合一次山地雷暴个例,探讨了气溶胶浓度对雷暴云微物理过程、起电以及空间电荷结构的影响。结果表明:气溶胶浓度增加,云滴数目增多,尺度降低,雨滴含量减少;云滴冻结导致冰晶在低温区快速生长,冰晶数浓度增加,尺度减小,当气溶胶浓度高于1000 cm-3后小冰晶难以增长成大尺度的霰粒子,因此霰粒子数浓度先增加后急剧减少。此外,气溶胶浓度的大小不会影响雷暴云的电荷结构特征,但会对云内的起电强度产生明显的作用:当气溶胶浓度较低时,增加气溶胶浓度,更多的冰晶和霰粒子发生碰撞使得云内起电过程增强,空间电荷密度增加;当气溶胶浓度高于1000 cm-3后,少量的霰粒子和小冰晶的出现抑制了非感应起电过程,导致电荷密度降低。  相似文献   

15.
采用三维雷暴云动力-电耦合数值模式,模拟了2015年7月17日广东清远一次系统性强雷暴过程,探究此次雷暴的宏微观及电活动特征,从微物理角度出发,分析电荷结构的复杂成因。结果表明,由于水汽充足,上升气流速度大,云体高度高,小粒子随着强上升气流快速上升,迅速增长为雨滴等大粒子,降水出现早,强度大,较高的气温,使得很难产生固态降水。本次过程中,电荷结构由三极性结构逐渐演变成偶极性结构,这是由于霰的自动转化作用较强,中层霰粒在雷暴云成熟期转化为雹下落,上升气流由于强降水的发生不能维持,冰晶和霰粒子分布区域重合面积减少,非感应起电减弱,使得下部电荷结构消散。较高的电荷区高度使得云闪数目远远多于地闪数目。   相似文献   

16.
采用耦合了Saunders和Takahashi两种非感应起电参数化方案的RAMS(Regional Atmospheric Modeling System)模式,对重庆地区一次雷暴过程进行模拟,对比分析了两种起电参数化方案下,电荷开始分离时和雷暴云发展到成熟阶段时的水成物粒子的分布、所带电荷密度以及雷暴云的电荷结构分布。模拟结果表明,在Saunders起电参数化方案下,雷暴云的电荷结构从起电到放电都呈现偶极性特征,而在Takahashi参数化方案下,雷暴云的电荷结构则由反偶极性发展成正偶极性。为研究CCN(cloud condensation nuclei)对雷暴云的影响,本文进行了两组敏感性试验,随着云滴初始数浓度增加,雷暴云的电荷结构没有发生极性翻转,但雷暴云中电荷量增加,电荷分布区域变大,有利于闪电发生。在Saunders起电参数化方案下,当云滴初始数浓度大于2 000 cm-3时,电荷量变小。通过分析微物理量场和微物理过程发现,随着云滴初始数浓度增加,冰相粒子质量混合比增加,在Saunders起电参数化方案下,当云滴初始数浓度大于2 000 cm-3时,霰粒子质量混合比减小。验证了CCN的变化能影响云的微物理过程,从而影响雷暴云的电荷分布以及闪电的发生,尤其是冰相物质的变化显著影响了雷暴云的起电过程。  相似文献   

17.
在已有的三维对流云模式的基础上新植入了同质冻结和异质核化方案,结合一次山地雷暴个例,通过敏感性试验来探讨大气冰核浓度对对流云微物理过程和降水的影响。模拟结果表明:①冰核浓度的改变会对对流云的动力场及各水成物粒子产生明显作用。增加冰核浓度,冰相粒子的数浓度随之增加;同时,凝华过程中释放大量潜热导致云中上升气流增强。由于水汽含量一定,各水成物粒子"争夺"水汽,使得云滴、冰晶和霰的增长均受到抑制,难以成为较大尺寸的降水粒子。②冰核浓度的增加,"贝吉龙效应"导致云滴的尺度减小,削弱了云-雨转化过程。雨滴、云滴混合比的减小抑制了雨滴对云滴的收集。同时,小尺度的霰粒子削弱了霰融化为雨滴的物理过程,最终导致地面累积降雨量降低。  相似文献   

18.
不同地区雷暴电荷结构的模式计算   总被引:11,自引:2,他引:9  
利用二维时变轴对称模式和实际探空资料 ,模式计算了南昌、兰州和昌都 3个地区雷暴云的电荷结构 ,并对形成机制进行了讨论。结果表明 :兰州地区雷暴的上升气流速度最大 ,雷暴发展最快 ;南昌地区雷暴次之 ;昌都地区雷暴最弱。南昌地区雷暴的持续时间最长。在雷暴的初始阶段 3个地区都存在雷暴下部次正电荷区 ,在雷暴的成熟阶段兰州地区在感应和非感应起电机制的共同作用下雷暴呈明显的 3极性电荷结构 ,南昌地区的雷暴主要在感应起电机制作用下形成偶极性电荷结构 ,而昌都地区的雷暴在非感应起电机制作用下形成偶极性电荷结构。 3个地区的雷暴负电荷区中心基本处于 - 1 0~ - 2 0℃的同一温度区内。中国北方地区的温度层结有利于形成 3极性电荷结构 ,且通过非感应起电机制来完成。  相似文献   

19.
为了探讨冰晶核化对雷暴云闪电行为的影响,通过已有的三维对流云起、放电模式探讨对比了3种冰晶核化方案,分别为原模式中的经验公式YS方案及与气溶胶相关的DE方案和LP方案。研究表明冰晶核化方案对雷暴云内冰晶微物理发展特征、起电及放电过程均有一定影响。模拟结果显示:(1)考虑了气溶胶的两种新参数化方案中冰晶粒子在高温区(高于-13.8℃)出现,在雷暴云发展过程中DE方案和LP方案冰晶的垂直分布均大于YS方案。(2)DE方案和LP方案中高温区出现的冰晶所带电荷极性有明显的反转现象,导致雷暴云电荷结构产生差异;雷暴云发展旺盛时刻DE方案和LP方案出现三级性电荷结构,而YS方案在整个雷暴云过程都是偶极性,并且DE方案和LP方案中电荷空间分布区域更加广泛。(3)不同核化方案下雷暴云放电特征存在差异,YS方案在偶极性电荷结构背景下没有负地闪产生,而DE方案和LP方案中次正电荷区的存在促进了负地闪的发生,并且负先导出现在较低的高度范围内;DE方案和LP方案中电荷量级较大,因此云闪发生频次以及正、负先导传播次数增加明显。  相似文献   

20.
在三维强风暴动力—电耦合数值模式中引入基于Saunders et al.(1991) 实验结果的非感应起电参数化方案S91,在此基础上,利用云水饱和度替代环境温度和有效液水含量将S91方案变形.对比分析一次雷暴单体首次放电前,变形后的S91方案和原S91方案模拟得到的非感应转移电荷的极性、量级、电荷结构以及与霰和冰晶粒子分布之间的关系.结果表明,虽然两种方案采用的电荷密度变化率以及每次碰撞平均转移的电荷量均相同,但不同方案中决定粒子间电荷转移的因子不同对电荷的分布存在较大的影响.加入云水饱和度的S91方案,非感应转移电荷的极性多为正极性,电荷结构先呈单极性后转变为三极性,并有进一步转变为偶极性的趋势.但这两种方案模拟得到的霰与冰晶粒子电荷分布的重合区的范围、大小均不同,这也是造成两种方案电荷结构和转移电荷分布不同的主要原因.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号