首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
目前公认的深海采矿系统是利用管道水力将深海底矿石提升到海面采矿船上。由于受海底破碎条件和废水排放环境要求,输送的深海矿石粒径较粗。粗颗粒具有极易沉积的特点,输送参数也较难确定。通过自行设计的管道水力输送模拟系统,研究了不同浓度、粒径、速度条件下粗颗粒在水平管道中的运动状态及阻力损失的变化规律。研究结果表明:(1)随固液两相流流速的增大,水力坡度呈现规律性变化,且阻力损失的变化规律与粗颗粒运动状态存在一定的关系;(2)通过引入管道附加损失与福氏数,建立了颗粒运动状态与阻力损失之间的定量关系,提出了粗颗粒在水平管道水力输送条件下流态分区的判定标准;(3)分析了管道附加损失的影响因素,提出了管道附加损失的计算公式。研究结果为粗颗粒管道水力输送系统参数设计提供依据。  相似文献   

2.
为使深海采矿作业更为高效、环保,提出了一种用于深海采矿的循环式水力集矿系统设计方案。该系统主要由集矿头、矿-沙分离器、水-沙分离器、水泵以及连接各部件的管道组成。采用基于欧拉法的液固两相流计算模型对该系统的关键问题,即矿-沙分离器和水-沙分离器的泥沙颗粒流动进行数值研究。相间拖曳力采用Richardson-Zaki模型。液相与固相湍流分别采用标准k-ε模型和Tchen湍流响应模型。该模型经验证对于直径0.165 mm与0.27 mm细颗粒具有较高精度。利用该模型,以0.165 mm泥沙颗粒为例,得到了两种分离器的分离效果与入口流速之间的规律,分析了两者颗粒浓度分布与流场特征。结果表明,两种分离器的性能均与入口流速有关,在选取适当入口条件时均可取得良好效果。  相似文献   

3.
基于多相流体动力学的贝赛特(Basset)-鲍瑟内斯克(Boussinesq)-奥森(Ossen)方程(BBO方程)研究滑移条件下颗粒在两相流中的运动情况。针对小型浮游生物表面微结构特征建立固-气-液三相双滑移模型,运用Karman边界层动量定理推导出以气相衔接的固-气相和气-液相层流边界层速度分布表达式。通过参数分析法确定Basset力、颗粒所受阻力及附加质量力对颗粒运动的影响,对BBO方程进行简化求解,得到颗粒在流场中的轨迹方程。将本文提出的滑移速度分布代入轨迹方程得到有滑移边界条件下颗粒在流场中的运动速度随时间的变化。通过分析可以得到,颗粒表面的驻泡结构使得颗粒与流场接触界面处出现速度滑移,从而提高了颗粒的运动速度。  相似文献   

4.
符瑜  肖红  夏建新 《海洋工程》2019,37(4):63-69
随着陆地金属资源的日益枯竭,深海矿产资源已经成为各国的重要战略目标。在深海采矿过程中,海底锰结核的形状除了圆球状,还有长条状等,颗粒形状对固液两相流管道输送特性具有很大影响。基于固液两相流垂直管道提升输送试验系统,探究不同工况下长条状颗粒在垂直上升流中最小输送速度的变化规律及特性,并得到了长条状群体颗粒最小输送速度计算公式。结果表明:长条状颗粒在垂直管道中上升过程中,颗粒中心轴与输送方向趋向于垂直,使颗粒在管道截面的投影面积最大化;长条状单颗粒的最小输送速度随着颗粒长径比增大而减小;在不同长径比工况下,随着管段颗粒平均浓度减小,长条状群体颗粒的最小输送速度均增大,且随着长径比增大,群最小输送速度减小。  相似文献   

5.
为研究颗粒粒径对深海采矿提升泵工作性能影响,采用RNGκ-ε湍流模型和Hinze-Tchen颗粒湍流粘性系数模型,运用Fluent软件对采矿提升泵内固液两相流进行数值模拟,比较不同的颗粒粒径对采矿提升泵内颗粒浓度、速度、压力分布的影响,进而分析颗粒粒径对扬程、效率等工作性能的影响,指导深海采矿提升泵的设计。研究结果表明:在转速、流量、颗粒体积分数不变情况下,随着颗粒粒径增大,泵的扬程和效率都逐渐下降;叶轮叶片中前部流道内浆体的颗粒浓度大幅上升,叶轮流道内颗粒动态沉积更加严重,叶轮流道过流面积随之减小,反而加大了叶轮流道内贯流的相对速度,从而有效地抑制了边界层分离的发生,但在叶轮叶片中后部压力面上浆体压力下降幅度较大,泵内浆体总压逐渐下降,扬程随之减小;在叶轮出口处,流道内固液两相流的速度差异增大,在叶轮出口处形成的射流-尾迹结构增强,并在空间导叶流道内形成更加明显的二次流及漩涡,从而加大水力损失,降低效率。实验证实了数值模拟方法的可行性及准确性。  相似文献   

6.
东海内陆架表层沉积物粒度及其净输运模式   总被引:2,自引:0,他引:2  
根据对东海内陆架海底沉积物的粒度测试,运用Gao-Collins"粒度趋势分析"方法,探讨了东海内陆架海底表层沉积物的粒度分布特征和净输运趋势。结果表明,研究区表层沉积物可以分为两类:细颗粒(>5Φ)和粗颗粒(<5Φ);细颗粒分布于研究区的大部分区域,而粗颗粒主要分布在闽江、瓯江等入海河流口门以及马祖等海岛附近;表层沉积物的平均粒径、分选系数、偏态等粒度参数对应性较好,总体特征为粒径越粗,分选越差,偏态更正偏,而粒径越细,分选越好,偏态也较低;粒径趋势分析显示东海陆架表层沉积物的运移模式总体为NE—WS方向运移,而研究区边缘在运移过程中发生向左右两侧的偏移,南部闽江河口区沉积物由近岸向海方向辐射运移,研究区表层沉积物的净输运模式主要受控于流系和地形等多种因素。  相似文献   

7.
元素地球化学信息对于地层划分和物源分析具有重要的指示意义。通过分析莱州湾BH1302孔岩芯沉积物常微量元素特征发现,元素含量在地层分界处发生明显变化,可以作为晚第四纪地层划分的重要指标。结合钻孔岩性相、粒度特征和测年数据,将研究区晚第四纪以来的沉积划分为4段,分别对应于晚中更新世、MIS 5期、MIS 4—3期和MIS 1期。钻孔岩芯沉积物常微量元素在垂向上变化存在着共生的关系,除Na2O、Ba和Sr外,大部分常微量元素变化与粒径强相关。R型因子分析揭示陆源细颗粒碎屑沉积、陆源粗颗粒碎屑沉积和海洋自生元素供应对BH1302孔沉积物的地球化学组成具有重要作用,但不同时期影响作用有所差异,陆源细颗粒碎屑沉积占主导地位,但短时期内陆源粗颗粒碎屑沉积或海洋自生元素供应也可能成为主导因素。  相似文献   

8.
闽江口及周边海域沉积物输运及资源效应   总被引:1,自引:0,他引:1  
王爱军  叶翔  赖志坤  王亮 《海洋与湖沼》2020,51(5):1013-1024
河流入海泥沙的大部分主要分布在河口、三角洲及近岸陆架地区,发育一系列的粗颗粒沉积体系,是海砂资源重要分布区。本文以福建闽江口为研究对象,初步探讨了沉积物输运过程及海砂资源的形成机制。观测结果表明,闽江河口水体盐度由河口内部向口外海域逐渐增大,水体浊度总体减小;闽江河口附近海域近底部(距离海底25cm)流向表现出一定的旋转流特征,潮周期内余流表现为向海输运,而推移质输运主要发生在涨潮期间,并且潮周期内净向陆输运。表层沉积物粒度分析结果表明,闽江河口水下三角洲前缘表层沉积物主要由粗颗粒物质组成,沉积物类型以砂和砂质粉砂为主,中值粒径小于4Φ;前三角洲地区表层沉积物主要由细颗粒物质组成,中值粒径介于4Φ—6Φ之间。沉积物粒径趋势分析结果表明,闽江入海泥沙经梅花水道和长门水道入海后,在盐淡水混合、径流、潮流的作用下,在闽江河口形成了四个粗颗粒沉积物汇聚区,成为闽江口地区海砂资源的重要分布区;而细颗粒物质在河口羽流和潮流的作用下向偏东方向输运,形成了以黏土质粉砂为主的前三角洲。  相似文献   

9.
深海采矿扬矿泵导叶区域粗颗粒通过特性试验研究   总被引:1,自引:0,他引:1  
蔡超  邱灏  曹斌  夏建新 《海洋工程》2016,34(2):64-70
在深海采矿系统中,海底矿石必须经过扬矿泵才能提升到海面船上,但矿石粒径较粗,容易在泵体中形成堵塞,尤其是在扬矿泵导叶区域,因此,研究粗粒在导叶中的运动特性对于保障系统安全工作具有重要意义。针对深海矿物粒径较大的特点,设计并制作了具有宽流道的扬矿泵流道模型,安装于管道输送试验系统。利用高速摄像机对扬矿泵导叶内粗颗粒运动特性进行了记录,并对其运动轨迹、碰撞情况以及颗粒速度等信息进行了分析。结果表明:颗粒在通过导叶区域时,运动轨迹与水流流向基本一致;颗粒与导叶发生碰撞位置主要集中于导叶背面入口处、导叶压力面中部和导叶背面出口处;颗粒粒径越小,跟随性越好,碰撞次数越少。试验结果可为扬矿电泵设计提供参考。  相似文献   

10.
为了探讨夏季不同性质悬浮体在研究区的分布特征及其控制因素,于2016年6—7月在北黄海使用LISST-100X(C)型激光粒度仪和CTD测量了悬浮体浓度和水体温度、浊度、荧光叶绿素浓度数据。结合现场水文数据对不同粒径悬浮体的分布规律进行分析。结果表明,夏季研究区悬浮体含有大量以生源颗粒为主的粗颗粒(128μm),其浓度在下层水体较低,在远岸层结水体的温跃层附近最高。粒径128μm的细颗粒浓度与浊度分布趋势一致,主要反映陆源无机颗粒的变化。其浓度整体呈近岸高远岸低、下层高上层低的分布特征;在成山头近岸海域最高,并且在鲁北沿岸浅水与远岸深水之间存在浓度锋。潮混合作用和温跃层是影响悬浮体浓度空间分布的主要控制因素。潮混合作用促使鲁北沿岸出现陆架温度锋,阻碍沿岸细颗粒物质向海输运;成山头近岸较强的潮混合作用导致当地沉积物再悬浮,使该区域细颗粒浓度最高。温跃层不仅阻碍了下层细颗粒物质向上扩散,还对上层沉降下来的颗粒有"累积"作用。此外,跃层附近丰富的浮游植物对粗颗粒浓度高值区的形成有促进作用。  相似文献   

11.
Studying sedimentation and consolidation of dredged slurry has significant implications to the design of storage yard and subsequent ground improvement. In this study, settling velocity of soil particles in dredged slurry during sedimentation and consolidation processes was investigated using an improved multilayer extraction sampling (MES) method. A series of sedimentation column tests were performed on dredged slurry with three different initial water contents. Distributions of volume of soil particles and density of dredged slurry were first obtained by the MES method, settling velocity of soil particles was then calculated by volume flux function approach. It was found that the density and velocity inflection points can be used to distinguish the settling zone and the consolidation zone. The experimental results reveal that the velocity of soil particles was quite low and monotonically decreased with sedimentation height at low initial water content throughout the whole test period, whereas it was increased at 0–1 hours and almost remained constant at 1–7 hours in the settling zone at high initial water content. The effects of initial water content on sedimentation and consolidation mode of dredged slurry and the settling velocity of soil particles were discussed. The relationship between settling velocity of soil particles and particle diameter was also studied. It is indicated that the measured velocity of soil particles was much lower than that calculated by the Stokes equation, and it was related to 0.4881–0.5906 order of particle diameter at 0–1 hours and 0.1117–0.1825 order of particle diameter at 1–7 hours for the test slurries.  相似文献   

12.
A hybrid Lagrangian-Eulerian(HLE) method is developed for sea ice dynamics,which combines the high computational efficiency of finite difference method(FDM) with the high numerical accuracy of smoothed particle hydrodynamics(SPH).In this HLE model,the sea ice cover is represented by a group of Lagrangian ice particles with their own thicknesses and concentrations.These ice variables are interpolated to the Eularian gird nodes using the Gaussian interpolation function.The FDM is used to determine the ice velocities at Eulerian grid nodes,and the velocities of Lagrangian ice particles are interpolated from these grid velocities with the Gaussian function also.The thicknesses and concentrations of ice particles are determined based on their new locations.With the HLE numerical model,the ice ridging process in a rectangular basin is simulated,and the simulated results are validated with the analytical solution.This method is also applied to the simulation of sea ice dynamics in a vortex wind field.At last,this HLE model is applied to the Bohai Sea,and the simulated concentration,thickness and velocity match the satellite images and the field observed data well.  相似文献   

13.
We show how to represent changes in the distribution of size and sinking speed of marine particles by a two-parameter model. In contrast to fully size-resolved models, this representation holds promise for constructing ocean biogeochemical models with detailed spatial resolution and seasonally varying sinking speed. We treat the mass and number of particles as separate state variables, each obeying its own conservation law. Average size and sinking speed of particles change as particles aggregate or the largest particles sink out. The distribution of particle sizes is assumed to follow a power law, whose exponent changes as a function of average particle size. Compared to biogeochemical models with constant particle sinking speed, our approach imposes a modest increase in computational cost and produces important effects like more rapid sinking immediately following a phytoplankton bloom. Compared to models that use hundreds of size classes to represent the detailed evolution of particle size distribution, our approach offers a major reduction in computational cost, while maintaining realistic behaviour like the sudden onset of significant aggregation when particles are sufficiently abundant.  相似文献   

14.
采用计算流体力学—离散元耦合方法(CFD-DEM)模拟海底管道床面的冲刷过程。经过模型验证,该方法的计算结果与前人的研究具有较好的一致性,证明其可以应用于海底管道周围的冲刷模拟计算。冲刷初期的结果增强了目前对启动阶段粒子运动机理的理解,即管前后压力梯度造成的渗流作用导致粒子运动。对完整冲刷过程的模拟中,发现冲刷分为冲刷启动阶段、间隙冲刷阶段和尾迹冲刷阶段。间隙冲刷阶段管道下方粒子具有较大速度,冲刷坑快速向下方发展。进入尾迹冲刷阶段后,管道后方出现周期性脱落的涡旋,沙丘上的粒子速度更大。同时利用DEM更具直观性的独特优势,首次得到了14个典型位置处颗粒的运动轨迹和运动速度,对于理解冲刷过程中粒子的运动情况具有较大帮助。  相似文献   

15.
In this paper, a numerical model of 2D weakly compressible smoothed particle hydrodynamics (WCSPH) is developed to simulate the interaction between waves and thin structures. A new color domain particle (CDP) technique is proposed to overcome difficulties of applying the ghost particle method to thin structures in dealing with solid boundaries. The new technique can deal with zero-thickness structures. To apply this enforcing technique, the computational fluid domain is divided into sub domains, i.e., boundary domains and internal domains. A color value is assigned to each particle, and contains the information of the domains in which the particle belongs to and the particles can interact with. A particle, nearby a thin boundary, is prevented from interacting with particles, which should not interact with on the other side of the structure. It is possible to model thin structures, or the structures with the thickness negligible with this technique. The proposed WCSPH module is validated for a still water tank, divided by a thin plate at the middle section, with different water levels in the subdomains, and is applied to simulate the interaction between regular waves and a perforated vertical plate. Finally, the computation is carried out for waves and submerged twin-horizontal plate interaction. It is shown that the numerical results agree well with experimental data in terms of the pressure distribution, pressure time series and wave transmission.  相似文献   

16.
In this paper, a numerical model of 2D weakly compressible smoothed particle hydrodynamics (WCSPH) is developed to simulate the interaction between waves and thin structures. A new color domain particle (CDP) technique is proposed to overcome difficulties of applying the ghost particle method to thin structures in dealing with solid boundaries. The new technique can deal with zero-thickness structures. To apply this enforcing technique, the computational fluid domain is divided into sub domains, i.e., boundary domains and internal domains. A color value is assigned to each particle, and contains the information of the domains in which the particle belongs to and the particles can interact with. A particle, nearby a thin boundary, is prevented from interacting with particles, which should not interact with on the other side of the structure. It is possible to model thin structures, or the structures with the thickness negligible with this technique. The proposed WCSPH module is validated for a still water tank, divided by a thin plate at the middle section, with different water levels in the subdomains, and is applied to simulate the interaction between regular waves and a perforated vertical plate. Finally, the computation is carried out for waves and submerged twin-horizontal plate interaction. It is shown that the numerical results agree well with experimental data in terms of the pressure distribution, pressure time series and wave transmission.  相似文献   

17.
Numerical modelling of deep sea air-lift   总被引:2,自引:0,他引:2  
K. Pougatch  M. Salcudean   《Ocean Engineering》2008,35(11-12):1173-1182
Deep sea air-lifting of solid particles from depth of 1600 m is simulated with a mathematical model of the three-phase flow in an upward pipe. The computations are carried out for an axisymmetric domain in a transient way. Phase distributions, pressure and velocity profiles together with flow rates for all phases are presented and analysed. The influence of the pipe diameter on the air-lift efficiency was studied for air-lift pipes of different lengths and found to be significant. The lifting efficiency increases with the increase of the pipe diameter due to the reduction of the wall friction influence on the flow. In addition, the efficiency also increases with the increase of the solid particles volume fraction at the inlet. The presented numerical model can be utilized during various stages of the design of the air-lift pumps to help answer fundamental questions on the process, and during their operation to select optimal process parameters and to address possible problems.  相似文献   

18.
Soil slurry dredged from seabed is becoming more widely used in land reclamation projects. A major problem encountered is that soil slurry is very high in water content and the dewatering process is difficult and time consuming. In this paper, the use of chemical flocculant for the dewatering of soil slurry is proposed and experimentally tested. Polyacrylamide (PAM) with different charge types/charge densities was tested in preliminary slurry dewatering tests. The results showed that the most effective flocculant, cationic PAM (CPAM) with +15 charge density, can reduce the volume of soil slurry (500% water content) by around 60% in 10 minutes. In contrast, the volume of pure soil slurry was almost unchanged. Slurry sedimentation tests on slurries with different flocculant contents and water contents were conducted. It is shown that, by adding flocculant into soil slurry, the rate of settlement under self-weight can be considerably increased in the tested range of water contents (100.7–879.5%). But the water content at the final state increases with flocculant additions. Slurry sedimentation curves displayed different characteristics with different flocculant contents as well as water contents. It is evidenced by particle size analysis that the addition of flocculant into soil slurry can attract soil particles and form large flocs (assemblage of particles), which explains the faster settlement rate in flocculant-treated soil slurry as compared with pure soil slurry. Scanning electron microscopic analysis revealed that flocculant-treated soil particles are more randomly oriented, while soil particles with no flocculant addition deposit in a more paralleled manner. This could explain the higher water content of flocculant-treated soil slurry at the final state.  相似文献   

19.
The function of a submarine conduit under typhoon conditions is examined. The study site is the Kao-ping river, shelf, and submarine canyon (KPRSC) system located off southern Taiwan on a wave-dominated microtidal coast. The head of the canyon is located approximately 1 km off the river mouth. Two comprehensive 1-month field experiments were carried out in 2000 and 2002 during the flood season of the river. Both experiments encountered typhoons that generated significant river discharge and wave resuspension events. Particle samples collected in 2000 by sediment-traps were analyzed for coarse fraction by the wet sieving method. Among the coarse fraction, foraminiferal species and their abundance were recorded as a tracer for biogenic particles of marine origin. Stable isotopes of carbon (δ13C) of organic particles of sediment-trap samples were analyzed as a tracer for particles of terrestrial origin. All the measured flow and particle concentration records were analyzed by conventional time-series analytical methods. Simultaneously observed records of suspended sediment concentration at the river mouth and the volume concentration of suspended particles near the canyon floor were compared. Instantaneous flux and cumulative transport of suspended particles near the canyon floor were estimated during the deployment period. Results show that Kao-ping Submarine Canyon is a multi-level and process-dependant two-way conduit for particles of terrestrial and marine origins. In general, terrestrial signals are stronger than the marine signals in sediment-trap samples near the head of the canyon. During typhoon events, in the early distal phase of their influence nonlithogenic and biogenic marine sources are enhanced; in the later proximal phase signals of locally generated terrestrial lithogenic sources are enhanced. An episode of momentary downcanyon flushing of suspended particles near the canyon floor is observed during one typhoon occurrence. This flushing suggests nondeposition during the typhoon at the locale of deployment despite increased input of particles to the canyon floor. It also suggests a mechanism by which turbidity currents could be triggered. Yet, this flushing phenomenon is not observed in another typhoon occurrence, suggesting it is not universal in the canyon's response to the typhoon.  相似文献   

20.
A two-dimensional numerical wave flume based on SA-MPLS method   总被引:1,自引:0,他引:1  
A spatially adaptive(SA) two-dimensional(2-D) numerical wave flume is presented based on the quadtree mesh system,in which a new multiple particle level set(MPLS) method is proposed to solve the problem of interface tracking,in which common intersection may be traversed by multiple interfaces.By using the adaptive mesh technique and the MPLS method,mesh resolution is updated automatically with time according to flow characteristics in the modeling process with higher resolution around the free surface and the solid boundary and lower resolution in less important area.The model has good performance in saving computer memory and CPU time and is validated by computational examples of small amplitude wave,second-order Stokes wave and cnoidal wave.Computational results also indicate that standing wave and wave overtopping are also reasonably simulated by the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号