首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acoustic signals received by platform mounted sonar arrays can be spatially processed to enhance the detection of targets in the presence of both ambient and platform generated (self) noise. Ambient noise in the ocean, such as that due to distant shipping or biological choruses, are known to be spatially correlated. The platform generated noise will be of near-field origin and may not be received by all elements in the array. In this paper we investigate the performance of the minimum variance distortionless response (MVDR) beamformer and the recently introduced Fourier integral method (FIM) and compare their performances with the conventional beamformer. Real passive sonar data, obtained from a platform mounted sparse linear array of hydrophones, is used to study the performance of the beamformers in a typical sonar environment. It is shown that in the absence of self noise, when the array is accurately calibrated the MVDR beamformer will perform very well, but when sensor gain or phase errors are present the performance of the MVDR beamformer is degraded. Further, the MVDR beamformer is unable to reject the self noise which is not "seen" by the entire array. FIM however seems to perform well and a modified version of FIM, which we call weighted FIM (WFIM), is shown to perform better and is at worst comparable to a well calibrated MVDR beamformer  相似文献   

2.
The shallow-water acoustic channel supports far-field propagation in a discrete set of modes. Ocean experiments have confirmed the modal nature of acoustic propagation, but no experiment has successfully excited only one of the suite of mid-frequency trapped modes propagating in a coastal environment. The ability to excite a single mode would be a powerful tool for investigating shallow-water ocean processes. A feedback control algorithm incorporating elements of adaptive estimation, underwater acoustics, array processing, and control theory to generate a high-fidelity single mode is presented. This approach also yields a cohesive framework for evaluating the feasibility of generating a single mode with given array geometries, noise characteristics, and source power limitations. Simulations and laboratory wave guide experiments indicate the proposed algorithm holds promise for ocean experiments  相似文献   

3.
A computational case study of coupled-mode 400-Hz acoustic propagation over the distance 27 km on the continental shelf is presented. The mode coupling reported here is caused by lateral gradients of sound-speed within packets of nonlinear internal waves, often referred to as solitary wave packets. In a waveguide having unequal attenuation of modes, directional exchange of energy between low- and high-loss modes, via mode coupling, can become time dependent by the movement of waves and can cause temporally variable loss of acoustic energy into the bottom. Here, that bottom interaction effect is shown to be sensitive to stratification conditions, which determine waveguide properties and, in turn, determine modal attenuation coefficients. In particular, time-dependent energy loss due to the presence of moving internal wave packets is compared for waveguides with and without a frontal feature similar to that found at the shelfbreak south of New England. The mean and variability of acoustic energy level 27 km distant from a source are shown to be altered in a first order way by the presence of the frontal feature. The effects of the front are also shown to be functions of source depth.  相似文献   

4.
以舷侧阵作为研究对象,首先介绍了常规波束形成器(CBF)和最佳波束形成器(OBF)的波束输出信号模型,然后推导了信号+噪声场合下的阵增益表达式,比较了在不同信号频率和不同信号源方向角下,CBF和OBF的阵增益,最后在增加了有指向性的CW干扰后,分析了此场合下的阵增益,并比较了不同的信号频率下,干扰源方向角的变化对两类波束形成器阵增益的影响。  相似文献   

5.
A novel array was designed and tested in the eastern Pacific Ocean for the measurement of the vertical directionality of ambient noise. The results of the test, conducted in 1983, illustrate the existence of a 5-dB "noise notch" for arrival angles associated only with submerged acoustic sources. A measurement system based on improvements to the design and processing is described.  相似文献   

6.
Traditionally, passive detection and localization of an acoustic source has been based on exploiting the relative differences in temporally averaged power outputs of contiguous beams of an element-weighted beamformer. An alternate approach, the generalized correlation beamformer (GCBF), is proposed where a weighted Toeplitz-averaged (spatially averaged) correlation function is used to estimate the beamformer output power. All element-weight sequences can be transformed into correlation-weight sequences through a convolution operation. Additional weight sequences which cannot be generated from a convolution of real element-weight sequences are available for use in the GCBF. A special case of the GCBF was proposed by Wilson et al. (1995) in which the correlation-weights are set to unity, a correlation-weight sequence which cannot be obtained from any classical element-weight sequence. Although such a “boxcar” correlation-weight sequence produces a sharper main peak power response (improved resolution), it has the undesirable effect of producing abnormally high (positive and negative power) sidelobes. General analytical performance bounds are developed that accurately reflect the GCBF detection and bearing localization performance for a noise model that includes spatially white noise and spatially discrete interferers (clutter). Analysis results indicate that the GCBF with Bartlett correlation-weights outperformed the GCBF with unity correlation-weights for both detection and bearing estimation except when the clutter bearing is close to the signal bearing  相似文献   

7.
The vertical directionality of ambient noise due to surface agitation for frequencies between 2 and 5 kHz propagated to a subsurface receiver has a characteristic shape, knowledge of which may enhance shallow-water operations. In general, the noise level is highest at upward-looking angles and attenuated at downward-looking angles depending on the nature of the bottom. In environments with a negative profile gradient, the noise level is also greatly reduced in a low-angle shadow zone or "notch" at angles around horizontal. This paper reviews the character of vertical noise directionality by examining two measured data sets and considering the underlying physical mechanisms that drive the form of the distribution. A discussion of the implications of vertical noise directionality for design and operation of receiving sonar systems is presented. In particular, the effect of mainlobe beamwidth and sidelobe suppression are considered along with the directionality of the noise field. Finally, an overview of the derivation of a vertical noise model based on the integrated mode method of propagation prediction is followed by model reproduction of measurements.  相似文献   

8.
Increasing the number of hydrophones in an array should increase beamformer performance. However, when the number of hydrophones is large, integration times must be long enough to give accurate cross-spectral matrix (CSM) estimates, but short enough so that the dynamic behavior of the noise described by the CSM is captured. The dominant mode rejection (DMR) beamformer calculates adaptive weights based on a reduced rank CSM estimate, where the CSM estimate is formed with a subset of the largest eigenvalues and their eigenvectors. Since the largest eigenvalue/eigenvector pairs are estimated rapidly, the integration time required is reduced. The purpose of this study was to examine the DMR beamformer performance using a bottom-mounted horizontal line array in a shallow-water environment. The data were processed with a fully adaptive beamformer and the DMR beamformer. The DMR beamformer showed better performance than the fully adaptive beamformer when using arrays with larger numbers of hydrophones. Thus, in highly dynamic noise environments, the DMR beamformer may be a more appropriate implementation to use for passive sonar detection systems  相似文献   

9.
This paper examines the potential for remote classification of seafloor terrains using a combination of quantitative acoustic backscatter measurements and high resolution bathymetry derived from two classes of sonar systems currently used by the marine research community: multibeam echo-sounders and bathymetric sidescans sonar systems. The high-resolution bathymetry is important, not only to determine the topography of the area surveyed, but to provide accurate bottom slope corrections needed to convert the arrival angles of the seafloor echoes received by the sonars into true angles of incidence. An angular dependence of seafloor acoustic backscatter can then be derived for each region surveyed, making it possible to construct maps of acoustic backscattering strength in geographic coordinates over the areas of interest. Such maps, when combined with the high-resolution bathymetric maps normally compiled from the data output by the above sonar systems, could be very effective tools to quantify bottom types on a regional basis, and to develop automatic seafloor classification routines.  相似文献   

10.
在南黄海某一典型的砂质海底区域,采用全向性声源和全向性接收水听器开展了频率范围为6-24 kHz的海底反向声散射测量。测量结果表明,在避免海面散射干扰并满足远场条件的情况下,本次实验获得了掠射角范围为18~80°的海底反向声散射强度,其数值为-41.1~24.4 dB。在有效掠射角范围内,声散射强度总体上随掠射角的增大呈现出增大趋势,但对于不同的频率,其变化趋势有所不同,反映出不同的散射机理。在20°、40°和60°掠射角处,在6-24 kHz的频率范围内反向声散射强度总体上呈现出正相关的频率依赖性,其线性相关斜率分别为0.2229 dB/kHz、0.5130 dB/kHz、0.1746 dB/kHz。在最大掠射角80°处,反向声散射强度未呈现出明显的频率相关性。  相似文献   

11.
12.
Transmission and reflection coefficients are calculated for Rossby waves incident on a bottom topography with constant slope in a continuously stratified ocean. The characteristics of the coefficients are interpreted in terms of the quasigeostrophic waves on the slope. In the parameter range where only the barotropic Rossby waves can propagate in the region outside the slope, the bottom trapped wave plays the same role as the topographic Rossby wave in a homogeneous ocean, and hence the transmission is weak unless phase matching takes place. When both of the barotropic and baroclinic Rossby waves can propagate outside the slope, the total transmission can be strong. The bottom trapped wave affects the transmission and reflection, and it leads to the possibility that the Rossby wave is transmitted as a mode different from the incident mode. When the number of the wavy modes on the slope is smaller than that of the Rossby wave modes outside the slope, strong reflection occurs.The results for an ocean with linear distribution of the squared Brunt-Väisälä frequency are compared to those in a uniformly stratified ocean. The weakening of the stratification near the bottom is almost equivalent to reducing the effect of the slope.  相似文献   

13.
The shallow refracted path through sea floor sediments plays a significant role in the transmission of acoustic energy at low frequencies. For bottom grazing angles of 90/spl deg/ to 25/spl deg/, low-frequency acoustic energy was observed to come from reflected paths. For bottom grazing angles of 25/spl deg/ to 10/spl deg/ the dominant source of low-frequency acoustic energy is from shallow refracted paths through the sediments. At angles less than 10/spl deg/, low-frequency acoustic energy is received from both the refracted and the reflected paths. The refracted path is possible because of the positive gradient within the sediment. The sudden emergence of the refracted arrival is related to the overall sound path length in the sediment and sediment absorption of sound. Since sediment absorption is directly proportional to frequency, only low-frequency energy is transmitted via this path. The refracted path may well exist where unconsolidated sediments of at least a few hundred feet are present.  相似文献   

14.
During maneuvering, towed array beamforming degrades if a straight array is assumed. This is especially true for high-resolution adaptive beamforming. It is experimentally demonstrated that adaptive beamforming is feasible on a turning array, provided that array shape is estimated. The array shape can be inferred solely from the coordinates of the tow vessel's Global Positioning System (GPS) without any instrumentation in the array. Based on estimated array shape from the GPS, both the conventional beamformer and the white noise constrained (WNC) adaptive beamformer are shown to track the source well during a turn. When calculating the weight vector in the WNC approach, a matrix inversion of the cross-spectral density matrix is involved. This matrix inversion can be stabilized by averaging the cross-spectral density matrix over neighboring frequencies. The proposed algorithms have been tested on real data with the tow-vessel making 45/spl deg/ turns with a 500-m curvature radius. While turning, the improvement in performance over the assumption of a straight array geometry was up to 5 dB for the conventional beamformer and considerably larger for the WNC adaptive beamformer.  相似文献   

15.
A special-purpose definition is proposed for phase fluctuations to overcome the obstacle of unpredictable dynamic changes in the phase angle. This definition implies a specific time history for each phase sample and any deviation is termed a phase fluctuation. Its application to acoustic data led to the development of a technique for temporally aligning the phase angles of the acoustic pressure phasors. This alignment process transforms the signal phasors to the real half-space of a rotated complex plane, while the corresponding noise is distributed with random phase angles. Signal processing conducted in the rotated plane improves the temporal coherence of the signals without significantly altering the incoherence of the noise. Coherent attenuation and cancellation of signals is common with temporal coherence and vector averaging. These were eliminated when the aligned-phase angles were substituted for the original unaligned phase angles. Thus, the transformation produces a net temporal coherence gain. Furthermore, it significantly improves the robustness of the signal processor to source and receiver motion. An automatic identifier of signals in the transformed plane also is introduced. Signal identification is based on aligned-phase angle temporal coherence, which significantly improves identification of signals. Results are included for both ocean and atmosphere acoustic data.  相似文献   

16.
Properties of coastal trapped waves when the pycnocline intersects a sloping bottom are studied using a two-layer model which has slopes in both layers. In this system there is an infinite discrete sequence of modes, and four different sorts of waves exist: the barotropic Kelvin wave, the upper shelf wave, the lower shelf wave and the internal Kelvin-type wave. They all propagate with the coast to their right in the Northern Hemisphere. The upper and lower shelf waves are due to the topographic-effect on the upper-layer and lower-layer slopes, respectively. Their motions are dominant in the respective layers being accompanied by significant interface elevations. The properties of the upper (lower) shelf wave are almost unaffected by the existence of a lower-layer (upper-layer) slope. The motion of the internal Kelvin-type wave is confined to the region around the line where the density interface intersects the bottom slope.The modes, except that with the fastest phase speed (the barotropic Kelvin wave), are assigned mode numbers in order of descending frequency. Characteristics of Mode 1 change with wavenumber; the upper shelf wave for small wavenumbers and the internal Kelvin-type wave for large wavenumbers (high frequencies). The higher modes of Mode 2 and above can be classified into the upper and lower shelf waves.  相似文献   

17.
The EM12 multibeam echosounder can record acoustic backscatter information as well as high resolution bathymetry. The dataset presented, from the axis of the Mid-Atlantic Ridge at 45° N, was the first EM12 survey of a mid-ocean ridge. This paper presents methods for utilising the backscatter information. Data processing enables the production of a mosaic of acoustic backscatter, and visualisation techniques are investigated to provide initial qualitative views of the combined backscatter and bathymetry datasets. The co-registration of the backscatter and bathymetry data enables quantitative analysis of their relationships. Various sites of different geological type have been selected and their angular acoustic backscattering relationships estimated, including the effect on backscatter of incidence angle, its regional variability with bottom type and the influence of bottom slope. Incidence angles and bottom type are shown to affect backscatter to a similar degree, while slopes appear to contribute little. The geometry of hull-mounted systems, such as the EM12, is significantly different from that of conventional sidescan sonars, such as GLORIA, and the backscatter images from the two types differ in various respects. Because of the wide variations in incidence angle that are common with hull-mounted systems, and the importance of incidence angle in determining backscatter strength, it is vital to consider the effect of incidence angle during interpretation.  相似文献   

18.
对于海底地形测量,基于FT波束形成的幅度检测法空间分辨率较低,只能较准确给出有限测点的水深信息;平坦海底前提下,分裂子阵检测法或多子阵检测法可以得到连续测点的水深信息,复杂海底地形条件下,这两种方法均难以应用。能否利用高分辨率波束形成器来提高测深系统的空间分辨率是一个值得研究的问题。使用ESPRIT波束形成器处理了多波束测深系统的试验数据,并就其性能与FT波束形成器进行了比较与分析。  相似文献   

19.
The Marine Physical Laboratory has designed, fabricated, and taken to sea self-contained, freely drifting acoustic sensors which can measure signal propagation and ambient ocean noise in the 1-20-Hz band for up to 25-hour periods. The deployment of several freely drifting floats forms an array of sensors whose outputs can be combined after the experiment with a beamformer. A Kalman filter and a least-squares estimator have been developed to estimate float positions from travel-time measurements. Computer simulation is used to compare filter performance-under several deployment scenarios. Results show that the Kalman filter performs better than the least-squares filter when the floats are subjected to small-magnitude accelerations between measurements. Neither filter was sensitive to relatively major changes in deployment geometry as long as the sound-speed profile is known exactly  相似文献   

20.
A numerical optimization technique that uses sonar array noise measurements is used to determine conventional shading weights that maximize the broadband deflection coefficient at the output of the optimal square-law detector, across a frequency band of interest. This process maintains the structure of the conventional processor while providing performance improvement typical of adaptive techniques. The performance of the optimized time domain delay-and-sum beamformer is compared with that of the traditional beamformer that uses conventionally chosen shading weights. Application of this method to conformal velocity sonar array data is shown to provide large improvements in performance over heuristic designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号