首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
为深入认识深海溢油输运过程和提高深海溢油事故的应急响应能力,文章以2010年墨西哥湾“深水地平线”事故为例,采用深海溢油输移扩散模型,以三维流场和海面风场为主要环境动力,数值模拟溢油深海泄漏后的浮射扩散、水体中输移扩散以及在风场和流场共同作用下在海面上输移扩散的全过程,同时模拟实施海底消油剂喷注处理措施后溢油输移轨迹和扩散范围的变化。研究结果表明:数值模拟结果与相关报道的悬浮油带实际观测结果以及美国国家海洋与大气管理局的海水异常遥感监测结果总体相符,可为更加全面和精细的深海溢油输移扩散数值模拟研究奠定良好的基础。  相似文献   

2.
为深入研究井喷和管道破损等海底事故后溢油在水下环境中的输移扩散过程,文章利用自制的组合式环形水槽(周长9.7 m、宽0.45 m、深1 m),以阿曼原油与消油剂混合物和淡水(含示踪剂)为模拟污染物,初步开展静水和动水环境中海底溢油浮射流的物理模拟实验,并应用基于拉格朗日积分方法的水下溢油浮射流模型进行数值模拟比较分析。研究结果表明:静水环境中,水下溢油浮射流主要沿喷口的垂直中心线向水面输移扩散;非均匀流动水环境中,横流速度越大,浮射流输移轨迹的弯曲程度越明显;数值模拟的浮射流轨迹总体上与实验观测结果符合较好;研究结果可为今后相关物理实验和数值模型的改进研究提供有益参考。  相似文献   

3.
文章基于自制的组合式环形水槽(周长9.7 m、宽0.45 m、深1.0 m),分别以阿曼原油及其消油剂混合物和淡水(含示踪剂)为模拟污染物,开展水下溢油的物理模拟实验,以浮射流输移轨迹、污染物扩散范围和油滴粒径分布为考察指标,研究横流环境和消油剂的使用对水下溢油输移扩散的影响。实验结果表明:在横流环境中,浮射流输移轨迹开始弯曲的高度随着流速的增加而降低;与淡水浮射流主要在水中输移扩散的情况不同,当污染物为原油时,大粒径油滴脱离浮射流主体并上浮至水面,导致扩散范围更大;消油剂的添加会使原油浮射流内部油滴的体积中值粒径变小,油滴粒径分布曲线向小尺寸方向偏移。实验结果可为后续的物理模拟实验和数值模拟研究提供参考。  相似文献   

4.
通过对溢油在深海环境中的输移过程及行为特点的分析,初步建立基于拉格朗日积分法的深海溢油模型.该模型除了能够模拟油气混合物在真实深海环境中的共同输移与分离输移扩散过程,还考虑了石油溶解、气体溶解、天然气水合物形成与分解等行为变化对溢油运动轨迹的影响.应用该模型初步数值模拟了一次实际深海溢油试验,结果表明溢油在水下的空间分...  相似文献   

5.
针对南海油气田勘探开发溢油污染防治需求,开发了国内首套深水区水下溢油三维可视化模拟系统,由三维海流预报模型、深水溢油模型、三维可视化仿真系统和数据库组成。海流预报模型基于ROMS模式,通过考虑波致混合影响,并利用最优插值技术同化卫星测高资料和嵌套技术,保障了预报结果的准确性。深水溢油模型由羽流模型和对流扩散模型组成,考虑了卷吸、油气分离、溶解、水合物生成、漂移、扩散等复杂过程。系统能够预测深水区水下油气泄漏后行为和归宿过程,提供油、气、天然气水合物粒子的大小、分布、移动速度和漂移轨迹、扩散面积、水体溢油残存量、水面溢油量等三维可视化动态模拟结果。目前系统已经在油气田勘探开发中得到应用,为南海深水溢油应急提供了重要支撑。  相似文献   

6.
NOAA的GNOME溢油模型在湄洲湾的应用   总被引:2,自引:0,他引:2  
在湄洲湾试用GNOME溢油模型模拟溢油扩散.先用EFDC建立潮流场,并选用主导风形成常风场,一并输入GNOME建立起溢油模型,模拟涨、落潮过程叠加不同风况下敏感海域的溢油扩散.模拟结果:初始溢油量为100t,扩散到第6小时,8种不同条件下挥发油量都为7.7t,附岸和漂浮油量和为92.3t,其中漂浮油量为6.4~92.0t,相应附岸油量为85.9~0.3t;溢油扩散最大范围为1.3~30.0km。,90%置信区间为2.0~56.0km。,最大距离为1.2~14.6km;与前人模拟溢油扩散结果相比基本一致.经分析,溢油扩散主要受3个方面影响:(1)岸线走向:当岸线靠近油膜漂移的路线时,大量油膜附着在岸上,扩散范围较小;(2)风况与流场关系:如果两者方向一致,油膜会扩散较远;(3)风区长度:风区越长,油膜扩散范围越大.总之,建立GNOME溢油模型较好地模拟了溢油扩散趋势,对溢油应急响应具有参考作用.  相似文献   

7.
为研究污染物离岸排放的输移扩散规律及影响因素,本文基于MIKE21软件构建了渤海和黄海北部海域的数学模型,采用水动力模块对海域潮流进行数值模拟,通过对排污口海域网格逐层加密,模拟了芝罘岛海域的潮流场,并与实测潮流资料进行对比,验证了模型的合理性。在此基础上耦合输移扩散模块,模拟了污染物COD在不同环境条件下的输移扩散现象,并研究对比了风场和源项对离岸排放污染物的输移扩散产生的影响。结果表明,风场改变了污染物离岸输移扩散的速度和方向;在排污区域附近,线源比点源更有利于污染物的离岸输移扩散。  相似文献   

8.
海上船舶溢油,大多持续时间较短,事故发生后,溢油输移扩散受海洋水动力场和风场的影响很大.因此,研究溢油对海洋环境的影响,从概率统计的角度研究更具有实际意义.本文以船舶交通事故概率较高的胶州湾为研究海域,依据青岛港海域水上交通事故空间分布统计数据,在基于油粒子追踪法建立胶州湾溢油漂移扩散模型的基础上,考虑随机风场和流场的组合动力条件,统计溢油抵达岸线和敏感保护目标的概率.结果表明,事故高发区溢油,胶州湾岸线污染概率较大的为大港、黄岛油港、团岛至大麦岛联线,海洋保护目标中青岛文昌鱼海洋保护区和青岛海滨风景旅游休闲娱乐区受污染的概率较大,分别达到40%和50%.  相似文献   

9.
三维海洋溢油预测模型的建立(英文)   总被引:5,自引:1,他引:5  
提出一个海洋溢油三维物理归宿和输运的动力学综合模型。该模型包含了一系列的数学公式来描述对流、湍扩散、表面扩展、铅直扩散、乳化和蒸发过程。每一公式的建立是独立的并且与相关过程、环境和其它参数相联系。该模型需要输入流场作为输运的媒介 ,这可从感兴趣区域的三维潮和风驱动的流体动力学模型获得。模型用来预测和后报溢油在海洋环境中的归宿和输移 ,可为溢油应急反应和环境影响评价服务。  相似文献   

10.
耦合海洋和溢油模型,建立起1个适用于长江口深水航道内溢油轨迹预报模型。海洋模型考虑了深水航道中导堤丁坝的影响,能够较好地模拟深水航道内流场,使物理场更加可信;溢油模型采用前国际上常用的随机游走和拉格朗日油粒子追踪法,预测油粒子的漂移扩散轨迹和扫海面积。研究表明:在深水航道中段发生的溢油事故,油粒子的漂移分布和扫海面积受导堤丁坝和流场的共同影响,涨急时刻溢油24h后油粒子的分布和扫海主要分布在导堤丁坝附近,落急时刻溢油的油粒子则大部分分布于导堤丁坝外,扫海面积也比涨急时刻大,对九段沙自然保护敏感区域产生一定程度的潜在生态影响。本文用数值实验的方法验证了海洋模型中考虑导堤丁坝与不考虑导堤丁坝相比,溢油轨迹预测是有差别的,考虑了导堤丁坝会对油粒子在导堤丁坝附近的漂移和扩散起阻挡约束和聚集的作用,没有考虑导堤丁坝的溢油扫海面积增大。  相似文献   

11.
Wang  Kun  Du  Jing  Liu  Ming  Wu  Jin-hao  Jiang  Heng-zhi  Jin  Sheng  Song  Lun 《中国海洋工程》2019,33(2):185-197
The Bohai Sea is a seasonal icy sea area that has the lowest latitude of any sea experiencing icing in the northern hemisphere, and simulation studies on oil spills during its sea ice period are the key to analyzing winter oil spill accidents. This study applied the three-dimensional free surface to establish a high-resolution hydrodynamic model and simulate tidal distributions in the Bohai Sea. Then, the oil spill model of the open sea area and thermodynamic model were combined to establish a numerical model for the Bohai oil spill during the winter sea ice period. The hydrodynamic model and sea ice growth and melting model were verified, and the parameters were adjusted based on the measured values, which indicate that the numerical model established in this paper is of high accuracy,stability and ubiquity. Finally, after checking the calculations repeatedly, the diffusion coefficient for the Bohai Sea was determined to be 1.0×10~(–7 )m~2/s. It is better that the comprehensive weathering attenuation coefficient is lower than that of a non-winter oil spill, with 1.3×10~(–7 )m~2/s being the most appropriate coefficient. This study can provide the reliable technical support for the operational safety and reduction in losses caused by winter oil spill accidents for the petroleum industry.  相似文献   

12.
To address the mechanisms controlling halocline variability in the Beaufort Sea, the relationship between halocline shoaling/deepening and surface wind fields on seasonal to decadal timescales was investigated in a numerical experiment. Results from a pan-Arctic coupled sea ice-ocean model demonstrate reasonable performances for interannual and decadal variations in summer sea ice extent in the entire Arctic and in freshwater content in the Canada Basin. Shelf-basin interaction associated with Pacific summer and winter transport depends on basin-scale wind patterns and can have a significant influence on halocline variability in the southern Beaufort Sea. The eastward transport of fresh Pacific summer water along the northern Alaskan coast and Ekman downwelling north of the shelf break are commonly enhanced by cyclonic wind in the Canada Basin. On the other hand, basin-wide anti-cyclonic wind induces Ekman upwelling and blocks the eastward current in the Beaufort shelf-break region. Halocline shoaling/deepening due to shelf-water transport and surface Ekman forcing consequently occur in the same direction. North of the Barrow Canyon mouth, the springtime down-canyon transport of Pacific winter water, which forms by sea ice production in the Alaskan coastal polynya, thickens the halocline layer. The model result indicates that the penetration of Pacific winter water prevents the local upwelling of underlying basin water to the surface layer, especially in basin-scale anti-cyclonic wind periods.  相似文献   

13.
The error source analysis of oil spill transport modeling: a case study   总被引:2,自引:2,他引:0  
Numerical modeling is an important tool to study and predict the transport of oil spills. However, the accu- racy of numerical models is not always good enough to provide reliable information for oil spill transport. It is necessary to analyze and identify major error sources for the models. A case study was conducted to analyze error sources of a three-dimensional oil spill model that was used operationally for oil spill forecast- ing in the National Marine Environmental Forecasting Center (NMEFC), the State Oceanic Administration, China. On June 4, 2011, oil from sea bed spilled into seawater in Penglai 19-3 region, the largest offshore oil field of China, and polluted an area of thousands of square kilometers in the Bohai Sea. Satellite remote sensing images were collected to locate oil slicks. By performing a series of model sensitivity experiments with different wind and current forcings and comparing the model results with the satellite images, it was identified that the major errors of the long-term simulation for oil spill transport were from the wind fields, and the wind-induced surface currents. An inverse model was developed to estimate the temporal variabil- ity of emission intensity at the oil spill source, which revealed the importance of the accuracy in oil spill source emission time function.  相似文献   

14.
使用ROMS(regional oceanic modeling system)模式模拟了40年的渤黄东海温盐流,数据包括三维的温度、盐度、流速、流向和海表高度,同时包含了逐小时的潮汐信息。将模拟结果与观测资料和卫星反演数据进行对比,检验了模式准确性。整体上,模式模拟的水位与近岸观测值基本一致,能够准确再现风产生的增水;模式较为准确的再现了渤黄东海的温度分布,在深水区模拟的温盐剖面与观测值基本一致;模式模拟渤黄东海区域的海表高度和海表流与卫星反演结果相比偏小,但分布趋势相近。模式结果可以为研究气候变化对水位的影响和黄海暖舌的扩散过程等现象提供数据支持。  相似文献   

15.
蓬莱19-3 油田事故溢油数值模拟   总被引:2,自引:0,他引:2  
利用FVCOM(Finite-volume coastal ocean numerical model)数值模型和MM5风场预报模式,在对渤海海域水动力场进行数值模拟的基础上,基于"油粒子"的欧拉-拉格朗日跟踪法和随机走动原理,并考虑风对溢油油膜漂移扩散的直接作用,建立了海洋溢油油膜漂移轨迹和扩散的数值预测模型。利用建立的模型对2011年6月蓬莱19-3油田事故溢油进行了数值模拟,模拟结果与RADARSAT卫星遥感监测数据相吻合。研究结果表明:在渤海中部地区夏季事故溢油模拟预测中,风漂移因子取0.024最为合理,模型可用于渤海蓬莱19-3油田附近事故溢油轨迹和扩散的快速预报,从而为该区域的溢油事故应急响应提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号