首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Time-series data from sediment trap moorings intermittently deployed during 1991–1999 show that the fluxes of biogenic material (carbonate, opal and organic matter, including amino acids) and other related parameters are temporally and spatially distinct across the Western Pacific Warm Pool (WPWP). These variations resulted from the El Niño and La Niña conditions, which alternately prevailed over the equatorial Pacific Ocean during the mooring deployments. The westernmost WPWP (a hemipelagic region) recorded relatively high average total mass and amino acid fluxes during the El Niño event. This was in sharp contrast to the eastern part of the WPWP (oligotrophic and weak upwelling regions) which recorded higher flux values during the La Niña event. Settling particulate organic matter was rich in labile components (amino acids) during La Niña throughout the study area. Relative molar ratios of aspartic acid to β-alanine together with relative molar content of non-protein amino acids β-alanine and γ-aminobutyric acid) suggested that organic matter degradation was more intense during La Niña relative to that during El Niño in the WPWP. This study clearly shows that during an El Niño event the well documented decrease in export flux in the easternmost equatorial Pacific is accompanied by a significant increase in export flux in the westernmost equatorial Pacific Ocean.  相似文献   

2.
A time-series sediment trap was deployed from October 2007 to May 2011 in the western subtropical Pacific with the aim of understanding the seasonal and inter-annual variability on particle flux in response to El Niño-Southern Oscillation (ENSO) events. Total mass fluxes varied from 3.04 mg m−2 day−1 to 31.1 mg m−2 day−1, with high fluxes during February–April and low fluxes during other months. This seasonal variation was also characterized by a distinct change in the CaCO3 flux between the two periods. The marked increase in particle flux during February–April may be attributed to enhanced biological productivity in surface waters caused by strong wind-driven mixing in response to the western North Pacific monsoon system. The 2009/10 strong El Niño was accompanied by a significant reduction in particle flux, whereas the La Niña had no recognizable effect on particle flux in the subtropical Pacific. In particular, in the mature phase of the 2009/10 strong El Niño, the fluxes of organic carbon and biogenic silica decreased by 70–80% compared with those during the normal period, implying that the El Niño acted to suppress biological productivity in surface waters. The suppression of biological productivity during the 2009/10 strong El Niño is attributed to the decrease in precipitation due to the shift in the western Pacific warm pool. This finding is opposite that of other studies of the western equatorial Pacific, where El Niño events were observed to result in an increase in biological productivity and particle flux. The difference in particle flux between the western equatorial and subtropical Pacific is attributed to the regional differences in oceanic and atmospheric circulation systems generated by the strong El Niño.  相似文献   

3.
Sinking matter collected by sediment traps, which were deployed in the equatorial Pacific Ocean at 175°E for about 11 months during 1992–1993, were analyzed for their flux and labile components in terms of amino acids and hexosamines. The samples provided a temporal resolution of 15 days and were collected from 1357 (shallow trap) and 4363 m (deep trap) depths where sea floor depth was 4880 m. Particle flux along with major components (carbonate, organic matter, biogenic opal and lithogenic material) and amino acid parameters showed distinct temporal variations, which were more pronounced in the shallow trap relative to deep trap. A coupling between the fluxes in the shallow and deep traps was more evident during the period of maximum particle flux, which seems to be connected with the short reappearance of non-El Niño conditions in equatorial Pacific during the 1991–1993 El Niño event. The biogeochemical indicators C/N, Asp/Bala, Glu/Gaba, Bala+Gaba mol%, THAA-C% and THAA-N% implied that the increase in sinking flux was associated with upwelling and enhanced surface production. Degradation of sinking particulate organic matter between the shallow and deep traps was also evident. Occasionally higher mass and major component fluxes in the deep trap relative to the shallow trap are attributed to contribution of resuspended particulates from sea floor (nepheloid layer) or to laterally advected particulates from nearby areas. Carbonate and opal composition of the sinking flux showed a predominance of calcareous plankton; however, Asp/Gly mol ratio and Ser+Thr mol% indicated enhanced occurrence of diatoms during the periods of higher flux.  相似文献   

4.
The water masses of the central and western equatorial Pacific can be divided into two parts: the Western Pacific Warm Pool (WPWP) and the Equatorial Upwelling Region (EUR). The behavior of the WPWP plays a significant role in global climate changes such as the El Niño-Southern Oscillation (ENSO), and it drastically modifies the oceanographic conditions in the area every few years. It is important to evaluate changes in time-series diatom fluxes during both the El Niño and the La Niña events. As a part of the Global Carbon Cycle and Related Mapping based on Satellite Imagery (GCMAPS) Program, time-series sediment trap moorings were deployed and recovered along the Equator at seven stations (Sites MT1–MT7) during five R/V Mirai cruises in the central and western Pacific during January 1999–January 2003. The entire length of this study is divided into two phases depending on the oceanographic conditions: the La Niña event (1999 and 2000); and the El Niño event (2002). Site MT3 was located in the WPWP and Sites MT5–MT7 were in the EUR. Annual means of total diatom fluxes increased towards the east in each year. The fluxes observed at Sites MT4–MT6 decreased from the La Niña event to the El Niño event. However, the fluxes observed at Site MT3 in 2001 and 2002 were higher than those in 2000. Total diatom fluxes showed different seasonal patterns at all sites. The diatom assemblages in the WPWP differed from those of the EUR. Pennate diatoms (e.g., Nitzschia bicapitata, Thalassionema nitzschioides) dominated in the WPWP, while the relative abundances of centric diatoms (e.g., Rhizosolenia bergonii, Azpeitia spp., Thalassiosira spp.) were higher than those of pennate diatoms in the EUR. The diatom fluxes during the La Niña event reflected seasonal oscillation of the WPWP in spatial extent. At Site MT3 during El Niño, terrestrial materials appeared to have been transported by subsurface currents, which might be a secondary influence on total diatom fluxes. The spatial extent of the WPWP reached Site MT7 in 2002, when total diatom fluxes decreased in the sediment traps located in the eastern region including Site MT7. Therefore, we conclude that the relationships between the ENSO and diatoms fluxes in the western and central equatorial Pacific can be explained by the geographic (west–east) expansion or contraction of the WPWP.  相似文献   

5.
ENSO indices from sea surface salinity observed by Aquarius and Argo   总被引:1,自引:0,他引:1  
Analysis of the first 26 months of data from the Aquarius satellite confirms the existence of a sharp sea surface salinity (SSS) front along the equator in the western equatorial Pacific. Following several earlier studies, we use the longitudinal location of the 34.8-psu isohaline as an index, termed Niño-S34.8, to measure the zonal displacement of the SSS front and consequently the eastern edge of the western Pacific warm pool. The on-going collection of the Array for Real-time Geostrophic Oceanography (ARGO) program data shows high correlations between Niño-S34.8 and the existing indices of El Niño, suggesting its potential important role in ENSO evolution. Further analysis of the ARGO data reveals that SSS variability in the southeastern tropical Pacific is crucial to identify the type of El Niño. A new SSS index, termed the southeastern Pacific SSS index (SEPSI), is defined based on the SSS variability in the region (0°–10°S, 150°–90°W). The SEPSI is highly correlated with the El Niño Modoki index, as well as the Trans-Niño index, introduced by previous studies. It has large positive anomalies during central Pacific El Niño or El Niño Modoki events, as a result of enhanced zonal sea surface temperature gradients between the central and eastern tropical Pacific, and can be used to characterize the type of El Niño. The processes that possibly control these SSS indices are also discussed.  相似文献   

6.
西风爆发、次表层暖水东移与厄尔尼诺现象   总被引:7,自引:2,他引:7       下载免费PDF全文
利用最近20 a的大气海洋资料,分析了厄尔尼诺事件与赤道太平洋西风异常以及赤道太平洋次表层海温之间的关系.结果表明,赤道西太平洋(5°S~5°N,120°~160°E)和赤道中东太平洋(5°S~5°N,160°E~160°W)西风异常都存在着与厄尔尼诺周期一致的年际变化,但前者还包含有显著的2~3个月季节内振荡.赤道西太平洋次表层冷暖水东移也呈现年和年际时间尺度的振荡周期.在厄尔尼诺发生前,赤道西太平洋次表层海水出现持续性增暖,赤道西太平洋西风异常频率加快,强度增强.随后赤道中太平洋(160°E~160°W)出现持续性(3个月以上)强西风异常(即西风爆发),并进一步向东扩展,同时次表层暖水沿着赤道波导东移到赤道东太平洋混合层,导致赤道东太平洋海表大面积异常增暖,形成一次厄尔尼诺现象.最后,模式模拟了1980~1984年赤道太平洋海温的变化,进一步证实了赤道纬向西风异常对暖水东移起着重要的作用.  相似文献   

7.
Mass, carbon, and nitrogen fluxes and carbon and nitrogen compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, intermediate and deep moored sediment traps, and sediment cores collected along 140°W in the central equatorial Pacific Ocean during the US JGOFS EqPac program. Mass, particulate organic carbon (POC), and particulate inorganic carbon (PIC) fluxes measured by the floating sediment traps during the Survey I (El Niño) and Survey II (non-El Niño) cruises follow essentially the same pattern as primary production: high near the equator and decreasing poleward. POC fluxes caught in free-floating traps were compared with alternative estimates of export fluxes, including 234Th models, new production, and other sediment trap studies, resulting in widely differing estimates. Applying 234Th corrections to the trap-based fluxes yielded more consistent results relative to primary production and new production. Despite factors of five differences in measured fluxes between different trap types, POC : 234Th ratios of trap material were generally within a factor of two and provided a robust means of converting modeled 234Th export fluxes to POC export fluxes. All measured fluxes decrease with depth. Trap compositional data suggest that mineral “ballasting” may be a prerequisite for POC settling. POC remineralization is most pronounced in the epipelagic zone and at the sediment–water interface, with two orders of magnitude loss at each level. Despite seawater supersaturation with respect to calcium carbonate in the upper ocean, 80% of PIC is dissolved in the epipelagic zone. Given the time-scale differences of processes throughout the water column, the contrasting environments, and the fact that only 0.01% of primary production is buried, sedimentary organic carbon accumulation rates along the transect are remarkably well correlated to primary production in the overlying surface waters. POC to particulate total nitrogen (PTN) ratios for all samples are close to Redfield values, indicating that POC and PTN are non-selectively remineralized. This constancy is somewhat surprising given conventional wisdom and previous equatorial Pacific results suggesting that particulate nitrogen is lost preferentially to organic carbon.  相似文献   

8.
ENSO-induced interannual variability in the southeastern South China Sea   总被引:5,自引:0,他引:5  
In this study, El Niño Southern Oscillation (ENSO)-induced interannual variability in the South China Sea (SCS) is documented using outputs from an eddy-resolving data-assimilating model. It is suggested that during an El Niño (La Niña) event, off-equatorial upwelling (downwelling) Rossby waves induced by Pacific equatorial wind anomalies impinge on the Philippine Islands and excite upwelling (downwelling) coastal Kelvin waves that propagate northward along the west coast of the Philippines after entering the SCS through the Mindoro Strait. The coastal Kelvin waves may then induce negative (positive) sea level anomalies in the southeastern SCS and larger (smaller) volume transport through the Mindoro and Luzon Straits during an El Niño (La Niña) event.  相似文献   

9.
The impact of quasi-decadal (QD: 8 to 18 years) variability in the tropical Pacific on ENSO events is investigated. It is found that there is a significant difference in the behavior of ENSO events between the phases of positive and negative anomalies of the QD Niño-3.4 index. During the period of negative QD-scale Niño-3.4 index, ENSO events, especially La Niña events, occur more frequently, and larger amplitudes of thermal anomalies related to El Niño events appear over the central to eastern equatorial Pacific. Furthermore, propagations of upper ocean heat content anomaly and a phase relationship between upper ocean heat content and Niño-3 index in the equatorial Pacific, which have been pointed out by previous studies, are clearly detected during the period of negative QD Niño-3.4 index.  相似文献   

10.
The Pacific interior subtropical?tropical cells (STCs) and their relation to the two types of El Niño-Southern Oscillation (ENSO) are investigated by using GODAS reanalysis ocean data for the period of 1980–2017. The results show that the interior STC transport into the equatorial region across 9°S and 9°N has a close relationship with the eastern Pacific (EP) ENSO, while it is much weaker with the central Pacific (CP) ENSO. It is suggested that the effect of interior STCs on the tropical Pacific climate is reflected in its relation with the western Pacific thermocline depth or SSHA. During the EP El Niño, the anomalous interior STCs at 9°S and 9°N converge to the equatorial region from the lag months of ? 25 to ? 8, leading to an accumulation of heat content in the equatorial Pacific; from the lag months of ? 8 to 10, they diverge poleward, inducing a discharge of equatorial heat content. The peak poleward interior STC anomaly first appears at 9°N at a zero-lag time, while that at 9°S is observed 4–5 months later. But there is also no appearance of a time lag between the interior STCs at 9°N and 9°S in recharging the period during the EP La Niña mature phase. However, during CP El Niño, only the conspicuous anomalous interior STC divergence appears during the mature and decay phases for the lag months of ? 2 to 10, with being symmetric at 9°N and 9°S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号